1
|
Zahavi T, Salmon-Divon M, Salgado R, Elkin M, Hermano E, Rubinstein AM, Francis PA, Di Leo A, Viale G, de Azambuja E, Ameye L, Sotiriou C, Salmon A, Kravchenko-Balasha N, Sonnenblick A. Heparanase: a potential marker of worse prognosis in estrogen receptor-positive breast cancer. NPJ Breast Cancer 2021; 7:67. [PMID: 34050190 PMCID: PMC8163849 DOI: 10.1038/s41523-021-00277-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 05/11/2021] [Indexed: 01/09/2023] Open
Abstract
Heparanase promotes tumor growth in breast tumors. We now evaluated heparanase protein and gene-expression status and investigated its impact on disease-free survival in order to gain better insight into the role of heparanase in ER-positive (ER+) breast cancer prognosis and to clarify its role in cell survival following chemotherapy. Using pooled analysis of gene-expression data, we found that heparanase was associated with a worse prognosis in estrogen receptor-positive (ER+) tumors (log-rank p < 10-10) and predictive to chemotherapy resistance (interaction p = 0.0001) but not hormonal therapy (Interaction p = 0.62). These results were confirmed by analysis of data from a phase III, prospective randomized trial which showed that heparanase protein expression is associated with increased risk of recurrence in ER+ breast tumors (log-rank p = 0.004). In vitro experiments showed that heparanase promoted tumor progression and increased cell viability via epithelial-mesenchymal transition, stemness, and anti-apoptosis pathways in luminal breast cancer. Taken together, our results demonstrated that heparanase is associated with worse outcomes and increased cell viability in ER+ BC.
Collapse
Affiliation(s)
- Tamar Zahavi
- Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel, Israel
| | - Mali Salmon-Divon
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel, Israel
| | - Roberto Salgado
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Department of Pathology, GZA-ZNA Hospitals, Antwerp, Belgium
| | - Michael Elkin
- Department of Oncology, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Esther Hermano
- Department of Oncology, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ariel M Rubinstein
- The Institute of Biomedical and Oral Research, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Prudence A Francis
- Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC, Australia
- Breast Cancer Trials Australia & New Zealand, Newcastle, NSW, Australia
- International Breast Cancer Study Group, Bern, Switzerland
| | - Angelo Di Leo
- Sandro Pitigliani Department of Medical Oncology, Hospital of Prato, Prato, Italy
| | - Giuseppe Viale
- The University of Milan, and IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Evandro de Azambuja
- Institut Jules Bordet and l'Université Libre de Bruxelles (U.L.B), Brussels, Belgium
| | - Lieveke Ameye
- Institut Jules Bordet and l'Université Libre de Bruxelles (U.L.B), Brussels, Belgium
| | - Christos Sotiriou
- Institut Jules Bordet and l'Université Libre de Bruxelles (U.L.B), Brussels, Belgium
| | | | | | - Amir Sonnenblick
- Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
2
|
Impact of Adjuvant Treatment on Heparanase Concentration in Invasive, Unilateral Breast Cancer Patients: Results of a Prospective Single-Centre Cohort Study. J Clin Med 2021; 10:jcm10102184. [PMID: 34070058 PMCID: PMC8158114 DOI: 10.3390/jcm10102184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/04/2021] [Accepted: 05/14/2021] [Indexed: 12/14/2022] Open
Abstract
Background: In recent years, great progress has been made in the treatment of breast cancer, but it is still one of the ten leading causes of death in women. The aim of the study was to evaluate the heparanase concentration of invasive breast cancer (IBrC) patients, before and after cancer adjuvant treatment. Methods: Eighty patients with stage IA to IIB IBrC receiving adjuvant treatment were included prospectively in this study. The heparanase concentrations were determined by an enzyme-linked immunosorbent assay. A univariate analysis was used to estimate the factors influencing the low or high pre-treatment concentration of heparanase and the low or high numerical decrease in heparanase concentration after completion of adjuvant treatment. Results: Treatment reduced the concentration of heparanase by almost four times in the general IBrC cohort. Higher levels of pre- and post-treatment heparanase were noted in oestrogen receptor-negative cancers than in positive ones. A higher post-treatment concentration of heparanase was found in patients with a triple-negative tumour compared to patients with a luminal B HER2 negative type of IBrC. Overweight IBrC subjects and those with a tumour diameter of ≥2 cm demonstrated a lower chance of a lower pre-treatment heparanase concentration. Interestingly, a pre-treatment heparanase concentration is the main predictor of the changes in heparanase concentration after adjuvant treatment. Follow-up revealed significantly lower progression-free survival (PFS) rates in IBrC patients with a pre-treatment concentration of heparanase higher than 181.46 pg/mL (PFS = 80%). Conclusions: Our findings provide supporting evidence that IBrC therapy reduced the heparanase levels, regardless of treatment patterns and a pre-treatment concentration of heparanase may serve as a prognostic indicator for future outcomes.
Collapse
|
3
|
Endothelial Glycocalyx as a Regulator of Fibrotic Processes. Int J Mol Sci 2021; 22:ijms22062996. [PMID: 33804258 PMCID: PMC7999025 DOI: 10.3390/ijms22062996] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/02/2021] [Accepted: 03/11/2021] [Indexed: 12/31/2022] Open
Abstract
The endothelial glycocalyx, the gel layer covering the endothelium, is composed of glycosaminoglycans, proteoglycans, and adsorbed plasma proteins. This structure modulates vessels’ mechanotransduction, vascular permeability, and leukocyte adhesion. Thus, it regulates several physiological and pathological events. In the present review, we described the mechanisms that disturb glycocalyx stability such as reactive oxygen species, matrix metalloproteinases, and heparanase. We then focused our attention on the role of glycocalyx degradation in the induction of profibrotic events and on the possible pharmacological strategies to preserve this delicate structure.
Collapse
|
4
|
Hermano E, Carlotti F, Abecassis A, Meirovitz A, Rubinstein AM, Li JP, Vlodavsky I, Rabelink TJ, Elkin M. Dichotomic role of heparanase in a murine model of metabolic syndrome. Cell Mol Life Sci 2021; 78:2771-2780. [PMID: 33051777 PMCID: PMC11072560 DOI: 10.1007/s00018-020-03660-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/17/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023]
Abstract
Heparanase is the predominant enzyme that cleaves heparan sulfate, the main polysaccharide in the extracellular matrix. While the role of heparanase in sustaining the pathology of autoimmune diabetes is well documented, its association with metabolic syndrome/type 2 diabetes attracted less attention. Our research was undertaken to elucidate the significance of heparanase in impaired glucose metabolism in metabolic syndrome and early type 2 diabetes. Here, we report that heparanase exerts opposite effects in insulin-producing (i.e., islets) vs. insulin-target (i.e., skeletal muscle) compartments, sustaining or hampering proper regulation of glucose homeostasis depending on the site of action. We observed that the enzyme promotes macrophage infiltration into islets in a murine model of metabolic syndrome, and fosters β-cell-damaging properties of macrophages activated in vitro by components of diabetogenic/obese milieu (i.e., fatty acids). On the other hand, in skeletal muscle (prototypic insulin-target tissue), heparanase is essential to ensure insulin sensitivity. Thus, despite a deleterious effect of heparanase on macrophage infiltration in islets, the enzyme appears to have beneficial role in glucose homeostasis in metabolic syndrome. The dichotomic action of the enzyme in the maintenance of glycemic control should be taken into account when considering heparanase-targeting strategies for the treatment of diabetes.
Collapse
Affiliation(s)
- Esther Hermano
- Department of Oncology, Sharett Institute, Hadassah-Hebrew University Medical Center, 91120, Jerusalem, Israel
| | - Françoise Carlotti
- Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Alexia Abecassis
- Department of Oncology, Sharett Institute, Hadassah-Hebrew University Medical Center, 91120, Jerusalem, Israel
| | - Amichay Meirovitz
- Department of Oncology, Sharett Institute, Hadassah-Hebrew University Medical Center, 91120, Jerusalem, Israel
| | - Ariel M Rubinstein
- Department of Oncology, Sharett Institute, Hadassah-Hebrew University Medical Center, 91120, Jerusalem, Israel
| | - Jin-Ping Li
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center, The Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Ton J Rabelink
- Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Michael Elkin
- Department of Oncology, Sharett Institute, Hadassah-Hebrew University Medical Center, 91120, Jerusalem, Israel.
- Hebrew University Medical School, 91120, Jerusalem, Israel.
| |
Collapse
|
5
|
Buijsers B, Yanginlar C, de Nooijer A, Grondman I, Maciej-Hulme ML, Jonkman I, Janssen NAF, Rother N, de Graaf M, Pickkers P, Kox M, Joosten LAB, Nijenhuis T, Netea MG, Hilbrands L, van de Veerdonk FL, Duivenvoorden R, de Mast Q, van der Vlag J. Increased Plasma Heparanase Activity in COVID-19 Patients. Front Immunol 2020; 11:575047. [PMID: 33123154 PMCID: PMC7573491 DOI: 10.3389/fimmu.2020.575047] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/14/2020] [Indexed: 12/23/2022] Open
Abstract
Reports suggest a role of endothelial dysfunction and loss of endothelial barrier function in COVID-19. It is well established that the endothelial glycocalyx-degrading enzyme heparanase contributes to vascular leakage and inflammation. Low molecular weight heparins (LMWH) serve as an inhibitor of heparanase. We hypothesize that heparanase contributes to the pathogenesis of COVID-19, and that heparanase may be inhibited by LMWH. To test this hypothesis, heparanase activity and heparan sulfate levels were measured in plasma of healthy controls (n = 10) and COVID-19 patients (n = 48). Plasma heparanase activity and heparan sulfate levels were significantly elevated in COVID-19 patients. Heparanase activity was associated with disease severity including the need for intensive care, lactate dehydrogenase levels, and creatinine levels. Use of prophylactic LMWH in non-ICU patients was associated with a reduced heparanase activity. Since there is no other clinically applied heparanase inhibitor currently available, therapeutic treatment of COVID-19 patients with low molecular weight heparins should be explored.
Collapse
Affiliation(s)
- Baranca Buijsers
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Cansu Yanginlar
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Aline de Nooijer
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Inge Grondman
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marissa L. Maciej-Hulme
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Inge Jonkman
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Nico A. F. Janssen
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Nils Rother
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Mark de Graaf
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Peter Pickkers
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Matthijs Kox
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Leo A. B. Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Tom Nijenhuis
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Deparment of Immunology and Metabolism, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Luuk Hilbrands
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Frank L. van de Veerdonk
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Raphaël Duivenvoorden
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Quirijn de Mast
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Johan van der Vlag
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
6
|
Buijsers B, Yanginlar C, Maciej-Hulme ML, de Mast Q, van der Vlag J. Beneficial non-anticoagulant mechanisms underlying heparin treatment of COVID-19 patients. EBioMedicine 2020; 59:102969. [PMID: 32853989 PMCID: PMC7445140 DOI: 10.1016/j.ebiom.2020.102969] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease-2019 (COVID-19) is associated with severe inflammation in mainly the lung, and kidney. Reports suggest a beneficial effect of the use of heparin/low molecular weight heparin (LMWH) on mortality in COVID-19. In part, this beneficial effect could be explained by the anticoagulant properties of heparin/LMWH. Here, we summarise potential beneficial, non-anticoagulant mechanisms underlying treatment of COVID-19 patients with heparin/LMWH, which include: (i) Inhibition of heparanase activity, responsible for endothelial leakage; (ii) Neutralisation of chemokines, and cytokines; (iii) Interference with leukocyte trafficking; (iv) Reducing viral cellular entry, and (v) Neutralisation of extracellular cytotoxic histones. Considering the multiple inflammatory and pathogenic mechanisms targeted by heparin/LMWH, it is warranted to conduct clinical studies that evaluate therapeutic doses of heparin/LMWH in COVID-19 patients. In addition, identification of specific heparin-derived sequences that are functional in targeting non-anticoagulant mechanisms may have even higher therapeutic potential for COVID-19 patients, and patients suffering from other inflammatory diseases.
Collapse
Affiliation(s)
- Baranca Buijsers
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Cansu Yanginlar
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Marissa L Maciej-Hulme
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Quirijn de Mast
- Department of Internal Medicine, Radboud university medical center, Nijmegen, The Netherlands
| | - Johan van der Vlag
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
7
|
Heparanase-The Message Comes in Different Flavors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:253-283. [DOI: 10.1007/978-3-030-34521-1_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
van der Vlag J, Buijsers B. Heparanase in Kidney Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:647-667. [PMID: 32274730 DOI: 10.1007/978-3-030-34521-1_26] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The primary filtration of blood occurs in the glomerulus in the kidney. Destruction of any of the layers of the glomerular filtration barrier might result in proteinuric disease. The glomerular endothelial cells and especially its covering layer, the glycocalyx, play a pivotal role in development of albuminuria. One of the main sulfated glycosaminoglycans in the glomerular endothelial glycocalyx is heparan sulfate. The endoglycosidase heparanase degrades heparan sulfate, thereby affecting glomerular barrier function, immune reactivity and inflammation. Increased expression of glomerular heparanase correlates with loss of glomerular heparan sulfate in many glomerular diseases. Most importantly, heparanase knockout in mice prevented the development of albuminuria after induction of experimental diabetic nephropathy and experimental glomerulonephritis. Therefore, heparanase could serve as a pharmacological target for glomerular diseases. Several factors that regulate heparanase expression and activity have been identified and compounds aiming to inhibit heparanase activity are currently explored.
Collapse
Affiliation(s)
- Johan van der Vlag
- Department of Nephrology (480), Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands.
| | - Baranca Buijsers
- Department of Nephrology (480), Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| |
Collapse
|
9
|
Goldberg R, Meirovitz A, Abecassis A, Hermano E, Rubinstein AM, Nahmias D, Grinshpun A, Peretz T, Elkin M. Regulation of Heparanase in Diabetes-Associated Pancreatic Carcinoma. Front Oncol 2019; 9:1405. [PMID: 31921662 PMCID: PMC6914686 DOI: 10.3389/fonc.2019.01405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/27/2019] [Indexed: 12/18/2022] Open
Abstract
While at least six types of cancer have been associated with diabetes, pancreatic ductal adenocarcinoma (PDAC) and diabetes exhibit a unique bidirectional relationship. Recent reports indicate that majority of PDAC patients display hyperglycemia, and ~50% have concurrent diabetes. In turn, hyperglycemic/diabetic state in PDAC patients fosters enhanced growth and dissemination of the tumor. Heparanase enzyme (the sole mammalian endoglycosidase degrading glycosaminoglycan heparan sulfate) is tightly implicated in PDAC progression, aggressiveness, and therapy resistance. Overexpression of heparanase is a characteristic feature of PDAC, correlating with poor prognosis. However, given the lack of heparanase expression in normal pancreatic tissue, the regulatory mechanisms responsible for induction of the enzyme in PDAC have remained largely unknown. Previously reported inducibility of heparanase gene by diabetic milieu components in several non-cancerous cell types prompted us to hypothesize that in the setting of diabetes-associated PDAC, hyperglycemic state may induce heparanase overexpression. Here, utilizing a mouse model of diet-induced metabolic syndrome/diabetes, we found accelerated PDAC progression in hyperglycemic mice, occurring along with induction of heparanase in PDAC. In vitro, we demonstrated that advanced glycation end-products (AGE), which are largely thought as oxidative derivatives resulting from chronic hyperglycemia, and the receptor for AGE (RAGE) are responsible for heparanase induction in PDAC cells. These findings underscore the new mechanism underlying preferential expression of heparanase in pancreatic cancer. Moreover, taken together with the well-established causal role of the enzyme in PDAC progression, our findings indicate that heparanase may sustain (at least in part) reciprocal causality between diabetes and pancreatic tumorigenesis.
Collapse
Affiliation(s)
- Rachel Goldberg
- Sharett Oncology Institute, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Amichay Meirovitz
- Sharett Oncology Institute, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Alexia Abecassis
- Sharett Oncology Institute, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Esther Hermano
- Sharett Oncology Institute, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ariel M Rubinstein
- Sharett Oncology Institute, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Daniela Nahmias
- Sharett Oncology Institute, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Albert Grinshpun
- Sharett Oncology Institute, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Tamar Peretz
- Sharett Oncology Institute, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Michael Elkin
- Sharett Oncology Institute, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
10
|
Barash U, Spyrou A, Liu P, Vlodavsky E, Zhu C, Luo J, Su D, Ilan N, Forsberg-Nilsson K, Vlodavsky I, Yang X. Heparanase promotes glioma progression via enhancing CD24 expression. Int J Cancer 2019; 145:1596-1608. [PMID: 31032901 DOI: 10.1002/ijc.32375] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 04/01/2019] [Accepted: 04/10/2019] [Indexed: 02/05/2023]
Abstract
Heparanase is an endo-β-d-glucuronidase that cleaves heparan sulfate (HS) side chains of heparan sulfate proteoglycans. Compelling evidence tie heparanase levels with all steps of tumor formation including tumor initiation, growth, metastasis and chemo-resistance, likely involving augmentation of signaling pathways and gene transcription. In order to reveal the molecular mechanism(s) underlying the protumorigenic properties of heparanase, we established an inducible (Tet-on) system in U87 human glioma cells and applied gene array methodology in order to identify genes associated with heparanase induction. We found that CD24, a mucin-like cell adhesion protein, is consistently upregulated by heparanase and by heparanase splice variant devoid of enzymatic activity, whereas heparanase gene silencing was associated with decreased CD24 expression. This finding was further substantiated by a similar pattern of heparanase and CD24 immunostaining in glioma patients (Pearson's correlation; R = 0.66, p = 0.00001). Noteworthy, overexpression of CD24 stimulated glioma cell migration, invasion, colony formation in soft agar and tumor growth in mice suggesting that CD24 functions promote tumor growth. Likewise, anti-CD24 neutralizing monoclonal antibody attenuated glioma tumor growth, and a similar inhibition was observed in mice treated with a neutralizing mAb directed against L1 cell adhesion molecule (L1CAM), a ligand for CD24. Importantly, significant shorter patient survival was found in heparanase-high/CD24-high tumors vs. heparanase-high/CD24-low tumors for both high-grade and low-grade glioma (p = 0.02). Our results thus uncover a novel heparanase-CD24-L1CAM axis that plays a significant role in glioma tumorigenesis.
Collapse
Affiliation(s)
- Uri Barash
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Haifa, Israel
| | - Argyris Spyrou
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Pei Liu
- Shantou University Medical College, Shantou, China
| | | | - Chenchen Zhu
- Shantou University Medical College, Shantou, China
| | - Juanjuan Luo
- Shantou University Medical College, Shantou, China
| | - Dongsheng Su
- Shantou University Medical College, Shantou, China
| | - Neta Ilan
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Haifa, Israel
| | - Karin Forsberg-Nilsson
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Israel Vlodavsky
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Haifa, Israel
| | - Xiaojun Yang
- Shantou University Medical College, Shantou, China
| |
Collapse
|
11
|
Jin H, Cui M. New Advances of Heparanase in Human Diseases. Mini Rev Med Chem 2019; 20:90-95. [PMID: 31518222 DOI: 10.2174/1389557519666190913150959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/05/2019] [Accepted: 06/23/2019] [Indexed: 01/22/2023]
Abstract
OBJECTIVE This mini-review aims to discuss research works about heparanase published in 2016, 2017, 2018 and 2019 and provide a direction for therapy methods targeting heparanase. PATIENTS AND METHODS The relevant data were searched by using keywords "heparanase" "function", "diseases" and "inhibitors" in "PubMed", "Web of Science" and "China Knowledge Resource Integrated databases (CNKI)", and a hand-search was done to acquire peer-reviewed articles and reports about heparanase. RESULTS Except for tumor progression, pathological processes including procoagulant activities, preeclamptic placentas, inflammation and so on are all verified to be associated with heparanase activity. Also, these newly-found functions are closely related to certain cellular activities, including epithelial to Mesenchymal Transition (EMT). CONCLUSION It could be concluded that heparanase would be a potential and valuable therapy target.
Collapse
Affiliation(s)
- Hao Jin
- The Second Department of General Surgery, Zhuhai People's Hospital, No. 79 of Kangning Road, Xiangzhou District, Zhuhai City, Guangdong Province, 519000, China
| | - Min Cui
- The Second Department of General Surgery, Zhuhai People's Hospital, No. 79 of Kangning Road, Xiangzhou District, Zhuhai City, Guangdong Province, 519000, China
| |
Collapse
|
12
|
Jin H, Cui M. New Advances of Heparanase and Heparanase-2 in Human Diseases. Arch Med Res 2019; 49:423-429. [PMID: 30850186 DOI: 10.1016/j.arcmed.2019.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/17/2019] [Accepted: 02/25/2019] [Indexed: 12/27/2022]
Abstract
As we all know, heparanase plays an important role in human diseases. As a kind of endo-β-glucuronidase, heparanase is the known only enzyme in mammals which could degrade heparan sulfate(HS) specifically. HS is a vital component of extracellular matrix(ECM). Heparanase takes effect by cleaving theβ(1,4)-glycosidic between glucosamine residue and glucuronic acid of HS. This cleavage will cause ECM remodelling and HS-linked biological molecules release, including cytokines, growth factors and a lot of biological molecules regulating various pathological activities. Experiments already proved that heparanase gene over-expresses in cancers of gastrointestinal tract, esophagus, breast and so on. Various studies have demonstrated the heparanase's pro-metastatic function and the reduced survival rate of patients could be indicated by high heparanase levels. Besides, pathological processes including procoagulant activities, preeclamptic placentas and inflammation are all verified to be associated with heparanase activity. In recent years, many functions other than pro-tumor effect was found in heparanase and worldwide researchers conducted varieties of experiments to identify the new function of this significant enzyme. Also, these newly-found functions are closely connected to certain cellular activities, for example epithelial to mesenchymal transition (EMT). It has already been demonstrated that EMT is related to some clinical disorders, like renal diseases. Given that heparanase is the only enzyme capable of this function, it could be concluded that heparanase would be a potential and valuable therapy target. This mini-review aims to retrospect literatures about heparanase published in 2017 and 2018 and provide a direction for therapy methods targeting heparanase.
Collapse
Affiliation(s)
- Hao Jin
- The Second Department of General Surgery, Zhuhai People's Hospital, No. 79 of Kangning Road, Xiangzhou District, Zhuhai City, Guangdong Province, China
| | - Min Cui
- The Second Department of General Surgery, Zhuhai People's Hospital, No. 79 of Kangning Road, Xiangzhou District, Zhuhai City, Guangdong Province, China.
| |
Collapse
|
13
|
Cassinelli G, Dal Bo L, Favini E, Cominetti D, Pozzi S, Tortoreto M, De Cesare M, Lecis D, Scanziani E, Minoli L, Naggi A, Vlodavsky I, Zaffaroni N, Lanzi C. Supersulfated low-molecular weight heparin synergizes with IGF1R/IR inhibitor to suppress synovial sarcoma growth and metastases. Cancer Lett 2017; 415:187-197. [PMID: 29225052 DOI: 10.1016/j.canlet.2017.12.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 01/26/2023]
Abstract
Synovial sarcoma (SS) is an aggressive tumor with propensity for lung metastases which significantly impact patients' prognosis. New therapeutic approaches are needed to improve treatment outcome. Targeting the heparanase/heparan sulfate proteoglycan system by heparin derivatives which act as heparanase inhibitors/heparan sulfate mimetics is emerging as a therapeutic approach that can sensitize the tumor response to chemotherapy. We investigated the therapeutic potential of a supersulfated low molecular weight heparin (ssLMWH) in preclinical models of SS. ssLMWH showed a potent anti-heparanase activity, dose-dependently inhibited SS colony growth and cell invasion, and downregulated the activation of receptor tyrosine kinases including IGF1R and IR. The combination of ssLMWH and the IGF1R/IR inhibitor BMS754807 synergistically inhibited proliferation of cells exhibiting IGF1R hyperactivation, also abrogating cell motility and promoting apoptosis in association with PI3K/AKT pathway inhibition. The drug combination strongly enhanced the antitumor effect against the CME-1 model, as compared to single agent treatment, abrogating orthotopic tumor growth and significantly repressing spontaneous lung metastatic dissemination in treated mice. These findings provide a strong preclinical rationale for developing drug regimens combining heparanase inhibitors/HS mimetics with IGF1R antagonists for treatment of metastatic SS.
Collapse
MESH Headings
- Animals
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Apoptosis/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Drug Synergism
- Glucuronidase/antagonists & inhibitors
- Glucuronidase/metabolism
- Heparin, Low-Molecular-Weight/administration & dosage
- Heparin, Low-Molecular-Weight/metabolism
- Heparin, Low-Molecular-Weight/pharmacology
- Humans
- Mice, SCID
- Neoplasm Metastasis
- Pyrazoles/administration & dosage
- Pyrazoles/pharmacology
- Receptor, IGF Type 1
- Receptors, Somatomedin/antagonists & inhibitors
- Receptors, Somatomedin/metabolism
- Sarcoma, Synovial/drug therapy
- Sarcoma, Synovial/metabolism
- Sarcoma, Synovial/pathology
- Sulfates
- Triazines/administration & dosage
- Triazines/pharmacology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Giuliana Cassinelli
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy.
| | - Laura Dal Bo
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| | - Enrica Favini
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| | - Denis Cominetti
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| | - Sabina Pozzi
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| | - Monica Tortoreto
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| | - Michelandrea De Cesare
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| | - Daniele Lecis
- Research Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| | - Eugenio Scanziani
- Department of Veterinary Medicine, Università Degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy; Mouse and Animal Pathology Laboratory, Fondazione Filarete, Viale Ortles 22/4, 20139 Milan, Italy
| | - Lucia Minoli
- Department of Veterinary Medicine, Università Degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy; Mouse and Animal Pathology Laboratory, Fondazione Filarete, Viale Ortles 22/4, 20139 Milan, Italy
| | - Annamaria Naggi
- G. Ronzoni Institute for Chemical and Biochemical Research, Via G. Colombo 81, 20133 Milan, Italy
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center, Bruce Rappaport Faculty of Medicine, Technion, P.O. Box 9649, Haifa 31096, Israel
| | - Nadia Zaffaroni
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| | - Cinzia Lanzi
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy.
| |
Collapse
|
14
|
Heparan sulfate: Resilience factor and therapeutic target for cocaine abuse. Sci Rep 2017; 7:13931. [PMID: 29066725 PMCID: PMC5654972 DOI: 10.1038/s41598-017-13960-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/03/2017] [Indexed: 12/15/2022] Open
Abstract
Substance abuse is a pressing problem with few therapeutic options. The identification of addiction resilience factors is a potential strategy to identify new mechanisms that can be targeted therapeutically. Heparan sulfate (HS) is a linear sulfated polysaccharide that is a component of the cell surface and extracellular matrix. Heparan sulfate modulates the activity and distribution of a set of negatively charged signaling peptides and proteins — known as the HS interactome — by acting as a co-receptor or alternative receptor for growth factors and other signaling peptides and sequestering and localizing them, among other actions. Here, we show that stimulants like cocaine and methamphetamine greatly increase HS content and sulfation levels in the lateral hypothalamus and that HS contributes to the regulation of cocaine seeking and taking. The ability of the HS-binding neuropeptide glial-cell-line-derived neurotrophic factor (GDNF) to increase cocaine intake was potentiated by a deletion that abolished its HS binding. The delivery of heparanase, the endo-β-D-glucuronidase that degrades HS, accelerated the acquisition of cocaine self-administration and promoted persistent responding during extinction. Altogether, these results indicate that HS is a resilience factor for cocaine abuse and a novel therapeutic target for the treatment of cocaine addiction.
Collapse
|