1
|
Koop K, Yuan W, Tessadori F, Rodriguez-Polanco WR, Grubbs J, Zhang B, Osmond M, Graham G, Sawyer S, Conboy E, Vetrini F, Treat K, Płoski R, Pienkowski VM, Kłosowska A, Fieg E, Krier J, Mallebranche C, Alban Z, Aldinger KA, Ritter D, Macnamara E, Sullivan B, Herriges J, Alaimo JT, Helbig C, Ellis CA, van Eyk C, Gecz J, Farrugia D, Osei-Owusu I, Adès L, van den Boogaard MJ, Fuchs S, Bakker J, Duran K, Dawson ZD, Lindsey A, Huang H, Baldridge D, Silverman GA, Grant BD, Raizen D, van Haaften G, Pak SC, Rehmann H, Schedl T, van Hasselt P. Macrocephaly and developmental delay caused by missense variants in RAB5C. Hum Mol Genet 2023; 32:3063-3077. [PMID: 37552066 PMCID: PMC10586195 DOI: 10.1093/hmg/ddad130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/06/2023] [Accepted: 07/29/2023] [Indexed: 08/09/2023] Open
Abstract
Rab GTPases are important regulators of intracellular vesicular trafficking. RAB5C is a member of the Rab GTPase family that plays an important role in the endocytic pathway, membrane protein recycling and signaling. Here we report on 12 individuals with nine different heterozygous de novo variants in RAB5C. All but one patient with missense variants (n = 9) exhibited macrocephaly, combined with mild-to-moderate developmental delay. Patients with loss of function variants (n = 2) had an apparently more severe clinical phenotype with refractory epilepsy and intellectual disability but a normal head circumference. Four missense variants were investigated experimentally. In vitro biochemical studies revealed that all four variants were damaging, resulting in increased nucleotide exchange rate, attenuated responsivity to guanine exchange factors and heterogeneous effects on interactions with effector proteins. Studies in C. elegans confirmed that all four variants were damaging in vivo and showed defects in endocytic pathway function. The variant heterozygotes displayed phenotypes that were not observed in null heterozygotes, with two shown to be through a dominant negative mechanism. Expression of the human RAB5C variants in zebrafish embryos resulted in defective development, further underscoring the damaging effects of the RAB5C variants. Our combined bioinformatic, in vitro and in vivo experimental studies and clinical data support the association of RAB5C missense variants with a neurodevelopmental disorder characterized by macrocephaly and mild-to-moderate developmental delay through disruption of the endocytic pathway.
Collapse
Affiliation(s)
- Klaas Koop
- Department of Pediatrics, University Medical Center Utrecht, Utrecht, 3584 EA, The Netherlands
| | - Weimin Yuan
- Departments of Pediatrics and Genetics, C. elegans Model Organism Screening Center, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Federico Tessadori
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, 3584 CT, The Netherlands
| | - Wilmer R Rodriguez-Polanco
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Jeremy Grubbs
- Department of Neurology and the Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Bo Zhang
- Departments of Pediatrics and Genetics, C. elegans Model Organism Screening Center, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Matt Osmond
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, K1H 8L1, Canada
| | - Gail Graham
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, K1H 8L1, Canada
| | - Sarah Sawyer
- Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, K1H 8L1, Canada
| | - Erin Conboy
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Francesco Vetrini
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Kayla Treat
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Rafal Płoski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, 02-106, Poland
| | - Victor Murcia Pienkowski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, 02-106, Poland
- Marseille Medical Genetics U1251, Aix Marseille University, Marseille, 13005, France
| | - Anna Kłosowska
- Department of Pediatrics, Hematology and Oncology, Medical University of Gdańsk, Gdańsk, 80-210, Poland
| | - Elizabeth Fieg
- Brigham and Women's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Joel Krier
- Brigham and Women's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Coralie Mallebranche
- Unité d'Onco-Hémato-Immunologie pédiatrique, CHU d’Angers, Angers, 49933, France
| | - Ziegler Alban
- Service de génétique, CHU d’Angers, Angers, 49933, France
| | - Kimberly A Aldinger
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98195, USA
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, 98195, USA
| | - Deborah Ritter
- Department of Pediatrics, Oncology Section, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ellen Macnamara
- Undiagnosed Diseases Program Translational Laboratory, NHGRI, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bonnie Sullivan
- Division of Clinical Genetics, Department of Pediatrics, Children's Mercy-Kansas City, Kansas City, MO, 64108, USA
| | - John Herriges
- Department of Pathology and Laboratory Medicine, Children's Mercy-Kansas City, Kansas City, MO, 64108, USA
| | - Joseph T Alaimo
- Department of Pathology and Laboratory Medicine, Children's Mercy-Kansas City, Kansas City, MO, 64108, USA
| | - Catherine Helbig
- The Epilepsy Neurogenetics Initiative, Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Colin A Ellis
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia PA, 19104, USA
| | - Clare van Eyk
- Robinson Research Institute, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, 5006, Australia
| | - Jozef Gecz
- Robinson Research Institute, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, 5006, Australia
| | | | - Ikeoluwa Osei-Owusu
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Lesley Adès
- Department of Clinical Genetics, The Children’s Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, 2145, Australia
| | - Marie-Jose van den Boogaard
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, 3584EA, The Netherlands
| | - Sabine Fuchs
- Department of Pediatrics, University Medical Center Utrecht, Utrecht, 3584 EA, The Netherlands
| | - Jeroen Bakker
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, 3584 CT, The Netherlands
| | - Karen Duran
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, 3584 CT, The Netherlands
| | - Zachary D Dawson
- Departments of Pediatrics and Genetics, C. elegans Model Organism Screening Center, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Anika Lindsey
- Departments of Pediatrics and Genetics, C. elegans Model Organism Screening Center, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Huiyan Huang
- Departments of Pediatrics and Genetics, C. elegans Model Organism Screening Center, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Dustin Baldridge
- Departments of Pediatrics and Genetics, C. elegans Model Organism Screening Center, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Gary A Silverman
- Departments of Pediatrics and Genetics, C. elegans Model Organism Screening Center, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Barth D Grant
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - David Raizen
- Department of Neurology and the Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Gijs van Haaften
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, 3584EA, The Netherlands
| | - Stephen C Pak
- Departments of Pediatrics and Genetics, C. elegans Model Organism Screening Center, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Holger Rehmann
- Department of Energy and Biotechnology, Flensburg University of Applied Sciences, 24943, Flensburg, Germany
| | - Tim Schedl
- Departments of Pediatrics and Genetics, C. elegans Model Organism Screening Center, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Peter van Hasselt
- Department of Pediatrics, University Medical Center Utrecht, Utrecht, 3584 EA, The Netherlands
| |
Collapse
|
2
|
Atik N, Wirawan F, Amalia R, Khairani AF, Pradini GW. Differences in endosomal Rab gene expression between positive and negative COVID-19 patients. BMC Res Notes 2022; 15:252. [PMID: 35840993 PMCID: PMC9284097 DOI: 10.1186/s13104-022-06144-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/03/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE SARS CoV-2, the etiologic agent of coronavirus disease-2019 (COVID-19) is well-known to use ACE2 to begin internalization. Some viruses enter the host cell through the endocytosis process and involve some endocytosis proteins, such as the Rab family. However, the relationship between SARS CoV-2 infection with endocytic mRNA RAB5, RAB7, and RAB11B is unknown. This study aims to compare the expression of RAB5, RAB7, and RAB11B between positive and negative COVID-19 patient groups. RESULTS Both viral and human epithelial RNA Isolation and RT-PCR were performed from 249 samples. The genes expression was analysed using appropriate statistical tests. We found the Median (inter-quartile range/IQR) of RAB5, RAB7, and RAB11B expression among the COVID-19 patient group was 2.99 (1.88), 0.17 (0.47), 0.47 (1.49), and 1.60 (2.88), 1.05 (2.49), 1.10 (3.96) among control group respectively. We proceeded with Mann Whitney U Test and found that RAB5 expression was significantly increased (P < 0.001), and RAB7 and RAB11B expression was significantly decreased (P < 0.001 and P = 0.036) in the COVID-19 patient group compared to the control group. This first report showed significant differences in RAB5, RAB7, and RAB11B exist between COVID-19 positive and negative patients.
Collapse
Affiliation(s)
- Nur Atik
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, 40161, Indonesia.
| | - Farruqi Wirawan
- Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Riezki Amalia
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Astrid Feinisa Khairani
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, 40161, Indonesia
| | - Gita Widya Pradini
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, 40161, Indonesia
| |
Collapse
|
3
|
Tremel S, Ohashi Y, Morado DR, Bertram J, Perisic O, Brandt LTL, von Wrisberg MK, Chen ZA, Maslen SL, Kovtun O, Skehel M, Rappsilber J, Lang K, Munro S, Briggs JAG, Williams RL. Structural basis for VPS34 kinase activation by Rab1 and Rab5 on membranes. Nat Commun 2021; 12:1564. [PMID: 33692360 PMCID: PMC7946940 DOI: 10.1038/s41467-021-21695-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/01/2021] [Indexed: 02/07/2023] Open
Abstract
The lipid phosphatidylinositol-3-phosphate (PI3P) is a regulator of two fundamental but distinct cellular processes, endocytosis and autophagy, so its generation needs to be under precise temporal and spatial control. PI3P is generated by two complexes that both contain the lipid kinase VPS34: complex II on endosomes (VPS34/VPS15/Beclin 1/UVRAG), and complex I on autophagosomes (VPS34/VPS15/Beclin 1/ATG14L). The endosomal GTPase Rab5 binds complex II, but the mechanism of VPS34 activation by Rab5 has remained elusive, and no GTPase is known to bind complex I. Here we show that Rab5a–GTP recruits endocytic complex II to membranes and activates it by binding between the VPS34 C2 and VPS15 WD40 domains. Electron cryotomography of complex II on Rab5a-decorated vesicles shows that the VPS34 kinase domain is released from inhibition by VPS15 and hovers over the lipid bilayer, poised for catalysis. We also show that the GTPase Rab1a, which is known to be involved in autophagy, recruits and activates the autophagy-specific complex I, but not complex II. Both Rabs bind to the same VPS34 interface but in a manner unique for each. These findings reveal how VPS34 complexes are activated on membranes by specific Rab GTPases and how they are recruited to unique cellular locations. The phosphatidylinositol-3-phosphate (PI3P) is generated by the lipid kinase VPS34, in the context of VPS34 complex I on autophagosomes or complex II on endosomes. Biochemical and structural analyses provide insights into the mechanism of both VPS34 complexes recruitment to and activation on membranes by specific Rab GTPases.
Collapse
Affiliation(s)
| | - Yohei Ohashi
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Dustin R Morado
- MRC Laboratory of Molecular Biology, Cambridge, UK.,Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | | | - Olga Perisic
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | - Marie-Kristin von Wrisberg
- Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, Lab for Synthetic Biochemistry, Technical University of Munich, Institute for Advanced Study, TUM-IAS, Garching, Germany
| | - Zhuo A Chen
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | | | | | - Mark Skehel
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Juri Rappsilber
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany.,Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Kathrin Lang
- Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, Lab for Synthetic Biochemistry, Technical University of Munich, Institute for Advanced Study, TUM-IAS, Garching, Germany
| | - Sean Munro
- MRC Laboratory of Molecular Biology, Cambridge, UK.
| | | | | |
Collapse
|
4
|
Zhang J, Sun Y, Zhong LY, Yu NN, Ouyang L, Fang RD, Wang Y, He QY. Structure-based discovery of neoandrographolide as a novel inhibitor of Rab5 to suppress cancer growth. Comput Struct Biotechnol J 2020; 18:3936-3946. [PMID: 33335690 PMCID: PMC7734235 DOI: 10.1016/j.csbj.2020.11.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 12/14/2022] Open
Abstract
Rab5 is a small GTPase that plays a crucial role in oncogenic signal transduction, which was considered as an attractive target for cancer therapy. Rapid GDP/GTP exchange in the packet of Rab5 sustains its high activity for promoting cancer progression. However, Rab5 currently remains undruggable due to the lack of specific inhibitor. Herein, we reported the discovery of a novel Rab5 inhibitor, neoandrographolide (NAP), by using high-throughput virtual screening with a natural product library containing 7459 compounds, which can occupy the surface groove of Rab5, competing with GDP/GTP for the binding. Ser34 is the most important residue in the groove of Rab5, as it forms most hydrogen-bond interactions with GDP/GTP or NAP, and in silico mutation of Ser34 decreased the stabilization of Rab5. Moreover, fluorescence titration experiment and isothermal titration calorimetry (ITC) assay revealed a direct binding between NAP and Rab5. Biochemical and cell-based assays showed that NAP treatment not only diminished the activity of Rab5, but also suppressed cell growth of cancer cell. This finding firstly identifies NAP as a novel inhibitor of Rab5, which directly binds with Rab5 by occupying the GDP/GTP binding groove to suppress its functions, highlighting a great potential of NAP to be developed as a chemotherapeutic agent in cancer therapy.
Collapse
Affiliation(s)
- Jing Zhang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Yue Sun
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Li-Ye Zhong
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Nan-Nan Yu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lan Ouyang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Run-Dong Fang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yang Wang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qing-Yu He
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| |
Collapse
|
5
|
Chong ZX, Yeap SK, Ho WY. Roles of circulating microRNA(s) in human breast cancer. Arch Biochem Biophys 2020; 695:108583. [DOI: 10.1016/j.abb.2020.108583] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/05/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022]
|
6
|
Li XM, Jiao YY, Luan BH, Wu HX, Wang RR, Zhong J. Long non-coding RNA MIAT promotes gastric cancer proliferation and metastasis via modulating the miR-331-3p/RAB5B pathway. Oncol Lett 2020; 20:355. [PMID: 33154765 PMCID: PMC7608069 DOI: 10.3892/ol.2020.12219] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 07/24/2020] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer (GC) remains a threat to the health of the global population. The present study investigated the effects and mechanisms of the long non-coding RNA myocardial infarction associated transcript (MIAT) on the proliferation, apoptosis and metastasis of GC (HGC-27 and AGS) cells. The expression levels of MIAT, micoRNA (miR)-331-3p and RAB5B mRNA were analyzed using reverse transcription-quantitative PCR analysis. Cell growth, apoptosis, migration and invasion were measured using 5-ethynyl-2′-deoxyuridine, flow cytometry, wound healing and Transwell assays, respectively. A luciferase assay was used to determine whether miR-331-3p targeted MIAT and RAB5B. The results indicated that MIAT levels were significantly upregulated in GC tissues and cells, correlated with RAB5B levels and inversely associated with miR-331-3p levels. MIAT overexpression promoted proliferation and metastasis, and inhibited the apoptosis of GC cells. MIAT knockdown had the opposite effect on GC cells. The rescue experiments revealed that the effects of MIAT knockdown on the biological behaviour of GC cells were attenuated by RAB5B overexpression. These data suggest that MIAT promotes GC progression via modulating miR-331-3p/RAB5B pathway.
Collapse
Affiliation(s)
- Xiao-Mei Li
- Department of Oncology, Qing Dao Cheng Yang People's Hospital, Qingdao, Shandong 266109, P.R. China
| | - Yan-Yan Jiao
- Department of Oncology, Qing Dao Cheng Yang People's Hospital, Qingdao, Shandong 266109, P.R. China
| | - Bao-Hong Luan
- Department of Oncology, Qing Dao Cheng Yang People's Hospital, Qingdao, Shandong 266109, P.R. China
| | - Hong-Xia Wu
- Department of Oncology, Qing Dao Cheng Yang People's Hospital, Qingdao, Shandong 266109, P.R. China
| | - Rong-Rong Wang
- Department of Oncology, Qing Dao Cheng Yang People's Hospital, Qingdao, Shandong 266109, P.R. China
| | - Jie Zhong
- Department of Interventional Radiography, Qing Dao Cheng Yang People's Hospital, Qingdao, Shandong 266109, P.R. China
| |
Collapse
|
7
|
Wang L, Bi R, Li L, Zhou K, Liu H. Functional characteristics of autophagy in pancreatic cancer induced by glutamate metabolism in pancreatic stellate cells. J Int Med Res 2020; 48:300060519865368. [PMID: 31856624 PMCID: PMC7607760 DOI: 10.1177/0300060519865368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/02/2019] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVE To observe the effects of glutaminase (GLS) inhibitors on autophagy and proliferation of pancreatic stellate cells, and to explore their functions in pancreatic cancer. METHODS Pancreatic cancer cells were divided into two groups. Group A was the control untreated group, and group B cells were treated with GLS inhibitors. Western blotting was used to detect the expression of Atg5, Bcl-2, Bax, and Bid proteins. The bromodeoxyuridine assay and scratch test were employed to investigate cell proliferation and invasion, respectively. The expression of E-cadherin, vimentin, cell adhesion molecule 2 (CADM2), and Snail protein was investigated by immunofluorescence. RESULTS The expression of Atg5, Bax, and Bid was higher in group A than in group B, while Bcl-2 expression was lower in group A than in group B. Group A cells demonstrated greater proliferation and invasion than group B cells. The expression of E-cadherin was lower in group A cells than group B cells, while vimentin, CADM2, and Snail were expressed at higher levels in group A than group B cells. CONCLUSION The inhibition of glutamine isozymes reduces autophagy and apoptosis in astrocytes, and inhibits pancreatic cancer cell proliferation and metastasis, while reducing their invasiveness.
Collapse
Affiliation(s)
- Lei Wang
- Department of Gastroenterology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - RongRong Bi
- Department of Pulmonary, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Li
- Department of Gastroenterology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Kun Zhou
- Department of Gastroenterology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - HaiLin Liu
- Department of Gastroenterology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
8
|
Reyes M, Peña-Oyarzún D, Silva P, Venegas S, Criollo A, Torres VA. Nuclear accumulation of β-catenin is associated with endosomal sequestration of the destruction complex and increased activation of Rab5 in oral dysplasia. FASEB J 2020; 34:4009-4025. [PMID: 31990106 DOI: 10.1096/fj.201902345rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/27/2019] [Accepted: 12/27/2019] [Indexed: 12/11/2022]
Abstract
Potentially malignant lesions, commonly referred to as dysplasia, are associated with malignant transformation by mechanisms that remain unclear. We recently reported that increased Wnt secretion promotes the nuclear accumulation of β-catenin and expression of target genes in oral dysplasia. However, the mechanisms accounting for nuclear re-localization of β-catenin in oral dysplasia remain unclear. In this study, we show that endosomal sequestration of the β-catenin destruction complex allows nuclear accumulation of β-catenin in oral dysplasia, and that these events depended on the endocytic protein Rab5. Tissue immunofluorescence analysis showed aberrant accumulation of enlarged early endosomes in oral dysplasia biopsies, when compared with healthy oral mucosa. These observations were confirmed in cell culture models, by comparing dysplastic oral keratinocytes (DOK) and non-dysplastic oral keratinocytes (OKF6). Intriguingly, DOK depicted higher levels of active Rab5, a critical regulator of early endosomes, when compared with OKF6. Increased Rab5 activity in DOK was necessary for nuclear localization of β-catenin and Tcf/Lef-dependent transcription, as shown by expression of dominant negative and constitutively active mutants of Rab5, along with immunofluorescence, subcellular fractionation, transcription, and protease protection assays. Mechanistically, elevated Rab5 activity in DOK accounted for endosomal sequestration of components of the destruction complex, including GSK3β, Axin, and adenomatous polyposis coli (APC), as observed in Rab5 dominant negative experiments. In agreement with these in vitro observations, tissue immunofluorescence analysis showed increased co-localization of GSK3β, APC, and Axin, with early endosome antigen 1- and Rab5-positive early endosomes in clinical samples of oral dysplasia. Collectively, these data indicate that increased Rab5 activity and endosomal sequestration of the β-catenin destruction complex leads to stabilization and nuclear accumulation of β-catenin in oral dysplasia.
Collapse
Affiliation(s)
- Montserrat Reyes
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile.,Department of Pathology and Oral Medicine, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Daniel Peña-Oyarzún
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
| | - Patricio Silva
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
| | - Sebastián Venegas
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
| | - Alfredo Criollo
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
| | - Vicente A Torres
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
| |
Collapse
|
9
|
Monkman JH, Thompson EW, Nagaraj SH. Targeting Epithelial Mesenchymal Plasticity in Pancreatic Cancer: A Compendium of Preclinical Discovery in a Heterogeneous Disease. Cancers (Basel) 2019; 11:E1745. [PMID: 31703358 PMCID: PMC6896204 DOI: 10.3390/cancers11111745] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is a particularly insidious and aggressive disease that causes significant mortality worldwide. The direct correlation between PDAC incidence, disease progression, and mortality highlights the critical need to understand the mechanisms by which PDAC cells rapidly progress to drive metastatic disease in order to identify actionable vulnerabilities. One such proposed vulnerability is epithelial mesenchymal plasticity (EMP), a process whereby neoplastic epithelial cells delaminate from their neighbours, either collectively or individually, allowing for their subsequent invasion into host tissue. This disruption of tissue homeostasis, particularly in PDAC, further promotes cellular transformation by inducing inflammatory interactions with the stromal compartment, which in turn contributes to intratumoural heterogeneity. This review describes the role of EMP in PDAC, and the preclinical target discovery that has been conducted to identify the molecular regulators and effectors of this EMP program. While inhibition of individual targets may provide therapeutic insights, a single 'master-key' remains elusive, making their collective interactions of greater importance in controlling the behaviours' of heterogeneous tumour cell populations. Much work has been undertaken to understand key transcriptional programs that drive EMP in certain contexts, however, a collaborative appreciation for the subtle, context-dependent programs governing EMP regulation is needed in order to design therapeutic strategies to curb PDAC mortality.
Collapse
Affiliation(s)
- James H. Monkman
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia;
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Erik W. Thompson
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia;
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Shivashankar H. Nagaraj
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia;
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Translational Research Institute, Brisbane, QLD 4102, Australia
| |
Collapse
|
10
|
Haney SL, Varney ML, Chhonker YS, Shin S, Mehla K, Crawford AJ, Smith HJ, Smith LM, Murry DJ, Hollingsworth MA, Holstein SA. Inhibition of geranylgeranyl diphosphate synthase is a novel therapeutic strategy for pancreatic ductal adenocarcinoma. Oncogene 2019; 38:5308-5320. [PMID: 30918331 PMCID: PMC6597278 DOI: 10.1038/s41388-019-0794-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 03/10/2019] [Accepted: 03/11/2019] [Indexed: 12/27/2022]
Abstract
Rab proteins play an essential role in regulating intracellular membrane trafficking processes. Rab activity is dependent upon geranylgeranylation, a post-translational modification that involves the addition of 20-carbon isoprenoid chains via the enzyme geranylgeranyl transferase (GGTase) II. We have focused on the development of inhibitors against geranylgeranyl diphosphate synthase (GGDPS), which generates the isoprenoid donor (GGPP), as anti-Rab agents. Pancreatic ductal adenocarcinoma (PDAC) is characterized by abnormal mucin production and these mucins play important roles in tumor development, metastasis and chemo-resistance. We hypothesized that GGDPS inhibitor (GGDPSi) treatment would induce PDAC cell death by disrupting mucin trafficking, thereby inducing the unfolded protein response pathway (UPR) and apoptosis. To this end, we evaluated the effects of RAM2061, a potent GGDPSi, against PDAC. Our studies revealed that GGDPSi treatment activates the UPR and triggers apoptosis in a variety of human and mouse PDAC cell lines. Furthermore, GGDPSi treatment was found to disrupt the intracellular trafficking of key mucins such as MUC1. These effects could be recapitulated by incubation with a specific GGTase II inhibitor, but not a GGTase I inhibitor, consistent with the effect being dependent on disruption of Rab-mediated activities. In addition, siRNA-mediated knockdown of GGDPS induces upregulation of UPR markers and disrupts MUC1 trafficking in PDAC cells. Experiments in two mouse models of PDAC demonstrated that GGDPSi treatment significantly slows tumor growth. Collectively, these data support further development of GGDPSi therapy as a novel strategy for the treatment of PDAC.
Collapse
Affiliation(s)
- Staci L Haney
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA.,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michelle L Varney
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA.,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yashpal S Chhonker
- Department of Pharmacy Practice, University of Nebraska Medical Center, Omaha, NE, USA
| | - Simon Shin
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.,Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kamiya Mehla
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.,Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ayrianne J Crawford
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.,Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE, USA
| | - Heather Jensen Smith
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.,Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE, USA
| | - Lynette M Smith
- College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA
| | - Daryl J Murry
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Pharmacy Practice, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michael A Hollingsworth
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.,Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sarah A Holstein
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA. .,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
11
|
Wang Y, Lu Y, Gong J, Yao Y. Electrospun nanofiber regulates assembly of keratin and vimentin intermediate filaments of PANC-1 pancreatic carcinoma cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 96:616-624. [PMID: 30606573 DOI: 10.1016/j.msec.2018.11.072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 10/22/2018] [Accepted: 11/27/2018] [Indexed: 12/12/2022]
Abstract
Intermediate filaments, together with actin microfilaments and microtubules constituent the cytoskeleton of mammalian cells, involving in various cellular activities. The roles of intermediate filaments in cell skeleton reorganization when responding with extracellular matrix (ECM) nanostructure are poorly understood yet. To unveil the effects of fibrous composition and orientation on cells, we developed electrospun nanofibers of varying topology and components, and the effects on assembly of intermediate filaments as keratin and vimentin were investigated in detail. We found that aligned nanofibers enhanced expression of E-cadherin and promoted assembly of keratin intermediate filaments. Meanwhile, the compositional variation show different preference on up-regulation of the two intermediate filaments. Compared to keratin, the assembly of vimentin intermediate filaments were promoted by incorporating bovine serum albumin (BSA) functionalized graphene oxide (BSA-GO) into polycaprolactone (PCL) nanofibers. Thus, our findings elucidate how the different physical factors of fibrous extracellular matrix affect the reorganization of cytoskeleton by assembly of keratin and vimentin intermediate filaments.
Collapse
Affiliation(s)
- Yiqun Wang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China; Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Road, Shanghai 200032, China
| | - Yi Lu
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Jinkang Gong
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China.
| | - Yuan Yao
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China.
| |
Collapse
|
12
|
Marshall JDS, Whitecross DE, Mellor P, Anderson DH. Impact of p85α Alterations in Cancer. Biomolecules 2019; 9:biom9010029. [PMID: 30650664 PMCID: PMC6359268 DOI: 10.3390/biom9010029] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/07/2019] [Accepted: 01/11/2019] [Indexed: 12/14/2022] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K) pathway plays a central role in the regulation of cell signaling, proliferation, survival, migration and vesicle trafficking in normal cells and is frequently deregulated in many cancers. The p85α protein is the most characterized regulatory subunit of the class IA PI3Ks, best known for its regulation of the p110-PI3K catalytic subunit. In this review, we will discuss the impact of p85α mutations or alterations in expression levels on the proteins p85α is known to bind and regulate. We will focus on alterations within the N-terminal half of p85α that primarily regulate Rab5 and some members of the Rho-family of GTPases, as well as those that regulate PTEN (phosphatase and tensin homologue deleted on chromosome 10), the enzyme that directly counteracts PI3K signaling. We highlight recent data, mapping the interaction surfaces of the PTEN⁻p85α breakpoint cluster region homology (BH) domain, which sheds new light on key residues in both proteins. As a multifunctional protein that binds and regulates many different proteins, p85α mutations at different sites have different impacts in cancer and would necessarily require distinct treatment strategies to be effective.
Collapse
Affiliation(s)
- Jeremy D S Marshall
- Cancer Research Group, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada.
- Department of Biochemistry, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada.
| | - Dielle E Whitecross
- Cancer Research Group, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada.
| | - Paul Mellor
- Cancer Research Group, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada.
| | - Deborah H Anderson
- Cancer Research Group, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada.
- Department of Biochemistry, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada.
- Cancer Research, Saskatchewan Cancer Agency, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada.
| |
Collapse
|
13
|
Ishii N, Araki K, Yokobori T, Hagiwara K, Gantumur D, Yamanaka T, Handa T, Tsukagoshi M, Igarashi T, Watanabe A, Kubo N, Harimoto N, Masamune A, Umezawa K, Kuwano H, Shirabe K. Conophylline suppresses pancreatic cancer desmoplasia and cancer-promoting cytokines produced by cancer-associated fibroblasts. Cancer Sci 2019; 110:334-344. [PMID: 30353606 PMCID: PMC6317962 DOI: 10.1111/cas.13847] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 10/15/2018] [Accepted: 10/17/2018] [Indexed: 12/11/2022] Open
Abstract
Despite recent advances in cancer treatment, pancreatic cancer is a highly malignant tumor type with a dismal prognosis and it is characterized by dense desmoplasia in the cancer tissue. Cancer-associated fibroblasts (CAF) are responsible for this fibrotic stroma and promote cancer progression. We previously reported that a novel natural compound conophylline (CnP) extracted from the leaves of a tropical plant reduced liver and pancreatic fibrosis by suppression of stellate cells. However, there have been no studies to investigate the effects of CnP on CAF, which is the aim of this work. Here, we showed that CAF stimulated indicators of pancreatic cancer malignancy, such as proliferation, invasiveness, and chemoresistance. We also showed that CnP suppressed CAF activity and proliferation, and inhibited the stimulating effects of CAF on pancreatic cancer cells. Moreover, CnP strongly decreased the various cytokines involved in cancer progression, such as interleukin (IL)-6, IL-8, C-C motif chemokine ligand 2 (CCL2), and C-X-C motif chemokine ligand 12 (CXCL12), secreted by CAF. In vivo, CAF promoted tumor proliferation and desmoplastic formation in a mouse xenograft model, CnP reduced desmoplasia of tumors composed of pancreatic cancer cells + CAF, and combination therapy of CnP with gemcitabine remarkably inhibited tumor proliferation. Our findings suggest that CnP is a promising therapeutic strategy of combination therapy with anticancer drugs to overcome refractory pancreatic cancers.
Collapse
Affiliation(s)
- Norihiro Ishii
- Division of Hepatobiliary and Pancreatic SurgeryDepartment of General Surgical ScienceGraduate School of MedicineGunma UniversityMaebashiJapan
| | - Kenichiro Araki
- Division of Hepatobiliary and Pancreatic SurgeryDepartment of General Surgical ScienceGraduate School of MedicineGunma UniversityMaebashiJapan
| | - Takehiko Yokobori
- Research Program for Omics‐based Medical ScienceDivision of Integrated Oncology ResearchGunma University Initiative for Advanced Research (GIAR)MaebashiJapan
| | - Kei Hagiwara
- Division of Hepatobiliary and Pancreatic SurgeryDepartment of General Surgical ScienceGraduate School of MedicineGunma UniversityMaebashiJapan
| | - Dorgormaa Gantumur
- Division of Hepatobiliary and Pancreatic SurgeryDepartment of General Surgical ScienceGraduate School of MedicineGunma UniversityMaebashiJapan
| | - Takahiro Yamanaka
- Division of Hepatobiliary and Pancreatic SurgeryDepartment of General Surgical ScienceGraduate School of MedicineGunma UniversityMaebashiJapan
| | - Tadashi Handa
- Department of Diagnostic PathologyGraduate School of MedicineGunma UniversityMaebashiJapan
| | - Mariko Tsukagoshi
- Division of Hepatobiliary and Pancreatic SurgeryDepartment of General Surgical ScienceGraduate School of MedicineGunma UniversityMaebashiJapan
| | - Takamichi Igarashi
- Division of Hepatobiliary and Pancreatic SurgeryDepartment of General Surgical ScienceGraduate School of MedicineGunma UniversityMaebashiJapan
| | - Akira Watanabe
- Division of Hepatobiliary and Pancreatic SurgeryDepartment of General Surgical ScienceGraduate School of MedicineGunma UniversityMaebashiJapan
| | - Norio Kubo
- Division of Hepatobiliary and Pancreatic SurgeryDepartment of General Surgical ScienceGraduate School of MedicineGunma UniversityMaebashiJapan
| | - Norifumi Harimoto
- Division of Hepatobiliary and Pancreatic SurgeryDepartment of General Surgical ScienceGraduate School of MedicineGunma UniversityMaebashiJapan
| | - Atsushi Masamune
- Division of GastroenterologyGraduate School of MedicineTohoku UniversitySendaiJapan
| | - Kazuo Umezawa
- Department of Molecular Target MedicineAichi Medical University School of MedicineNagakuteJapan
| | - Hiroyuki Kuwano
- Division of Gastroenterological SurgeryDepartment of General Surgical ScienceGraduate School of MedicineGunma UniversityMaebashiJapan
| | - Ken Shirabe
- Division of Hepatobiliary and Pancreatic SurgeryDepartment of General Surgical ScienceGraduate School of MedicineGunma UniversityMaebashiJapan
| |
Collapse
|
14
|
Zhou K, Yao YL, He ZC, Chen C, Zhang XN, Yang KD, Liu YQ, Liu Q, Fu WJ, Chen YP, Niu Q, Ma QH, Zhou R, Yao XH, Zhang X, Cui YH, Bian XW, Shi Y, Ping YF. VDAC2 interacts with PFKP to regulate glucose metabolism and phenotypic reprogramming of glioma stem cells. Cell Death Dis 2018; 9:988. [PMID: 30250190 PMCID: PMC6155247 DOI: 10.1038/s41419-018-1015-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 08/18/2018] [Accepted: 08/29/2018] [Indexed: 12/11/2022]
Abstract
Plastic phenotype convention between glioma stem cells (GSCs) and non-stem tumor cells (NSTCs) significantly fuels glioblastoma heterogeneity that causes therapeutic failure. Recent progressions indicate that glucose metabolic reprogramming could drive cell fates. However, the metabolic pattern of GSCs and NSTCs and its association with tumor cell phenotypes remain largely unknown. Here we found that GSCs were more glycolytic than NSTCs, and voltage-dependent anion channel 2 (VDAC2), a mitochondrial membrane protein, was critical for metabolic switching between GSCs and NSTCs to affect their phenotypes. VDAC2 was highly expressed in NSTCs relative to GSCs and coupled a glycolytic rate-limiting enzyme platelet-type of phosphofructokinase (PFKP) on mitochondrion to inhibit PFKP-mediated glycolysis required for GSC maintenance. Disruption of VDAC2 induced dedifferentiation of NSTCs to acquire GSC features, including the enhanced self-renewal, preferential expression of GSC markers, and increased tumorigenicity. Inversely, enforced expression ofVDAC2 impaired the self-renewal and highly tumorigenic properties of GSCs. PFK inhibitor clotrimazole compromised the effect of VDAC2 disruption on glycolytic reprogramming and GSC phenotypic transition. Clinically, VDAC2 expression inversely correlated with glioma grades (Immunohistochemical staining scores of VDAC2 were 4.7 ± 2.8, 3.2 ± 1.9, and 1.9 ± 1.9 for grade II, grade III, and IV, respectively, p < 0.05 for all) and the patients with high expression of VDAC2 had longer overall survival than those with low expression of VDAC2 (p = 0.0008). In conclusion, we demonstrate that VDAC2 is a new glycolytic regulator controlling the phenotype transition between glioma stem cells and non-stem cells and may serves as a new prognostic indicator and a potential therapeutic target for glioma patients.
Collapse
Affiliation(s)
- Kai Zhou
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China
| | - Yue-Liang Yao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China
| | - Zhi-Cheng He
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China
| | - Cong Chen
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China
| | - Xiao-Ning Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China
| | - Kai-Di Yang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China
| | - Yu-Qi Liu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China
| | - Qing Liu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China
| | - Wen-Juan Fu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China
| | - Ya-Ping Chen
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China
| | - Qin Niu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China
| | - Qing-Hua Ma
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China
| | - Rong Zhou
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China
| | - Xiao-Hong Yao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China
| | - Xia Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China
| | - You-Hong Cui
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China. .,Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China.
| | - Yu Shi
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China. .,Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China.
| | - Yi-Fang Ping
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China. .,Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China.
| |
Collapse
|
15
|
RAC1-GTP promotes epithelial-mesenchymal transition and invasion of colorectal cancer by activation of STAT3. J Transl Med 2018; 98:989-998. [PMID: 29884911 DOI: 10.1038/s41374-018-0071-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 01/10/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) plays a critical role in initiating tumor invasion and metastasis of colorectal cancer (CRC), although the underlying mechanisms remain to be clarified. Herein, we demonstrate that the active form of Rac family small GTPase 1 (RAC1-GTP) is overexpressed in CRCs and promotes the EMT-mediated invasion of CRC cells through activation of the signal transducers and activators of transcription 3 (STAT3) pathway. Increased expression of RAC1-GTP in CRC tissues was positively correlated with the TNM stages of CRCs and indicated poor prognosis of CRC patients. Targeting RAC1-GTP activity by its specific inhibitor NSC23766 markedly suppressed the migration and invasion of CRC cells. Mechanistically, RAC1-GTP directly interacted with STAT3 to promote STAT3 phosphorylation, thus promoted EMT of CRC cells. Enforced expression of constitutively activated STAT3 (STAT3-C) abrogated the suppressive effect of RAC1-GTP disruption on the migration and invasion of CRC cells. Importantly, NSC23766 disrupted EMT in CRC cells and significantly diminished growth of CRC xenografts. Taken together, our data indicate that RAC1-GTP is an important player in EMT-mediated tumor invasion and a potential therapeutic target for CRCs.
Collapse
|
16
|
Minchenko OH, Kharkova AP, Hnatiuk OS. ERN1 modifies the effect of glutamine deprivation on tumor growth related factors expression in U87 glioma cells. UKRAINIAN BIOCHEMICAL JOURNAL 2018. [DOI: 10.15407/ubj90.03.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
17
|
Rab34 regulates adhesion, migration, and invasion of breast cancer cells. Oncogene 2018; 37:3698-3714. [PMID: 29622794 DOI: 10.1038/s41388-018-0202-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/07/2018] [Accepted: 02/03/2018] [Indexed: 02/06/2023]
Abstract
The small GTPase Rab34 regulates spatial distribution of the lysosomes, secretion, and macropinocytosis. In this study, we found that Rab34 is over-expressed in aggressive breast cancer cells, implying a potential role of Rab34 in breast cancer. Silencing Rab34 by shRNA inhibits cell migration, invasion, and adhesion of breast cancer cells. Rab34 specifically binds to the cytoplasmic tail of integrin β3, and depletion of Rab34 promotes the degradation of integrin β3. Interestingly, EGF induces the translocation of Rab34 to the membrane ruffle, which is greatly enhanced by the expression of Src kinase. Accordingly, Rab34 is tyrosine phosphorylated by Src at Y247 residue. A mutant mimicking phosphorylated form of Rab34 (Rab34Y247D) promotes cell migration and invasion. Importantly, the tyrosine phosphorylation of Rab34 is inhibited in cells in suspension, and increased with the cells re-adhesion. In addition, Rab34Y247D promotes cell adhesion, and enhances integrin β3 endocytosis and recycling. The results uncover a role of Rab34 in migration and invasion of breast cancer cells and its involvement in cancer metastasis, and provide a novel mechanism of tyrosine phosphorylation of Rab34 in regulating cell migration, invasion, and adhesion through modulating the endocytosis, stability, and recycling of integrin β3.
Collapse
|