1
|
Hana L, Tlapakova K, Cizkova D, Ticha A, Lehmann C, Cerny V, Hahn RG, Koci J, Astapenko D. Prevention of ischemia-reperfusion injury on the porcine model of supra-renal aortic clamp by sulodexide. Clin Hemorheol Microcirc 2025:13860291241306568. [PMID: 39973440 DOI: 10.1177/13860291241306568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
BACKGROUND The ischemia-reperfusion injury (IRI) is unavoidable in vascular surgery. Damage to the microcirculation and endothelial glycocalyx might set up a shock with loss of circulatory coherence and organ failure. Sulodexide may help to protect endothelial glycocalyx and alleviate the ischemia-reperfusion injury. METHODS Twenty female piglets underwent surgery with a 30-min-long suprarenal aortic clamp, followed by two hours of reperfusion. Ten piglets received sulodexide before the clamp, and 10 received normal saline. Blood and urine samples were taken at baseline and in 20-min intervals until the 120th minute to analyze the serum syndecan-1, E-selectin, and thrombomodulin. Albumin and glycosaminoglycans were examined in the urine. The kidney biopsies before and after the protocol were examined by light microscopy with hematoxylin-eosin staining. The sublingual microcirculation was recorded by side-stream dark field imaging at the time as blood and urine. RESULTS Based on the 2-way ANOVA testing, there was no statistically significant difference in the parameters of sublingual microcirculation. Serum markers of endothelial cell activation and damage (E-selectin and thrombomodulin) did not show any statistically significant difference either. Syndecan-1, a marker of glycocalyx damage, showed statistically significantly higher values based on the 2-way ANOVA testing (p < 0.0001) with the highest difference in the 80th minute: 7.8 (3.9-44) ng/mL in the control group and 1.8 (0.67-2.8) ng/mL in the sulodexide group. In the urine, the albuminuria was higher in the control group, although not statistically significant. Glycosaminoglycans were statistically significantly higher in the sulodexide group based on the mixed-effect analysis due to the intervention itself. Histological analysis of the renal biopsies showed necrosis in both groups after reperfusion. CONCLUSION Administering sulodexide significantly reduced the level of endothelial markers of IRI. The study results support further research into using preemptive administration of sulodexide to modulate IRI in clinical medicine.
Collapse
Affiliation(s)
- Ludek Hana
- Department of Military Surgery, Military Faculty of Medicine, University of Defence, Hradec Kralove, Czech Republic
- Department of Surgery, 2nd Faculty of Medicine, Charles University and Military University Hospital Prague, Prague, Czech Republic
| | - Katerina Tlapakova
- Department of Anesthesiology, Resuscitation, and Intensive Care Medicine, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Dana Cizkova
- Department of Histology and Embryology, Faculty of Medicine in Hradec Kralove, Charles University, Prague, Czech Republic
| | - Alena Ticha
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Christian Lehmann
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Vladimir Cerny
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS, Canada
- Department of Anesthesiology, Perioperative Medicine, and Intensive Care Medicine, University of J. E. Purkyne in Usti nad Labem, Masaryk Hospital in Usti nad Labem, Usti nad Labem, Czech Republic
- Faculty of Medicine in Hradec Kralove, Charles University, Prague, Czech Republic
- Department of Anaesthesia and Intensive Care Medicine, Charles University, 3rd Faculty of Medicine, Prague, Czech Republic
- Faculty of Health Sciences, Technical University in Liberec, Czech Republic
| | - Robert G Hahn
- Karolinska Institutet at Danderyds Hospital (KIDS), Stockholm, Sweden
| | - Jaromir Koci
- Department of Military Surgery, Military Faculty of Medicine, University of Defence, Hradec Kralove, Czech Republic
- Department of Emergency Medicine, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - David Astapenko
- Department of Anesthesiology, Resuscitation, and Intensive Care Medicine, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
- Faculty of Medicine in Hradec Kralove, Charles University, Prague, Czech Republic
- Faculty of Health Sciences, Technical University in Liberec, Czech Republic
| |
Collapse
|
2
|
Astapenko D, Gorskaja D, Zrzavecky M, Kawashima H, Ssali E, Navratil P, Hana L, Motesicky J, Radochova V, Hyspler R, Ticha A, Lehmann C, Malbrain ML, Zadak Z, Cerny V. The modulation of endothelial glycocalyx by sulodexide on the porcine model of enzymatic endothelial glycocalyx damage - a pilot study. Clin Hemorheol Microcirc 2025; 89:181-188. [PMID: 39973431 DOI: 10.1177/13860291241305514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
BackgroundSulodexide is a glycosaminoglycan-based drug prescribed to patients with angiopathy. We performed a pilot study to investigate whether sulodexide positively modulates the endothelial glycocalyx (EG) layer and the microcirculation in a porcine model of EG enzymatic damage. The EG is a sugar-based endothelial lining that is involved in the physiology of the capillary wall and the pathogenesis of many diseases.MethodsEG damage was induced in eight piglets by hyaluronidase III and heparanase I given intravenously. Four animals received sulodexide 600 IU intravenously before the enzymes and four animals after the enzymes were administered. Four animals constituted a control group. Sublingual microcirculation by side-stream dark field imaging and plasmatic concentration of syndecan-1 by ELISA were measured at baseline, 20 min after intervention, and at the 40th, and 60th minute onwards. The statistics were performed with a one-way ANOVA test with Turkey's correction for multiple comparisons testing. Timepoint comparison was performed by Student t-test or Mann-Whitney test.ResultsAt baseline, there were no statistically significant differences between the animal groups. After the intervention, the levels of syndecan-1 were significantly lower in the control group. While there were no differences between the two intervention groups. The sublingual microcirculation analysis showed that the DeBacker score was significantly higher in the control group. At 60 min, there was also a statistically significant difference in DeBacker score between the groups (8.1 ± 1.6 mm-1 in the group with enzymes given first and 11 ± 0.92 mm-1 in the group with sulodexide given first, p = 0.03). The analysis of the proportion of perused vessels did not show any statistically significant differences.ConclusionThe results of the study demonstrated a working model of EG damage but no specific action of sulodexide on EG modulation. In the sublingual microcirculation analysis, the sulodexide reduced the fall in absolute tissue perfusion in 60 min.
Collapse
Affiliation(s)
- David Astapenko
- Department of Anesthesiology, Resuscitation, and Intensive Care Medicine, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
- Faculty of Medicine in Hradec Kralove, Charles University, Prague, Czech Republic
- Faculty of Health Sciences, Technical University in Liberec, Liberec, Czech Republic
| | - Diana Gorskaja
- Department of Anesthesiology, Perioperative Medicine and Intensive Care, Hospital Bory, Bratislava, Slovak Republic
| | - Marek Zrzavecky
- Department of Orthopaedics, University of J. E. Purkyne in Usti nad Labem, Masaryk Hospital in Usti nad Labem, Usti nad Labem, Czech Republic
| | - Hanako Kawashima
- Faculty of Medicine in Hradec Kralove, Charles University, Prague, Czech Republic
| | - Edward Ssali
- Faculty of Medicine in Hradec Kralove, Charles University, Prague, Czech Republic
| | - Pavel Navratil
- Faculty of Medicine in Hradec Kralove, Charles University, Prague, Czech Republic
- Department of Urology, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ludek Hana
- Department of Military Surgery, Military Faculty of Medicine, University of Defence, Hradec Kralove, Czech Republic
- Department of Surgery, 2nd Faculty of Medicine, Charles University and Military University Hospital Prague, Prague, Czech Republic
| | - Jan Motesicky
- Department of Anesthesiology and Intensive Care Medicine, Pardubice Hospital, Pardubice, Czech Republic
| | - Vera Radochova
- Military Faculty of Medicine, University of Defence, Hradec Kralove, Czech Republic
| | - Radomir Hyspler
- Faculty of Medicine in Hradec Kralove, Charles University, Prague, Czech Republic
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Alena Ticha
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Christian Lehmann
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Manu Lng Malbrain
- First Department of Anaesthesiology and Intensive Therapy, Medical University of Lublin, Lublin, Poland
- Medical Data Management, Geel, Belgium
- International Fluid Academy, Lovenjoel, Belgium
| | - Zdenek Zadak
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Vladimir Cerny
- Department of Anesthesiology, Resuscitation, and Intensive Care Medicine, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
- Faculty of Medicine in Hradec Kralove, Charles University, Prague, Czech Republic
- Faculty of Health Sciences, Technical University in Liberec, Liberec, Czech Republic
- Department of Anaesthesia and Intensive Care Medicine, 3rd Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
3
|
Sano M, Koseki Y, Shibata K, Fujisawa T, Nobe K. Therapeutic effects of the alkaline extract of leaves of Sasa sp. and elucidation of its mechanism in acute kidney injury. J Pharmacol Sci 2024; 154:148-156. [PMID: 38395515 DOI: 10.1016/j.jphs.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 02/25/2024] Open
Abstract
Acute kidney injury (AKI), a common complication in hospitalized patients, is associated with high morbidity and mortality rates. However, there are currently no approved or effective therapeutics for AKI. AKI is primarily caused by ischemia/reperfusion (I/R) injury, with oxidative stress from reactive oxygen species (ROS) being a major contributor. This study aimed to evaluate the efficacy of an alkaline extract of the leaves of Sasa sp. (SE) using mouse renal I/R injury and hypoxia/reoxygenation (H/R) models in NRK-52E cells. Renal function parameters were measured, and histopathological evaluations were performed to assess the efficacy of SE. In addition, to determine the mechanisms underlying the effects of SE on renal I/R injury, its effects on malondialdehyde (MDA) of oxidative stress and interleukin (IL)-6 and IL-1β of inflammatory cytokines were evaluated. SE (0.03, 0.3, and 3 g/kg) improved renal function in a dose-dependent manner. In addition, SE ameliorated tubular injury and, reduced IL-6, IL-1β and MDA. Also, SE ameliorated cell death, ROS production, and inflammatory cytokine production in H/R-exposed NRK-52E cells. SE showed antioxidant and anti-inflammatory activities in the AKI. These results indicate the potential of SE as a medicinal compound for the prevention and treatment of AKI.
Collapse
Affiliation(s)
- Mizuki Sano
- Department of Pharmacology, Showa University Graduate School of Pharmacy, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan.
| | - Yutaro Koseki
- Department of Pharmacology, Showa University Graduate School of Pharmacy, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Keita Shibata
- Department of Pharmacology, Showa University Graduate School of Pharmacy, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Tomohiro Fujisawa
- Daiwa Biological Research Institute Co., Ltd., 3-2-1 Sakado, Takatsu-ku, Kawasaki-shi, Kanagawa, 213-0012, Japan
| | - Koji Nobe
- Department of Pharmacology, Showa University Graduate School of Pharmacy, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| |
Collapse
|
4
|
Liu H, Huang L, Chen F, Zhong Z, Ma X, Zhou Z, Cao S, Shen L, Peng G. Adipose-derived mesenchymal stem cells secrete extracellular vesicles: A potential cell-free therapy for canine renal ischaemia-reperfusion injury. Vet Med Sci 2023; 9:1134-1142. [PMID: 36913179 DOI: 10.1002/vms3.1105] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/15/2023] [Accepted: 02/06/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND Adipose-derived mesenchymal stem cells (ADMSCs) and their extracellular vesicles (EVs) are a promising source of therapies for ischaemia-reperfusion (IR) because of their potent anti-inflammatory and immunomodulatory properties. OBJECTIVES The aims of this study were to explore the therapeutic efficacy and potential mechanism of ADMSC-EVs in canine renal IR injury. METHODS Mesenchymal stem cells (MSCs) and EVs were isolated and characterised for surface markers. A canine IR model administered with ADMSC-EVs was used to evaluate therapeutic effects on inflammation, oxidative stress, mitochondrial damage and apoptosis. RESULTS CD105, CD90 and beta integrin ITGB were positively expressed in MSCs, while CD63, CD9 and intramembrane marker TSG101 were positively expressed in EVs. Compared with the IR model group, there was less mitochondrial damage and reduction in quantity of mitochondria in the EV treatment group. Renal IR injury led to severe histopathological lesions and significant increases in biomarkers of renal function, inflammation and apoptosis, which were attenuated by the administration of ADMSC-EVs. CONCLUSIONS Secretion of EVs by ADMSCs exhibited therapeutic potential in renal IR injury and may lead to a cell-free therapy for canine renal IR injury. These findings revealed that canine ADMSC-EVs potently attenuate renal IR injury-induced renal dysfunction, inflammation and apoptosis, possibly by reducing mitochondrial damage.
Collapse
Affiliation(s)
- Haifeng Liu
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Liyuan Huang
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Fuhao Chen
- Chongqing Fengdu Agricultural Science and Technology Development Group Co. Ltd, Chongqing, China
| | - Zhijun Zhong
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoping Ma
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ziyao Zhou
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Suizhong Cao
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Liuhong Shen
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Guangneng Peng
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
5
|
Dauth A, Bręborowicz A, Ruan Y, Tang Q, Zadeh JK, Böhm EW, Pfeiffer N, Khedkar PH, Patzak A, Vujacic-Mirski K, Daiber A, Gericke A. Sulodexide Prevents Hyperglycemia-Induced Endothelial Dysfunction and Oxidative Stress in Porcine Retinal Arterioles. Antioxidants (Basel) 2023; 12:antiox12020388. [PMID: 36829947 PMCID: PMC9952154 DOI: 10.3390/antiox12020388] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Diabetes mellitus may cause severe damage to retinal blood vessels. The central aim of this study was to test the hypothesis that sulodexide, a mixture of glycosaminoglycans, has a protective effect against hyperglycemia-induced endothelial dysfunction in the retina. Functional studies were performed in isolated porcine retinal arterioles. Vessels were cannulated and incubated with highly concentrated glucose solution (HG, 25 mM D-glucose) +/- sulodexide (50/5/0.5 μg/mL) or normally concentrated glucose solution (NG, 5.5 mM D-glucose) +/- sulodexide for two hours. Endothelium-dependent and endothelium-independent vasodilatation were measured by videomicroscopy. Reactive oxygen species (ROS) were quantified by dihydroethidium (DHE) fluorescence. Using high-pressure liquid chromatography (HPLC), the intrinsic antioxidant properties of sulodexide were investigated. Quantitative PCR was used to determine mRNA expression of regulatory, inflammatory, and redox genes in retinal arterioles, some of which were subsequently quantified at the protein level by immunofluorescence microscopy. Incubation of retinal arterioles with HG caused significant impairment of endothelium-dependent vasodilation, whereas endothelium-independent responses were not affected. In the HG group, ROS formation was markedly increased in the vascular wall. Strikingly, sulodexide had a protective effect against hyperglycemia-induced ROS formation in the vascular wall and had a concentration-dependent protective effect against endothelial dysfunction. Although sulodexide itself had only negligible antioxidant properties, it prevented hyperglycemia-induced overexpression of the pro-oxidant redox enzymes, NOX4 and NOX5. The data of the present study provide evidence that sulodexide has a protective effect against hyperglycemia-induced oxidative stress and endothelial dysfunction in porcine retinal arterioles, possibly by modulation of redox enzyme expression.
Collapse
Affiliation(s)
- Alice Dauth
- Department of Neurosurgery, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
- Correspondence:
| | - Andrzej Bręborowicz
- Department of Pathophysiology, Poznań University of Medical Sciences, 60-512 Poznań, Poland
| | - Yue Ruan
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Qi Tang
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Jenia K. Zadeh
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
- AbbVie Germany GmbH & Co. KG, 65189 Wiesbaden, Germany
| | - Elsa W. Böhm
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Pratik H. Khedkar
- Institute of Translational Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Andreas Patzak
- Institute of Translational Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Ksenija Vujacic-Mirski
- Department of Cardiology, Cardiology 1, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology, Cardiology 1, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
- Partner Site Rhine-Main, German Center for Cardiovascular Research (DZHK), 55131 Mainz, Germany
| | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| |
Collapse
|
6
|
Huang D, Chen D, Hu T, Liang H. GATA2 promotes oxidative stress to aggravate renal ischemia-reperfusion injury by up-regulating Redd1. Mol Immunol 2023; 153:75-84. [PMID: 36444820 DOI: 10.1016/j.molimm.2022.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/08/2022] [Accepted: 09/24/2022] [Indexed: 11/26/2022]
Abstract
Renal ischemia-reperfusion injury (RIRI) is a common pathophysiological process, and it is also an important cause of acute renal failure. Therefore, finding an effective therapeutic target for RIRI is extremely urgent. In our study, we constructed hypoxia-reoxygenation (HR) model in vitro and a renal ischemia-reperfusion (IR) model in vivo. Elevated levels of serum creatinine (Cr), blood urea nitrogen (BUN) tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and malondialdehyde (MDA) along with the decreased levels of superoxide dismutase (SOD) and glutathione (GSH) proved that kidney function was damaged after IR, and pathological changes of renal tissues were observed using HE staining and TUNEL staining. The protein of Redd1 expression level was detected to be upregulated after IR by western blot (WB). However, transfection of short hairpin RNA of Redd1 (sh-Redd1) alleviated the HR injury on LLC-PK1 cells, as evidenced by increased cell viability, proliferation and decreased cell apoptosis; additionally, the accumulation of ROS was inhibited. Sh-Redd1 also alleviated IR injury in the mouse model. Subsequently, GATA2 was proved to be upregulated in IR and HR models and was the transcription factor of Redd1. Knockdown of GATA2 efficiently mitigated the oxidative stress induced damages in vivo and in vitro, while these mitigations were reversed by transfection of Redd1 overexpression plasmid. In conclusion, our study clarified the possible underlying mechanism of protecting RIRI.
Collapse
Affiliation(s)
- Dan Huang
- Institutes Renal Division, Wuhan Integrated TCM & Western Medicine Hospital, Wuhan 430022, China
| | - Dan Chen
- Institutes Renal Division, Wuhan Integrated TCM & Western Medicine Hospital, Wuhan 430022, China.
| | - Taotao Hu
- Institutes Renal Division, Wuhan Integrated TCM & Western Medicine Hospital, Wuhan 430022, China
| | - Hongqing Liang
- Institutes Renal Division, Wuhan Integrated TCM & Western Medicine Hospital, Wuhan 430022, China.
| |
Collapse
|
7
|
Sulodexide Increases Glutathione Synthesis and Causes Pro-Reducing Shift in Glutathione-Redox State in HUVECs Exposed to Oxygen–Glucose Deprivation: Implication for Protection of Endothelium against Ischemic Injury. Molecules 2022; 27:molecules27175465. [PMID: 36080234 PMCID: PMC9457652 DOI: 10.3390/molecules27175465] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/14/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Sulodexide (SDX), a purified glycosaminoglycan mixture used to treat vascular diseases, has been reported to exert endothelial protective effects against ischemic injury. However, the mechanisms underlying these effects remain to be fully elucidated. The emerging evidence indicated that a relatively high intracellular concentration of reduced glutathione (GSH) and a maintenance of the redox environment participate in the endothelial cell survival during ischemia. Therefore, the aim of the present study was to examine the hypothesis that SDX alleviates oxygen–glucose deprivation (OGD)-induced human umbilical endothelial cells’ (HUVECs) injury, which serves as the in vitro model of ischemia, by affecting the redox state of the GSH: glutathione disulfide (GSSG) pool. The cellular GSH, GSSG and total glutathione (tGSH) concentrations were measured by colorimetric method and the redox potential (ΔEh) of the GSSG/2GSH couple was calculated, using the Nernst equation. Furthermore, the levels of the glutamate–cysteine ligase catalytic subunit (GCLc) and the glutathione synthetase (GSS) proteins, a key enzyme for de novo GSH synthesis, were determined using enzyme-linked immunoassay (ELISA). We demonstrated that the SDX treatment in OGD conditions significantly elevated the intracellular GSH, enhanced the GSH:GSSG ratio, shifting the redox potential to a more pro-reducing status. Furthermore, SDX increased the levels of both GCLc and GSS. The results show that SDX protects the human endothelial cells against ischemic stress by affecting the GSH levels and cellular redox state. These changes suggest that the reduction in the ischemia-induced vascular endothelial cell injury through repressing apoptosis and oxidative stress associated with SDX treatment may be due to an increase in GSH synthesis and modulation of the GSH redox system.
Collapse
|
8
|
Shinohara A, Ushiyama A, Iijima T. Time-Dependent Dynamics Required for the Degradation and Restoration of the Vascular Endothelial Glycocalyx Layer in Lipopolysaccharide-Treated Septic Mice. Front Cardiovasc Med 2021; 8:730298. [PMID: 34595224 PMCID: PMC8476805 DOI: 10.3389/fcvm.2021.730298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022] Open
Abstract
The endothelial glycocalyx (GCX) plays a key role in the development of organ failure following sepsis. Researchers have investigated GCX degradation caused by pathological conditions. Nonetheless, the GCX restoration process remains poorly understood. Herein, we developed a model in which GCX restoration could be reproduced in mice using in vivo imaging and a dorsal skinfold chamber (DSC). The severity of sepsis was controlled by adjusting the dose of lipopolysaccharide (LPS) used to trigger GCX degradation in BALB/c mice. We evaluated the GCX thickness, leukocyte-endothelial interactions, and vascular permeability using in vivo imaging through DSC under intravital microscopy. The plasma concentration of syndecan-1(Sdc-1), a GCX structural component, was also determined as a marker of GCX degradation. Thus, we developed a reproducible spontaneous GCX recovery model in mice. Degraded GCX was restored within 24 h by the direct visualization of the endothelial GCX thickness, and leukocyte-endothelial interactions. In contrast, indirectly related indicators of recovery from sepsis, such as body weight and blood pressure, required a longer recovery time. This model can be used to study intractable angiopathy following sepsis.
Collapse
Affiliation(s)
- Akane Shinohara
- Division of Anesthesiology, Department of Perioperative Medicine, Showa University, School of Dentistry, Tokyo, Japan
| | - Akira Ushiyama
- Department of Environmental Health, National Institute of Public Health, Saitama, Japan
| | - Takehiko Iijima
- Division of Anesthesiology, Department of Perioperative Medicine, Showa University, School of Dentistry, Tokyo, Japan
| |
Collapse
|
9
|
Shiva N, Sharma N, Kulkarni YA, Mulay SR, Gaikwad AB. Renal ischemia/reperfusion injury: An insight on in vitro and in vivo models. Life Sci 2020; 256:117860. [PMID: 32534037 DOI: 10.1016/j.lfs.2020.117860] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 02/08/2023]
Abstract
Optimal tissue oxygenation is essential for its normal function. Suboptimal oxygenation or ischemia contributes to increased mortalities during various pathological conditions such as stroke, acute kidney injury (AKI), cardiac failure. Despite the rapid progression of renal tissue injury, the mechanism underlying renal ischemia/reperfusion injury (IRI) remains highly unclear. Experimental in vitro and in vivo models epitomizing the fundamental process is critical to the research of the pathogenesis of IRI and the development of plausible therapeutics. In this review, we describe the in vitro and in vivo models of IRI, ranges from proximal tubular cell lines to surgery-based animal models like clamping of both renal pedicles (bilateral IRI), clamping of one renal pedicle (unilateral IRI), clamping of one/or both renal arteries/or vein, or unilateral IRI with contralateral nephrectomy (uIRIx). Also, advanced technologies like three-dimensional kidney organoids, kidney-on-a-chip are explained. This review provides thoughtful information for establishing reliable and pertinent models for studying IRI-associated acute renal pathologies.
Collapse
Affiliation(s)
- Niharika Shiva
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Nisha Sharma
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India
| | - Shrikant R Mulay
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Anil Bhanudas Gaikwad
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
10
|
Nezamoleslami S, Sheibani M, Jahanshahi F, Mumtaz F, Abbasi A, Dehpour AR. Protective effect of dapsone against renal ischemia-reperfusion injury in rat. Immunopharmacol Immunotoxicol 2020; 42:272-279. [PMID: 32321337 DOI: 10.1080/08923973.2020.1755308] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Background: Ischemia/reperfusion can cause injury to tissues and compromise functionality of organs due to inflammatory processes. Significantly, development of these effects in kidney tissue has been a challenging issue that leads to acute renal injury. In this study, anti-inflammatory, anti-oxidative, and protective features of dapsone on kidney ischemia/reperfusion injury were investigated.Material and methods: Renal ischemia was induced in rats by bilateral renal arteries clamping for 45 min followed by 24 h reperfusion phase. The effects of different doses of dapsone (1, 3, 10 mg/kg) on ischemia/reperfusion injury in kidney tissue were investigated by targeting BUN, Creatinine, LDH, MDA, MPO, IL-1β, TNF-α, and NFκB. In addition histopathological examination was performed by H&E staining method.Results and discussion: Comparing the findings of this study showed significant reduction in BUN and LDH in 10 mg/kg dapsone received groups, and Cr, MDA, and MPO in 3 mg/kg dapsone received groups. The serum level of TNF-α was significantly decreased with both doses of 3 and 10 mg/kg dapsone. The same results were observed in the serum level of IL-1β and NFκB. Besides, remarkable improvement in histological damages was also observed with dapsone treatment.Conclusion: These results support the hypothesis that the positive effects of dapsone on the renal ischemia/reperfusion injury are mediated by modulating inflammatory cascades.
Collapse
Affiliation(s)
- Sadaf Nezamoleslami
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sheibani
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Jahanshahi
- Student Research Committee, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Faiza Mumtaz
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ata Abbasi
- Department of Pathology, Urmia University of Medical sciences (UMSU), Urmia, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Abassi Z, Armaly Z, Heyman SN. Glycocalyx Degradation in Ischemia-Reperfusion Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:752-767. [PMID: 32035883 DOI: 10.1016/j.ajpath.2019.08.019] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/13/2019] [Accepted: 08/20/2019] [Indexed: 02/06/2023]
Abstract
The glycocalyx is a layer coating the luminal surface of vascular endothelial cells. It is vital for endothelial function as it participates in microvascular reactivity, endothelium interaction with blood constituents, and vascular permeability. Structural and functional damage to glycocalyx occurs in various disease states. A prominent clinical situation characterized by glycocalyx derangement is ischemia-reperfusion (I/R) of the whole body as well as during selective I/R to organs such as the kidney, heart, lung, or liver. Degradation of the glycocalyx is now considered a cornerstone in I/R-related endothelial dysfunction, which further impairs local microcirculation with a feed-forward loop of organ damage, due to vasoconstriction, leukocyte adherence, and activation of the immune response. Glycocalyx damage during I/R is evidenced by rising plasma levels of its principal constituents, heparan sulfate and syndecan-1. By contrast, the concentrations of these compounds in the circulation decrease after successful protective interventions in I/R, suggesting their use as surrogate biomarkers of endothelial integrity. In light of the importance of the glycocalyx in preserving endothelial cell integrity and its involvement in pathologic conditions, several promising therapeutic strategies to restore the damaged glycocalyx and to attenuate its deleterious consequences have been suggested. This review focuses on alterations of glycocalyx during I/R injury in general (to vital organs in particular), and on maneuvers aimed at glycocalyx recovery during I/R injury.
Collapse
Affiliation(s)
- Zaid Abassi
- Department of Physiology, The Ruth & Bruce Rappaport Faculty of Medicine, Technion-Israeli Institute of Technology, Haifa, Israel; Laboratory Medicine, Rambam Health Campus, Haifa, Israel.
| | - Zaher Armaly
- Department of Nephrology, Nazareth Hospital, Nazareth, Azrieli Faculty of Medicine-Bar Ilan University, Jerusalem, Israel
| | - Samuel N Heyman
- Department of Medicine, Hadassah Hebrew University Hospital, Mt. Scopus, Jerusalem, Israel
| |
Collapse
|
12
|
Shen D, Chen R, Zhang L, Rao Z, Ruan Y, Li L, Chu M, Zhang Y. Sulodexide attenuates endoplasmic reticulum stress induced by myocardial ischaemia/reperfusion by activating the PI3K/Akt pathway. J Cell Mol Med 2019; 23:5063-5075. [PMID: 31120192 PMCID: PMC6653332 DOI: 10.1111/jcmm.14367] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/09/2019] [Accepted: 04/12/2019] [Indexed: 12/16/2022] Open
Abstract
Acute myocardial ischaemia/reperfusion (MI/R) injury causes severe arrhythmias with a high rate of lethality. Extensive research focus on endoplasmic reticulum (ER) stress and its dysfunction which leads to cardiac injury in MI/R Our study evaluated the effects of sulodexide (SDX) on MI/R by establishing MI/R mice models and in vitro oxidative stress models in H9C2 cells. We found that SDX decreases cardiac injury during ischaemia reperfusion and decreased myocardial apoptosis and infarct area, which was paralleled by increased superoxide dismutase and reduced malondialdehyde in mice plasm, increased Bcl‐2 expression, decreased BAX expression in a mouse model of MI/R. In vitro, SDX exerted a protective effect by the suppression of the ER stress which induced by tert‐butyl hydroperoxide (TBHP) treatment. Both of the in vivo and in vitro effects were involved in the phosphatidylinositol 3‐kinase (PI3K)/Akt signalling pathway. Inhibition of PI3K/Akt pathway by specific inhibitor, LY294002, partially reduced the protective effect of SDX. In short, our results suggested that the cardioprotective role of SDX was related to the suppression of ER stress in mice MI/R models and TBHP‐induced H9C2 cell injury which was through the PI3K/Akt signalling pathway.
Collapse
Affiliation(s)
- Danping Shen
- Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ruiyao Chen
- Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lijing Zhang
- Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhiheng Rao
- Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yongxue Ruan
- Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lei Li
- Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Maoping Chu
- Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuanhai Zhang
- Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
13
|
Zynda ER, Maloy MH, Kandel ES. The role of PAK1 in the sensitivity of kidney epithelial cells to ischemia-like conditions. Cell Cycle 2019; 18:596-604. [PMID: 30724698 DOI: 10.1080/15384101.2019.1578149] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Kidney ischemia, characterized by insufficient supply of oxygen and nutrients to renal epithelial cells, is the main cause of acute kidney injury and an important contributor to mortality world-wide. Earlier research implicated a G-protein coupled receptor (NK1R) in the death of kidney epithelial cells in ischemia-like conditions. P21-associated kinase 1 (PAK1) is involved in signalling by several G-proteins. We explored the consequences of PAK1 inhibition for cell survival under the conditions of reduced glucose and oxygen. Inhibition of PAK1 by RNA interference, expression of a dominant-negative mutant or treatment with small molecule inhibitors greatly reduced the death of cultured kidney epithelial cells. Similar protection was achieved by treating the cells with inhibitors of MEK1, in agreement with the prior reports on PAK1-MEK1 connection. Concomitant inhibition of NK1R and PAK1 offered no better protection than inhibition of NK1R alone, consistent with the two proteins being members of the same pathway. Furthermore, NK1R, PAK and MEK inhibitors reduced the induction of TRAIL in ischemia-like conditions. Considering the emerging role of TRAIL in ischemia-mediated cell death, this phenomenon may contribute to the protective effects of these small molecules. Our findings support further exploration of PAK and MEK inhibitors as possible agents to avert ischemic kidney injury.
Collapse
Affiliation(s)
- Evan R Zynda
- a Department of Cell Stress Biology , Roswell Park Comprehensive Cancer Center , Buffalo , NY , USA
| | - Mitchell H Maloy
- a Department of Cell Stress Biology , Roswell Park Comprehensive Cancer Center , Buffalo , NY , USA
| | - Eugene S Kandel
- a Department of Cell Stress Biology , Roswell Park Comprehensive Cancer Center , Buffalo , NY , USA
| |
Collapse
|
14
|
Sun Y, Xun L, Jin G, Shi L. Salidroside protects renal tubular epithelial cells from hypoxia/reoxygenation injury in vitro. J Pharmacol Sci 2018; 137:170-176. [PMID: 29960844 DOI: 10.1016/j.jphs.2018.05.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/19/2018] [Accepted: 05/24/2018] [Indexed: 11/29/2022] Open
Abstract
Oxidative stress, inflammation and cell apoptosis are important mechanisms of renal ischemia/reperfusion (I/R) injury. Salidroside, a natural phenylpropanoid glycoside, possesses anti-inflammatory, anti-oxidative, and anti-apoptotic effects. However, the effect of salidroside on renal I/R injury has not been fully elucidated. The present study aimed to investigate the effect of salidroside on renal I/R injury in vitro. Our results showed that salidroside improved the viability of human renal tubular epithelial cells (HK-2) in response to hypoxia/reoxygenation (H/R). Salidroside caused apparent decrease in the levels of reactive oxygen species (ROS) and malondiaidehyde (MDA), and significant increase in superoxide dismutase (SOD) activity in HK-2 cells. Pretreatment with salidroside markedly inhibited the production levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and IL-6 in a dose-dependent manner. Salidroside treatment exhibited significant increase in Bcl-2 expressions, and decrease in Bax expressions and caspase-3 activity when compared with the H/R group. Salidroside decreased the levels of toll-like receptor 4 (TLR4) and p-p65 in HK-2 cells. Overexpression of TLR4 significantly attenuated the effects of salidroside on cell viability, oxidative stress, cytokine production and cell apoptosis in HK-2 cells. These findings indicated that salidroside protected HK-2 cells from H/R stimulation, which was mediated by the TLR4/NF-κB pathway.
Collapse
Affiliation(s)
- Yan Sun
- Department of Nephrology, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Liru Xun
- Department of Nephrology, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Gang Jin
- Department of Nephrology, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Lei Shi
- Department of Infectious Disease, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
15
|
Li T, Ni L, Zhao Z, Liu X, Lai Z, Di X, Xie Z, Song X, Wang X, Zhang R, Liu C. Melatonin attenuates smoking-induced hyperglycemia via preserving insulin secretion and hepatic glycogen synthesis in rats. J Pineal Res 2018; 64:e12475. [PMID: 29437243 PMCID: PMC5947659 DOI: 10.1111/jpi.12475] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 02/02/2018] [Indexed: 12/11/2022]
Abstract
Epidemiology survey indicated that cigarette smoking is a risk factor of diabetes. However, the precise mechanisms remain to be clarified. In this study, we found that smoking caused metabolic malfunctions on pancreas and liver in experimental animal model. These were indicated by hyperglycemia, increased serum hemoglobin A1c level and decreased insulin secretion, inhibition of liver glycogen synthase (LGS), and hepatic glycogen synthesis. Mechanistic studies revealed that all these alterations were caused by the inflammatory reaction and reactive oxygen species (ROS) induced by the smoking. Melatonin treatment significantly preserved the functions of both pancreas and liver by reducing β cell apoptosis, CD68-cell infiltration, ROS production, and caspase-3 expression. The siRNA-knockdown model identified that the protective effects of melatonin were mediated by melatonin receptor-2 (MT2). This study uncovered potentially underlying mechanisms related to the association between smoking and diabetes. In addition, it is, for first time, to report that melatonin effectively protects against smoking-induced glucose metabolic alterations and the signal transduction pathway of melatonin is mainly mediated by its MT2 receptor. These observations provide solid evidence for the clinically use of melatonin to reduce smoking-related diabetes, and the therapeutic regimens are absent currently.
Collapse
Affiliation(s)
- Tianjia Li
- Department of Vascular SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Leng Ni
- Department of Vascular SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zhewei Zhao
- Department of Vascular SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xinnong Liu
- Department of Vascular SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zhichao Lai
- Department of Vascular SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xiao Di
- Department of Vascular SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zhibo Xie
- Department of Vascular SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xitao Song
- Department of Vascular SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xuebin Wang
- Department of Vascular SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Rui Zhang
- Department of Vascular SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Changwei Liu
- Department of Vascular SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
16
|
Wu R, Kong Y, Yin J, Liang R, Lu Z, Wang N, Zhao Q, Zhou Y, Yan C, Wang F, Liang M. Antithrombin Ⅲ is a Novel Predictor for Contrast Induced Nephropathy After Coronary Angiography. Kidney Blood Press Res 2018; 43:170-180. [PMID: 29466798 DOI: 10.1159/000487499] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 08/28/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Antithrombin Ⅲ (AT Ⅲ) is an important endogenous anticoagulant and has strong anti-inflammatory properties. Low ATⅢ activity is considered to be a predictor of poor outcomes in several conditions, including acute kidney injury after cardiac surgery. However, the association between the ATⅢ level and the occurrence of contrast induced nephropathy (CIN) has not been elucidated. In this study, our aim was to identify the potential predictive value of ATⅢ for CIN. METHODS We enrolled a total of 460 patients who underwent coronary angiography (CAG) from January 2015 to December 2016 in coronary care units (CCU). ATⅢ activity in plasma collected before CAG was measured and <75% was considered low activity according to reference values. A cross-sectional study on CIN after CAG was conducted and the risk factors were analyzed. CIN was diagnosed according to the KDIGO guideline. RESULTS Of these 460 patients undergoing CAG, 125 (27.17%) progressed to CIN. The incidence of CIN was significantly higher in patients with low ATⅢ activity compared to patients with normal ATⅢ activity (Pearson's chi-squared test P=0.002). As ATⅢ activity declined, the prevalence of CIN progressively increased, with the highest value (58.8%) in patients with an ATⅢ activity <60%. Moreover, the ATⅢ activity was significantly lower in CIN patients than in non-CIN patients (84.43±16.3% vs. 92.14±13.94%, P<0.001). After multivariable analysis, ATⅢ activity <75% remained a significant independent predictor of CIN (OR 2.207,95%CI [1.29-3.777]; P=0.004) as well as baseline serum creatinine (OR 1.009,95%CI [1.001-1.016]; P=0.026). CONCLUSIONS Patients with low ATⅢ activity had a higher risk of developing CIN after CAG. The initial ATⅢ activity may be a novel independent predictor for CIN.
Collapse
Affiliation(s)
- Rui Wu
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Jiangsu University Affiliated Shanghai Eighth People's Hospital, Shanghai, China
| | - Yiwei Kong
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Jiangsu University Affiliated Shanghai Eighth People's Hospital, Shanghai, China
| | - Jianyong Yin
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Jiangsu University Affiliated Shanghai Eighth People's Hospital, Shanghai, China
| | - Rulian Liang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Jiangsu University Affiliated Shanghai Eighth People's Hospital, Shanghai, China
| | - Zeyuan Lu
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Jiangsu University Affiliated Shanghai Eighth People's Hospital, Shanghai, China
| | - Niansong Wang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Jiangsu University Affiliated Shanghai Eighth People's Hospital, Shanghai, China
| | - Qing Zhao
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yang Zhou
- Department of Nephrology, Harbin Medical University Affiliated First Hospital, Harbin, China
| | - Chungen Yan
- Department of Internal Medicine, Shaoxing University School of Medicine, Shaoxing, China
| | - Feng Wang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Jiangsu University Affiliated Shanghai Eighth People's Hospital, Shanghai, China
| | - Mingyu Liang
- Department of Physiology, Medical College of Wisconsin, and Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
17
|
Li T, Liu X, Zhao Z, Ni L, Liu C. Sulodexide recovers endothelial function through reconstructing glycocalyx in the balloon-injury rat carotid artery model. Oncotarget 2017; 8:91350-91361. [PMID: 29207649 PMCID: PMC5710929 DOI: 10.18632/oncotarget.20518] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 08/04/2017] [Indexed: 01/10/2023] Open
Abstract
Disruption of endothelial cell function is a principle event in cardiovascular disease. Accordingly, therapies have mostly focused on repairing the endothelium, but little attention has been paid to the reconstruction of glycocalyx, which covers the endothelium and protects the function of endothelial cells. Sulodexide has a similar glycosaminoglycan structure to glycocalyx, so it is assumed to be effective in remodeling the glycocalyx following damage. We assessed the effect of sulodexide on glycocalyx remodeling and endothelial function in the balloon-injury rat carotid artery model. Electron micrographs showed that sulodexide (2mg/kg, administered by intraperitoneal injection for seven days after injury) could reconstruct the endothelial glycocalyx and recover the clear cytoarchitecture. With regard to endothelial function, sulodexide increased endothelial nitric oxide synthase level, attenuated endothelial hyperplasia, and inhibited platelet aggregation that benefitted from glycocalyx reforming. Sulodexide decreased the glycocalyx damage related expression of CD31 and intercellular cell adhesion molecule-1 in endothelium, accompanying by the downregulation of leukocyte counts and C-reactive protein levels. The levels of the atherosclerosis-related factors, osteopontin and vascular cell adhesion molecule-1, which increased in activated endothelial cells lacking glycocalyx, were normalized by sulodexide. Along with the benefit of glycocalyx reconstruction, sulodexide reversed the dyslipidemia. Moreover, sulodexide prevented CD68-positive inflammatory cells infiltration into the vascular wall, presumably as a result of glycocalyx reconstruction. In summary, sulodexide treatment reconstructed glycocalyx which therefore preserved endothelial function and attenuated the expression of inflammatory factors, and decreased the blood coagulation and lipid metabolism, all of which are important for vascular healing.
Collapse
Affiliation(s)
- Tianjia Li
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Xinnong Liu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Zhewei Zhao
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Leng Ni
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Changwei Liu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
18
|
Chen X, Wu R, Kong Y, Yang Y, Gao Y, Sun D, Liu Q, Dai D, Lu Z, Wang N, Ge S, Wang F. Tanshinone IIA attenuates renal damage in STZ-induced diabetic rats via inhibiting oxidative stress and inflammation. Oncotarget 2017; 8:31915-31922. [PMID: 28404881 PMCID: PMC5458258 DOI: 10.18632/oncotarget.16651] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/02/2017] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress and inflammation have been demonstrated to be involved in the onset and promotion of diabetic nephropathy (DN).Tanshinone IIA (Tan) possesses both antioxidant and anti-inflammatory properties. Here, the aim of the present study was to explore whether Tan could attenuate renal damage in the rats with streptozotocin (STZ)-induced diabetes and its potential mechanisms. Tan was gavaged to STZ-induced diabetic rats at the dose of 10mg/kg once a day for 12 weeks. Tan treatment significantly attenuated albuminuria and renal histopathology in diabetic rats. Besides, Tan treatment also effectively inhibited oxidative stress and inflammatory reaction in the kidneys of diabetic rats. Our study provided evidence that the protective effect of Tan on diabetes-induced renal injury is associated with inhibition of oxidative stress and inflammation. Tan may be a potential candidate for the treatment of DN.
Collapse
Affiliation(s)
- Xia Chen
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Rui Wu
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yiwei Kong
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yuting Yang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yu Gao
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Dandan Sun
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Qizhen Liu
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Dongjun Dai
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Zeyuan Lu
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Niansong Wang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Sheng Ge
- Department of Clinical Nutrition, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Feng Wang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
- Department of Nephrology, Shanghai Eighth People's Hospital, Shanghai 200233, China
| |
Collapse
|
19
|
Lu Z, Cheng D, Yin J, Wu R, Zhang G, Zhao Q, Wang N, Wang F, Liang M. Antithrombin III Protects Against Contrast-Induced Nephropathy. EBioMedicine 2017; 17:101-107. [PMID: 28219627 PMCID: PMC5360582 DOI: 10.1016/j.ebiom.2017.02.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 02/08/2017] [Accepted: 02/10/2017] [Indexed: 11/26/2022] Open
Abstract
We previously reported that insufficiency of antithrombin III (ATIII), the major anti-coagulation molecule in vivo, exacerbated renal ischemia-reperfusion injury in animal models and possibly humans. In the present study, we investigated the relationship between ATIII level and contrast induced nephropathy (CIN) in patients and examined therapeutic effect of ATIII on CIN in Sprague-Dawley rats. Patients with low ATIII activity presented a higher incidence of acute kidney injury (AKI) following coronary angiography. ATIII (500 μg/kg) was intravenously injected before or after the induction of AKI in rats. Our data demonstrated ATIII significantly attenuated the elevation of serum creatinine, blood urea nitrogen, and renal histological injury. The beneficial effects of ATIII were accompanied by diminished renal inflammatory response, oxidative stress, cell apoptosis and improved renal blood flow in rats. In conclusion, ATIII appears to attenuate CIN through inhibiting inflammation, oxidative stress, apoptosis and improving renal blood flow. ATIII administration may represent a promising strategy for the prevention and treatment of contrast-induced AKI. Patients with low ATIII activity presented a higher incidence of acute kidney injury following coronary angiography. ATIII supplementation attenuated renal injury in animal models of contrast induced nephropathy. ATIII exerted renoprotective effect by inhibiting inflammation, oxidative stress, apoptosis and improving renal blood flow.
Antithrombin III (ATIII), a potent anti-coagulation molecule in vivo, has been reported that it can exert reno-protective effects in ischemia-reperfusion model. Nevertheless, whether exogenous ATIII administration can protect against contrast induced nephropathy (CIN) in animal models remains unclear. This study revealed that ATIII administration has therapeutic effects against CIN in Sprague-Dawley Rats. Furthermore, the reno-protection conferred by ATIII might be mediated by inhibition of inflammation, oxidative stress, apoptosis and improving renal blood flow. ATIII supplementation represents a promising prophylactic and treatment strategies for contrast induced AKI.
Collapse
Affiliation(s)
- Zeyuan Lu
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA; Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Dongsheng Cheng
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Jianyong Yin
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Rui Wu
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Guangyuan Zhang
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China.
| | - Qing Zhao
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Niansong Wang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Feng Wang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Mingyu Liang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA; Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|