1
|
Mavatkar AD, Naidu CM, Prabhu JS, Nair MG. The dynamic tumor-stromal crosstalk: implications of 'stromal-hot' tumors in the process of epithelial-mesenchymal transition in breast cancer. Mol Biol Rep 2023; 50:5379-5393. [PMID: 37046108 DOI: 10.1007/s11033-023-08422-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/01/2023] [Indexed: 04/14/2023]
Abstract
BACKGROUND Breast cancer metastatic programming involves an intricate process by which the tumor cell coevolves with the surrounding extracellular niche. The supporting cells from the local host stroma get transformed into cancer-associated stromal cells. This complex crosstalk leads to extracellular matrix remodeling, invasion, and eventually distant metastasis. METHODS In this review, we examine the protein-miRNA secretome that is crucial for this crosstalk. We also provide evidence from the literature for the pivotal role played by the various stromal cells like fibroblasts, adipocytes, and immune cells in promoting the process of EMT in breast cancer. Through in-silico analysis, we have also attempted to establish that stromal presence is integral to the process of EMT. RESULTS AND CONCLUSION The in-silico analysis delineates the persuasive role of the stroma in mediating epithelial-to-mesenchymal transition. This review elucidates the importance of examining the role of the stromal niche that can yield promising diagnostic markers and pave avenues for formulating tailored anti-cancer therapy. Process of EMT as driven by 'stroma-hot' tumors: The process of EMT is driven by the stromal cells. The stromal cells in the form of fibroblasts, adipocytes, endothelial cells, mesenchymal stromal cells and tissue associated macrophages secrete the miRNA-protein secretome that modulates the stromal niche and the tumor cells to be become 'tumor associated'. This drives tumor progression and invasion. The 'stromal-hot' tumors eventually get the benefit of the surplus nurturing from the stroma that facilitates EMT leading to distant organ seeding and metastasis.
Collapse
Affiliation(s)
- Apoorva D Mavatkar
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bangalore, Karnataka, India
| | - Chandrakala M Naidu
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bangalore, Karnataka, India
| | - Jyothi S Prabhu
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bangalore, Karnataka, India
| | - Madhumathy G Nair
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bangalore, Karnataka, India.
| |
Collapse
|
2
|
Mehta M, Raguraman R, Ramesh R, Munshi A. RNA binding proteins (RBPs) and their role in DNA damage and radiation response in cancer. Adv Drug Deliv Rev 2022; 191:114569. [PMID: 36252617 PMCID: PMC10411638 DOI: 10.1016/j.addr.2022.114569] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 01/24/2023]
Abstract
Traditionally majority of eukaryotic gene expression is influenced by transcriptional and post-transcriptional events. Alterations in the expression of proteins that act post-transcriptionally can affect cellular signaling and homeostasis. RNA binding proteins (RBPs) are a family of proteins that specifically bind to RNAs and are involved in post-transcriptional regulation of gene expression and important cellular processes such as cell differentiation and metabolism. Deregulation of RNA-RBP interactions and any changes in RBP expression or function can lead to various diseases including cancer. In cancer cells, RBPs play an important role in regulating the expression of tumor suppressors and oncoproteins involved in various cell-signaling pathways. Several RBPs such as HuR, AUF1, RBM38, LIN28, RBM24, tristetrapolin family and Musashi play critical roles in various types of cancers and their aberrant expression in cancer cells makes them an attractive therapeutic target for cancer treatment. In this review we provide an overview of i). RBPs involved in cancer progression and their mechanism of action ii). the role of RBPs, including HuR, in breast cancer progression and DNA damage response and iii). explore RBPs with emphasis on HuR as therapeutic target for breast cancer therapy.
Collapse
Affiliation(s)
- Meghna Mehta
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA
| | - Rajeswari Raguraman
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA
| | - Rajagopal Ramesh
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA
| | - Anupama Munshi
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA.
| |
Collapse
|
3
|
Lu X, Zhong J, Liu L, Zhang W, Zhao S, Chen L, Wei Y, Zhang H, Wu J, Chen W, Ge F. The function and regulatory mechanism of RNA-binding proteins in breast cancer and their future clinical treatment prospects. Front Oncol 2022; 12:929037. [PMID: 36052258 PMCID: PMC9424610 DOI: 10.3389/fonc.2022.929037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/25/2022] [Indexed: 11/19/2022] Open
Abstract
Breast cancer is the most common female malignancy, but the mechanisms regulating gene expression leading to its development are complex. In recent years, as epigenetic research has intensified, RNA-binding proteins (RBPs) have been identified as a class of posttranscriptional regulators that can participate in regulating gene expression through the regulation of RNA stabilization and degradation, intracellular localization, alternative splicing and alternative polyadenylation, and translational control. RBPs play an important role in the development of normal mammary glands and breast cancer. Functional inactivation or abnormal expression of RBPs may be closely associated with breast cancer development. In this review, we focus on the function and regulatory mechanisms of RBPs in breast cancer, as well as the advantages and challenges of RBPs as potential diagnostic and therapeutic targets in breast cancer, and discuss the potential of RBPs in clinical treatment.
Collapse
Affiliation(s)
- Xingjia Lu
- Department of Breast Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
- Kunming Medical University, No. 1 School of Clinical Medicine, Kunming, China
| | - Jian Zhong
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Nanjing Medical University, Nanjing, China
- Department of Gynecology, Women’s Hospital of Nanjing Medical University, Nanjing, China
| | - Linlin Liu
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Wenzhu Zhang
- Department of Breast Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
- Kunming Medical University, No. 1 School of Clinical Medicine, Kunming, China
| | - Shengdi Zhao
- Department of Breast Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
- Kunming Medical University, No. 1 School of Clinical Medicine, Kunming, China
| | - Liang Chen
- Department of Breast Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yuxian Wei
- Department of Endocrine Breast Surgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Zhang
- Department of Breast Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
- Kunming Medical University, No. 1 School of Clinical Medicine, Kunming, China
| | - Jingxuan Wu
- Department of Breast Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
- Kunming Medical University, No. 1 School of Clinical Medicine, Kunming, China
| | - Wenlin Chen
- Third Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
- *Correspondence: Wenlin Chen, ; Fei Ge,
| | - Fei Ge
- Department of Breast Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
- *Correspondence: Wenlin Chen, ; Fei Ge,
| |
Collapse
|
4
|
Magalhães L, Ribeiro-dos-Santos AM, Cruz RL, Nakamura KDDM, Brianese R, Burbano R, Ferreira SP, de Oliveira ELF, Anaissi AKM, Nahúm MCDS, Demachki S, Vidal AF, Carraro DM, Ribeiro-dos-Santos Â. Triple-Negative Breast Cancer circRNAome Reveals Hsa_circ_0072309 as a Potential Risk Biomarker. Cancers (Basel) 2022; 14:cancers14133280. [PMID: 35805051 PMCID: PMC9265318 DOI: 10.3390/cancers14133280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/14/2022] [Accepted: 06/19/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Triple Negative Breast Cancer (TNBC) is a highly aggressive type of cancer that lacks biomarkers for its early discovery, leading to overall poor prognosis after its diagnosis. Circular RNAs (circRNAs) are a new class of regulatory RNAs and are promising biomarkers for several human diseases, including TNBC. In this study, we profiled the expression of all circRNAs present in TNBC in order to identify new biomarkers for this disease and it was possible to observe that 16 were deregulated, among them hsa_circ_0072309. In two distinct sets of samples, hsa_circ_0072309 was able to distinguish TNBC from healthy controls, making it a promising risk biomarker for this disease. Additionaly, since circRNAs are known to interact with RNA-Binding Proteins (RBPs), we investigated its probable function in this cancer and found that by interacting with such RBPs, this circRNA is acting in several cancer-related biological pathways. Recognizing these differentially expressed circRNAs and identifying their role can lead to a better understanding of dysregulated pathways in TNBC and ultimately allow the development of personalized therapies in this molecular subtype of breast cancer. Abstract Circular RNAs (circRNAs) are a class of long non-coding RNAs that have the ability to sponge RNA-Binding Proteins (RBPs). Triple-negative breast cancer (TNBC) has very aggressive behavior and poor prognosis for the patient. Here, we aimed to characterize the global expression profile of circRNAs in TNBC, in order to identify potential risk biomarkers. For that, we obtained RNA-Seq data from TNBC and control samples and performed validation experiments using FFPE and frozen tissues of TNBC patients and controls, followed by in silico analyses to explore circRNA-RBP interactions. We found 16 differentially expressed circRNAs between TNBC patients and controls. Next, we mapped the RBPs that interact with the top five downregulated circRNAs (hsa_circ_0072309, circ_0004365, circ_0006677, circ_0008599, and circ_0009043) and hsa_circ_0000479, resulting in a total of 16 RBPs, most of them being enriched to pathways related to cancer and gene regulation (e.g., AGO1/2, EIF4A3, ELAVL1, and PTBP1). Among the six circRNAs, hsa_circ_0072309 was the one that presented the most confidence results, being able to distinguish TNBC patients from controls with an AUC of 0.78 and 0.81, respectively. This circRNA may be interacting with some RBPs involved in important cancer-related pathways and is a novel potential risk biomarker of TNBC.
Collapse
Affiliation(s)
- Leandro Magalhães
- Laboratory of Human and Medical Genetics, Postgraduate Program of Genetics and Molecular Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (L.M.); (A.M.R.-d.-S.); (R.L.C.); (A.F.V.)
| | - André M. Ribeiro-dos-Santos
- Laboratory of Human and Medical Genetics, Postgraduate Program of Genetics and Molecular Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (L.M.); (A.M.R.-d.-S.); (R.L.C.); (A.F.V.)
| | - Rebecca L. Cruz
- Laboratory of Human and Medical Genetics, Postgraduate Program of Genetics and Molecular Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (L.M.); (A.M.R.-d.-S.); (R.L.C.); (A.F.V.)
| | - Kivvi Duarte de Mello Nakamura
- Genomic and Molecular Biology Group, International Research Center/CIPE, A.C. Camargo Center, São Paulo 01508-010, Brazil; (K.D.d.M.N.); (R.B.); (D.M.C.)
| | - Rafael Brianese
- Genomic and Molecular Biology Group, International Research Center/CIPE, A.C. Camargo Center, São Paulo 01508-010, Brazil; (K.D.d.M.N.); (R.B.); (D.M.C.)
| | - Rommel Burbano
- Molecular Biology Laboratory, Ophir Loyola Hospital, Belém 66063-240, Brazil;
| | - Sâmio Pimentel Ferreira
- Department of Clinical Oncology, Ser Clínica Oncológica, Belém 66035-265, Brazil; (S.P.F.); (E.L.F.d.O.)
| | | | - Ana Karyssa Mendes Anaissi
- Postgraduate Program of Oncology and Medical Sciences, Center of Oncology Research, Federal University of Pará, Belém 66073-000, Brazil; (A.K.M.A.); (M.C.d.S.N.); (S.D.)
| | - Márcia Cristina de Sousa Nahúm
- Postgraduate Program of Oncology and Medical Sciences, Center of Oncology Research, Federal University of Pará, Belém 66073-000, Brazil; (A.K.M.A.); (M.C.d.S.N.); (S.D.)
| | - Samia Demachki
- Postgraduate Program of Oncology and Medical Sciences, Center of Oncology Research, Federal University of Pará, Belém 66073-000, Brazil; (A.K.M.A.); (M.C.d.S.N.); (S.D.)
| | - Amanda F. Vidal
- Laboratory of Human and Medical Genetics, Postgraduate Program of Genetics and Molecular Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (L.M.); (A.M.R.-d.-S.); (R.L.C.); (A.F.V.)
- Environmental Genomics Laboratory, Vale Institute of Technology, Belém 66055-090, Brazil
| | - Dirce Maria Carraro
- Genomic and Molecular Biology Group, International Research Center/CIPE, A.C. Camargo Center, São Paulo 01508-010, Brazil; (K.D.d.M.N.); (R.B.); (D.M.C.)
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation (INCITO), A.C. Camargo Center, São Paulo 01508-010, Brazil
| | - Ândrea Ribeiro-dos-Santos
- Laboratory of Human and Medical Genetics, Postgraduate Program of Genetics and Molecular Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (L.M.); (A.M.R.-d.-S.); (R.L.C.); (A.F.V.)
- Correspondence:
| |
Collapse
|
5
|
Puthdee N, Sriswasdi S, Pisitkun T, Ratanasirintrawoot S, Israsena N, Tangkijvanich P. The LIN28B/TGF-β/TGFBI feedback loop promotes cell migration and tumour initiation potential in cholangiocarcinoma. Cancer Gene Ther 2022; 29:445-455. [PMID: 34548635 PMCID: PMC9113936 DOI: 10.1038/s41417-021-00387-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/25/2021] [Accepted: 09/03/2021] [Indexed: 02/02/2023]
Abstract
Cholangiocarcinoma (CCA), a lethal malignancy of the biliary epithelium, is the second most common primary liver cancer. The poor prognosis of CCA is due to the high rate of tumour invasion and distant metastasis. We found that the RNA-binding protein LIN28B, a known regulator of microRNA biogenesis, stem cell maintenance, and oncogenesis, is expressed in a subpopulation of CCA patients. To further investigate the potential role of LIN28B in CCA pathogenesis, we studied the effect of LIN28B overexpression in the cholangiocyte cell line MMNK-1 and cholangiocarcinoma cell lines HuCCT-1 and KKU-214. Here, we show that enhanced LIN28B expression promoted cancer stem cell-like properties in CCA, including enhanced cell migration, epithelial-to-mesenchymal transition (EMT), increased cell proliferation and spheroid formation. Proteomic analysis revealed TGF-β-induced protein (TGFBI) as a novel LIN28B target gene, and further analysis showed upregulation of other components of the TGF-β signalling pathway, including TGF-β receptor type I (TGFBRI) expression and cytokine TGFB-I, II and III secretion. Importantly, the small molecule TGF-β inhibitor SB431542 negated the effects of LIN28B on both cell migration and clonogenic potential. Overexpression of TGFBI alone promoted cholangiocarcinoma cell migration and EMT changes, but not spheroid formation, suggesting that TGFBI partially contributes to LIN28B-mediated aggressive cell behaviour. These observations are consistent with a model in which TGF-β and LIN28B work together to form a positive feedback loop during cholangiocarcinoma metastasis and provide a therapeutic intervention opportunity.
Collapse
Affiliation(s)
- Nattapong Puthdee
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sira Sriswasdi
- Department of Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Trairak Pisitkun
- Department of Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Nipan Israsena
- Center of Excellence for Stem Cell and Cell Therapy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| | - Pisit Tangkijvanich
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
6
|
Zorca CE, Fallahi A, Luo S, Eldeeb MA. Multifaceted targeted protein degradation systems for different cellular compartments. Bioessays 2022; 44:e2200008. [PMID: 35417040 DOI: 10.1002/bies.202200008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 11/10/2022]
Abstract
Selective protein degradation maintains cellular homeostasis, but this process is disrupted in many diseases. Targeted protein degradation (TPD) approaches, built upon existing cellular mechanisms, are promising methods for therapeutically regulating protein levels. Here, we review the diverse palette of tools that are now available for doing so throughout the gene expression pathway and in specific cellular compartments. These include methods for directly removing targeted proteins via the ubiquitin proteasome system with proteolysis targeting chimeras (PROTACs) or dephosphorylation targeting chimeras (DEPTACs). Similar effects can also be achieved through the lysosomal system with autophagy-targeting chimeras (AUTACs), autophagosome tethering compounds (ATTECs), and lysosome targeting chimeras (LYTACs). Other methods act upstream to degrade RNAs (ribonuclease targeting chimeras; RIBOTACs) or transcription factors (transcription factor targeting chimeras; TRAFTACs), offering control throughout the gene expression process. We highlight the evolution and function of these methods and discuss their clinical implications in diverse disease contexts.
Collapse
Affiliation(s)
- Cornelia E Zorca
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Armaan Fallahi
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Sophie Luo
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Mohamed A Eldeeb
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
7
|
Wu K, Ahmad T, Eri R. LIN28A: A multifunctional versatile molecule with future therapeutic potential. World J Biol Chem 2022; 13:35-46. [PMID: 35432768 PMCID: PMC8966501 DOI: 10.4331/wjbc.v13.i2.35] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 09/06/2021] [Accepted: 03/06/2022] [Indexed: 02/06/2023] Open
Abstract
An RNA-binding protein, LIN28A was initially discovered in nematodes Caenorhabditis elegans and regulated stem cell differentiation and proliferation. With the aid of mouse models and cancer stem cells models, LIN28A demonstrated a similar role in mammalian stem cells. Subsequent studies revealed LIN28A’s roles in regulating cell cycle and growth, tissue repair, and metabolism, especially glucose metabolism. Through regulation by pluripotency and neurotrophic factors, LIN28A performs these roles through let-7 dependent (binding to let-7) or independent (binding directly to mature mRNA) pathways. Elevated LIN28A levels are associated with cancers such as breast, colon, and ovarian cancers. Overexpressed LIN28A has been implicated in liver diseases and Rett syndrome whereas loss of LIN28A was linked to Parkinson’s disease. LIN28A inhibitors, LIN28A-specific nanobodies, and deubiquitinases targeting LIN28A could be feasible options for cancer treatments while drugs upregulating LIN28A could be used in regenerative therapy for neuropathies. We will review the upstream and downstream signalling pathways of LIN28A and its physiological functions. Then, we will examine current research and gaps in research regarding its mechanisms in conditions such as cancers, liver diseases, and neurological diseases. We will also look at the therapeutic potential of LIN28A in RNA-targeted therapies including small interfering RNAs and RNA-protein interactions.
Collapse
Affiliation(s)
- Kenneth Wu
- Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7250, Australia
| | - Tauseef Ahmad
- Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7250, Australia
| | - Rajaraman Eri
- Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7250, Australia
| |
Collapse
|
8
|
LIN28 promotes tumorigenesis in colorectal cancer but is not associated with metastatic spread. Pathol Res Pract 2021; 228:153669. [PMID: 34768060 DOI: 10.1016/j.prp.2021.153669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Tumor stem cells play a role in metastatic spread in colorectal cancer (CRC). The oncogene LIN28A/B, a prognostic marker in CRC, is involved in tumorigenesis and maintains stem cell function. Therefore, it was the aim of the present study to clarify whether LIN28A/B is involved in metastatic spread in CRC. METHODS Expression of LIN28A/B was analyzed in patients with colon adenocarcinoma in a matched case-control study comparing patients with corresponding liver metastases (n = 42) and patients without hepatic spread within five years (n = 42) by applying immunohistochemistry. Further, LIN28A/B expression was correlated with stem cell associated markers (SOX2, CD133). RESULTS LIN28A and B expression significantly correlated with SOX2 expression (p = .02, and p = .04 respectively) but not with CD133 expression. This correlation between LIN28 A/B and SOX2 was not reflected in differences in hepatic spread. In this respect, there was no significant association between LIN28A/B expression and liver metastases. CONCLUSION LIN28A/B might be involved in tumor initiation and progression in CRC but is not associated with hepatic spread.
Collapse
|
9
|
Serej ZA, Ebrahimi A, Kazemi T, Najafi S, Amini M, Nastarin P, Baghbani E, Baradaran B. NANOG gene suppression and replacement of let-7 modulate the stemness, invasion, and apoptosis in breast cancer. Gene 2021; 801:145844. [PMID: 34274471 DOI: 10.1016/j.gene.2021.145844] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/06/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023]
Abstract
In the treatment of breast cancer (BC), as an important type of cancer in women, the specific cells, called cancer stem cells (CSCs), are the reason of failure and metastasis. So, targeting CSCs can be used as a novel strategy in cancer therapy in addition to common therapeutic strategies. According to the importance of CSCs, we tried to find a correlation between stemness and metastatic characteristics of BC cells, to address whether CSCs are a potential target for cancer therapy. Here, we evaluated the NANOG inhibition by siRNA and the increase of Let-7a levels by miRNA mimic in breast cancer cells and the effects of these changes on biologic aspects like cell apoptosis, stemness and invasion. Our results showed that the inhibition of NANOG combined with Let-7a restoration contributed to significant decrease in malignant phenotypes and stemness feature of BC cells. In conclusion, these findings showed that the combination of Let-7a miRNA mimic and Nanog siRNA could be exploited as a new treatment strategy to improve the cancer therapy outcome.
Collapse
Affiliation(s)
- Zeynab Aliyari Serej
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ayyub Ebrahimi
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Halic University, Istanbul, Turkey
| | - Tohid Kazemi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parastou Nastarin
- Department of Orthodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Baghbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
10
|
Resistin Induces LIN28A-Mediated Let-7a Repression in Breast Cancer Cells Leading to IL-6 and STAT3 Upregulation. Cancers (Basel) 2021; 13:cancers13184498. [PMID: 34572725 PMCID: PMC8470467 DOI: 10.3390/cancers13184498] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 01/20/2023] Open
Abstract
Simple Summary Breast cancer is the second leading cause of cancer-related death in women in the United States and exhibits significant racial disparities in clinical outcomes. Earlier, we reported that the levels of resistin and IL-6 were significantly more elevated in the serum of African American women with breast cancer than in their Caucasian American counterparts. Here, we uncover its mechanistic significance by characterizing a novel resistin/LIN28A/Let-7a/IL-6/STAT3 signaling axis supporting the growth and stemness of breast cancer cells. Abstract Downregulation of the Let-7 family of microRNAs (miRNAs) has been reported in several cancers, including breast malignancy; however, underlying mechanisms are not completely understood. Resistin is an important component of the tumor microenvironment, having a functional impact on the tumor cell phenotypes. Here, we examined the role of resistin in the regulation of Let-7 miRNAs and studied its downstream consequences. We found that resistin treatment led to the reduced expression of Let-7 family miRNAs in breast cancer (BC) cells, with the highest downregulation reported for Let-7a. Furthermore, resistin induced the expression of LIN28A, and its silencing abrogated resistin-mediated Let-7a suppression. Let-7a restoration or LIN28A silencing abolished the resistin-induced growth, clonogenicity, and sphere-forming ability of BC cells. Restoration of Let-7a also suppressed the resistin-induced expression of genes associated with growth, survival, and stemness. Pathway analysis suggested STAT3 as a putative central node associated with Let-7a-mediated gene regulation. In silico analysis identified STAT3 and its upstream modifier, IL-6, as putative Let-7a gene targets, which were later confirmed by 3′UTR-reporter assays. Together, our findings demonstrate a novel resistin/LIN28A/Let-7a/IL-6/STAT3 signaling axis supporting the growth and stemness of BC cells.
Collapse
|
11
|
Hesham D, El-Naggar S. Transcriptomic Analysis Revealed an Emerging Role of Alternative Splicing in Embryonal Tumor with Multilayered Rosettes. Genes (Basel) 2020; 11:genes11091108. [PMID: 32971786 PMCID: PMC7563716 DOI: 10.3390/genes11091108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/02/2020] [Accepted: 09/11/2020] [Indexed: 11/30/2022] Open
Abstract
Embryonal tumor with multilayered rosettes (ETMR) is an aggressive and rare pediatric embryonal brain tumor. Amplification of C19MC microRNA cluster and expression of LIN28 are distinctive features of ETMR. Despite the increasing efforts to decipher ETMR, the biology remains poorly understood. To date, the role of aberrant alternative splicing in ETMR has not been thoroughly investigated. In the current study, a comprehensive analysis was performed on published unprocessed RNA-seq reads of tissue-matched ETMR and fetal controls datasets. Gene expression was quantified in samples using Kallisto/sleuth pipeline. For the alternative splicing analysis, STAR, SplAdder and rMATS were used. Functional enrichment analysis was subsequently performed using Metascape. The expression analysis identified a total of 3622 differentially expressed genes (DEGs) between ETMR and fetal controls while 1627 genes showed differential alternative splicing patterns. Interestingly, genes with significant alternative splicing events in ETMR were identified to be involved in signaling pathways such as ErbB, mTOR and MAPK pathways as well as ubiquitin-mediated proteolysis, cell cycle and autophagy. Moreover, up-regulated DEGs with alternative splicing events were involved in important biological processes including nuclear transport, regulation of cell cycle and regulation of Wnt signaling pathway. These findings highlight the role of aberrant alternative splicing in shaping the ETMR tumor landscape, and the identified pathways constitute potential therapeutic targets.
Collapse
|
12
|
Hakim S, Craig JM, Koblinski JE, Clevenger CV. Inhibition of the Activity of Cyclophilin A Impedes Prolactin Receptor-Mediated Signaling, Mammary Tumorigenesis, and Metastases. iScience 2020; 23:101581. [PMID: 33083747 PMCID: PMC7549119 DOI: 10.1016/j.isci.2020.101581] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/27/2020] [Accepted: 09/15/2020] [Indexed: 01/12/2023] Open
Abstract
Prolactin (PRL) and its receptor (PRLr) play important roles in the pathogenesis of breast cancer. Cyclophilin A (CypA) is a cis-trans peptidyl-prolyl isomerase (PPI) that is constitutively associated with the PRLr and facilitates the activation of the tyrosine kinase Jak2. Treatment with the non-immunosuppressive prolyl isomerase inhibitor NIM811 or CypA short hairpin RNA inhibited PRL-stimulated signaling, breast cancer cell growth, and migration. Transcriptomic analysis revealed that NIM811 inhibited two-thirds of the top 50 PRL-induced genes and a reduction in gene pathways associated with cancer cell signaling. In vivo treatment of NIM811 in a TNBC xenograft lessened primary tumor growth and induced central tumor necrosis. Deletion of CypA in the MMTV-PyMT mouse model demonstrated inhibition of tumorigenesis with significant reduction in lung and lymph node metastasis. The regulation of PRLr/Jak2-mediated biology by NIM811 demonstrates that a non-immunosuppressive prolyl isomerase inhibitor can function as a potential breast cancer therapeutic. CypA inhibition or knockdown blocks breast cancer cell signaling, growth, and migration NIM811 inhibited PRL-induced genes and gene pathways relevant to cancer signaling Deletion of CypA has shown reduction in tumorigenesis and metastasis in mice
Collapse
Affiliation(s)
- Shawn Hakim
- Department of Pathology, Virginia Commonwealth University, 1101 E. Marshall St, Sanger 4-006A, Richmond, VA 23298, USA.,Massey Cancer Center, Richmond, VA 23298, USA.,Wright Center for Clinical and Translational Sciences, Richmond, VA 23298, USA
| | - Justin M Craig
- Department of Pathology, Virginia Commonwealth University, 1101 E. Marshall St, Sanger 4-006A, Richmond, VA 23298, USA.,Massey Cancer Center, Richmond, VA 23298, USA.,Wright Center for Clinical and Translational Sciences, Richmond, VA 23298, USA
| | - Jennifer E Koblinski
- Department of Pathology, Virginia Commonwealth University, 1101 E. Marshall St, Sanger 4-006A, Richmond, VA 23298, USA.,Massey Cancer Center, Richmond, VA 23298, USA
| | - Charles V Clevenger
- Department of Pathology, Virginia Commonwealth University, 1101 E. Marshall St, Sanger 4-006A, Richmond, VA 23298, USA.,Massey Cancer Center, Richmond, VA 23298, USA
| |
Collapse
|
13
|
Xiong H, Chen Z, Chen W, Li Q, Lin B, Jia Y. FKBP-related ncRNA-mRNA axis in breast cancer. Genomics 2020; 112:4595-4607. [PMID: 32814092 DOI: 10.1016/j.ygeno.2020.08.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/09/2020] [Accepted: 08/13/2020] [Indexed: 01/03/2023]
Abstract
Breast cancer (BC) is a disease with morbidity ranking the first of women worldwidely. In current study, 11 DE-miRNAs, consisting of four FKBP4 related DE-miRNAs and seven FKBP5 related DE-miRNAs, were screened. Four hundred and eighty two predicted lncRNAs were found for DE-miRNAs. Then, expression and prognostic results of nine of top 20 lncRNAs of BC were significantly identified. LINC00662 and LINC00963 expression were significantly associated with patients' overall survival (OS). Then, nine potential upstream transcription factors were identified in motifs of DE-miRNAs. Three hundred and twenty target genes were identified for GO annotation and KEGG pathway analysis, which were mainly enriched in cysteine-type endopeptidase activity involved in apoptotic process. Construction and analysis in PPI network showed that RAB7A was selected as a hub gene with the topest connectivity scores. Differential expression analysis of nine in top ten hub genes of BC were significantly identified. RAB7A and ARRB1 expression were significantly related with BC patients' OS.
Collapse
Affiliation(s)
- Hanchu Xiong
- Department of Radiation Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China.
| | - Zihan Chen
- Surgical Intensive Care Unit, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Weijun Chen
- Department of Radiation Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Qiang Li
- Department of Radiation Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Baihua Lin
- Department of Radiation Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Yongshi Jia
- Department of Radiation Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
14
|
Differences in the early stage gene expression profiles of lung adenocarcinoma and lung squamous cell carcinoma. Oncol Lett 2019; 18:6572-6582. [PMID: 31788115 PMCID: PMC6865721 DOI: 10.3892/ol.2019.11013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/06/2019] [Indexed: 12/26/2022] Open
Abstract
The discovery of lung carcinoma subtype-specific gene expression changes has the potential to elucidate the molecular differences and provide personalized therapeutic targets for these pathologies. The aim of the present study was to characterize the genetic profiles of the early stages (IA/IB) of two non-small cell lung cancer subtypes, adenocarcinoma (AD) and squamous cell carcinoma (SC). RNA-Seq gene expression data from The Cancer Genome Atlas was analyzed to compare the gene expression differences between AD and SC. The gene sets specific to each subtype were further analyzed to identify the enriched Gene Ontology terms, Kyoto Encyclopedia of Genes and Genomes pathways and biological functions. The results demonstrated that a unique set of genes (145 upregulated and 27 downregulated) was altered in AD, but not in SC; another set of genes (146 upregulated and 103 downregulated) was significantly altered in SC, but not in AD. Genes highly upregulated specifically in AD included albumin (1,732-fold), protein lin-28 homolog A, which is a positive regulator of cyclin-dependent kinase 2 (150-fold) and gastric lipase (81-fold). Genes highly upregulated specifically in SC included amelotin (618-fold), alcohol dehydrogenase 7 (57-fold), aclerosteosis (55-fold) and claudin-22 (54-fold). Several cancer/testis antigen family genes were notably upregulated in SC, but not in AD, whereas mucins were upregulated only in AD. Functional pathway analysis demonstrated that the dysregulation of genes associated with retinoid X receptors was common in AD and SC, genes associated with ‘lipid metabolism’ and ‘drug metabolism’ were dysregulated only in SC, whereas genes associated with ‘molecular transport’ and ‘cellular growth and proliferation’ were significantly enriched in AD specifically. These results reveal fundamental differences in the gene expression profiles of early-stage AD and SC. In addition, the present study identified molecular pathways that are uniquely associated with the pathogenesis of these subtypes.
Collapse
|
15
|
Corallo D, Donadon M, Pantile M, Sidarovich V, Cocchi S, Ori M, De Sarlo M, Candiani S, Frasson C, Distel M, Quattrone A, Zanon C, Basso G, Tonini GP, Aveic S. LIN28B increases neural crest cell migration and leads to transformation of trunk sympathoadrenal precursors. Cell Death Differ 2019; 27:1225-1242. [PMID: 31601998 DOI: 10.1038/s41418-019-0425-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 09/04/2019] [Accepted: 09/12/2019] [Indexed: 01/25/2023] Open
Abstract
The RNA-binding protein LIN28B regulates developmental timing and determines stem cell identity by suppressing the let-7 family of microRNAs. Postembryonic reactivation of LIN28B impairs cell commitment to differentiation, prompting their transformation. In this study, we assessed the extent to which ectopic lin28b expression modulates the physiological behavior of neural crest cells (NCC) and governs their transformation in the trunk region of developing embryos. We provide evidence that the overexpression of lin28b inhibits sympathoadrenal cell differentiation and accelerates NCC migration in two vertebrate models, Xenopus leavis and Danio rerio. Our results highlight the relevance of ITGA5 and ITGA6 in the LIN28B-dependent regulation of the invasive motility of tumor cells. The results also establish that LIN28B overexpression supports neuroblastoma onset and the metastatic potential of malignant cells through let-7a-dependent and let-7a-independent mechanisms.
Collapse
Affiliation(s)
- Diana Corallo
- Neuroblastoma Laboratory, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy.
| | - Michael Donadon
- Neuroblastoma Laboratory, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Marcella Pantile
- Neuroblastoma Laboratory, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Viktoryia Sidarovich
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Simona Cocchi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Michela Ori
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, Pisa, Italy
| | - Miriam De Sarlo
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, Pisa, Italy
| | - Simona Candiani
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genova, Italy
| | - Chiara Frasson
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Martin Distel
- Innovative Cancer Models, Children's Cancer Research Institute (CCRI), Wien, Austria
| | - Alessandro Quattrone
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Carlo Zanon
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Giuseppe Basso
- Department of Women and Child Health, Haematology-Oncology Clinic, University of Padua, Padova, Italy
| | - Gian Paolo Tonini
- Neuroblastoma Laboratory, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Sanja Aveic
- Neuroblastoma Laboratory, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy. .,Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Aachen, Germany.
| |
Collapse
|
16
|
Wu Q, Ma J, Meng W, Hui P. DLX6-AS1 promotes cell proliferation, migration and EMT of gastric cancer through FUS-regulated MAP4K1. Cancer Biol Ther 2019; 21:17-25. [PMID: 31591939 DOI: 10.1080/15384047.2019.1647050] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer (GC) is the second most prevalent carcinoma resulting in cancer-related deaths in the world, with differences among geographic areas. Although the incidence and mortality rates of GC in Asia are decreasing, the search for diverse and effective therapies of GC is still needed to be fully inquired. The present research explored the expression pattern, functional role and underlying mechanism of DLX6-AS1 in GC. Firstly, we measured DLX6-AS1 expression in GC and then found the elevated level of DLX6-AS1. To further inspect the function role of DLX6-AS1 involved in GC, we performed lost-of-function assays. The silencing of DLX6-AS1 suppressed cell proliferation, migration and EMT process of GC cells. Subsequently, we uncovered that MAP4K1 was also up-regulated in GC and could be positively regulated by DLX6-AS1. Moreover, MAP4K1 down-regulation similarly inhibited GC progression. In addition, DLX6-AS1 stabilized MAP4K1 via modulating FUS. In summary, DLX6-AS1 modulated GC progression through FUS-regulated MAP4K1. Our paper exposed the role and regulatory mechanism of DLX6-AS1 in GC, which suggested a novel and valid therapy for GC patients.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiali Ma
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenying Meng
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pingping Hui
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Chen WC, Wei CK, Lee JC. MicroRNA-let-7c suppresses hepatitis C virus replication by targeting Bach1 for induction of haem oxygenase-1 expression. J Viral Hepat 2019; 26:655-665. [PMID: 30706605 DOI: 10.1111/jvh.13072] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/17/2018] [Accepted: 01/05/2019] [Indexed: 12/26/2022]
Abstract
MicroRNAs are small noncoding RNAs that are central factors between hepatitis C virus (HCV) and host cellular factors for viral replication and liver disease progression, including liver fibrosis, cirrhosis and hepatocellular carcinoma. In the present study, we found that overexpressing miR-let-7c markedly reduced HCV replication because it induced haem oxygenase-1 (HO-1) expression by targeting HO-1 transcriptional repressor Bach1, ultimately leading to stimulating an antiviral interferon response and blockade of HCV viral protease activity. In contrast, the antiviral actions of miR-let-7c were attenuated by miR-let-7c inhibitor treatment, exogenously expressing Bach1 or suppressing HO-1 activity and expression. A proposed model indicates a key role for miR-let-7c targeting Bach1 to transactivate HO-1-mediated antiviral actions against HCV. miR-let-7c may serve as an attractive target for antiviral development.
Collapse
Affiliation(s)
- Wei-Chun Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Ku Wei
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jin-Ching Lee
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan.,PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
18
|
Xu C, Jin S, Huang L. Expression of Lin28 is correlated with prognosis and expression of HER-2 and steroid receptors in breast cancer. Onco Targets Ther 2019; 12:1105-1110. [PMID: 30799940 PMCID: PMC6371929 DOI: 10.2147/ott.s190328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Objective Cumulative data from clinical trials suggest that Lin28 may contribute to poor survival in breast cancer patients. The purpose of this study was to investigate the relationship between Lin28 expression and breast cancer patients’ clinicopathological parameters. Methods Data from a total of 291 breast cancer patients were collected in this study. The expression level of Lin28 was assessed by immunohistochemical staining. The correlation of Lin28 expression and clinicopathological parameters was statically evaluated and the prognostic significance of Lin28 expression was assessed by univariate and multivariate analyses. Results One hundred and eight out of 291 (37.1%) breast cancer specimens showed Lin28 protein positive expression, while the remaining 183 specimens showed negative expression. Positive expression of Lin28 was associated with lymph node metastases (P<0.001), HER-2 (P=0.024), estrogen receptor (P=0.039), and progesterone receptor (P=0.027). Kaplan–Meier analysis showed that Lin28 positive expression showed lower overall survival rates compared with Lin28 negative patients (P=0.019). In the multivariate analysis, Lin28 remained a significant independent prognostic factor (P=0.038) for overall survival rates. Conclusion Lin28 expression was associated with advanced disease stage and subtype in breast cancer patients, and Lin28 expression may serve as an independent prognostic factor. These data indicate that Lin28 may play a major role in the therapeutic management of breast cancer.
Collapse
Affiliation(s)
- Chaoyang Xu
- Department of Breast and Thyroid Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Zhejiang, China, ;
| | - Shuxun Jin
- Department of Breast and Thyroid Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Zhejiang, China, ;
| | - Liming Huang
- Department of Breast and Thyroid Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Zhejiang, China, ;
| |
Collapse
|
19
|
Abstract
Breast cancer is known to be a heterogeneous disease driven by a large repertoire of molecular abnormalities, which contribute to its diverse clinical behaviour. Despite the success of targeted therapy approaches for breast cancer patient management, there is still a lack of the molecular understanding of aggressive forms of the disease and clinical management of these patients remains difficult. The advent of high-throughput sequencing technologies has paved the way for a more complete understanding of the molecular make-up of the breast cancer genome. As such, it is becoming apparent that disruption of canonical splicing within breast cancer governs its clinical progression. In this review, we discuss the role of dysregulation of spliceosomal component genes and associated factors in the progression of breast cancer, their role in therapy resistance and the use of quantitative isoform expression as potential prognostic and predictive biomarkers with a particular focus on oestrogen receptor-positive breast cancer.
Collapse
Affiliation(s)
- Abigail Read
- The Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer Research, London, UK
- Division of Molecular PathologyThe Institute of Cancer Research, London, UK
| | - Rachael Natrajan
- The Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer Research, London, UK
- Division of Molecular PathologyThe Institute of Cancer Research, London, UK
| |
Collapse
|
20
|
MicroRNA co-expression patterns unravel the relevance of extra cellular matrix and immunity in breast cancer. Breast 2018; 39:46-52. [DOI: 10.1016/j.breast.2018.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/14/2018] [Accepted: 03/20/2018] [Indexed: 12/21/2022] Open
|
21
|
Abstract
The ribosome has long been considered as a consistent molecular factory, with a rather passive role in the translation process. Recent findings have shifted this obsolete view, revealing a remarkably complex and multifaceted machinery whose role is to orchestrate spatiotemporal control of gene expression. Ribosome specialization discovery has raised the interesting possibility of the existence of its malignant counterpart, an 'oncogenic' ribosome, which may promote tumor progression. Here we weigh the arguments supporting the existence of an 'oncogenic' ribosome and evaluate its role in cancer evolution. In particular, we provide an analysis and perspective on how the ribosome may play a critical role in the acquisition and maintenance of cancer stem cell phenotype.
Collapse
|