1
|
Sabeel Z, Wang J, Dong J, Liu Y, Yu C, Yang Z. The duality of GSK-3β in urinary bladder cancer: Tumor suppressor and promoter roles through multiple signaling pathways. Biochim Biophys Acta Rev Cancer 2025; 1880:189324. [PMID: 40258445 DOI: 10.1016/j.bbcan.2025.189324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 04/11/2025] [Accepted: 04/12/2025] [Indexed: 04/23/2025]
Abstract
Urinary bladder cancer (UBC), the tenth most common cancer globally, is primarily categorized into non-muscle-invasive (NMIBC) and muscle-invasive (MIBC) types. NMIBC has a low risk of metastasis but tends to recur frequently after transurethral resection, whereas MIBC is associated with a higher likelihood of metastasis and poorer prognosis. At diagnosis, roughly 75 % of UBC patients have NMIBC, while the remaining 25 % present with tumor invasion into the bladder's muscle layer. The molecular complexity of UBC has driven research toward identifying subtypes for more personalized treatment approaches. Glycogen synthase kinase-3β (GSK-3β) has emerged as a pivotal regulator in UBC through its dual roles across six key pathways: (1) Wnt/β-catenin regulation (tumor suppression vs oncogenic activation), (2) ER stress responses (apoptosis induction vs cytoprotection), (3) Akt/GSK-3β/β-catenin/c-Myc signaling, (4) PI3K/Akt/mTOR interactions, (5) NF-κB-mediated immune modulation, and (6) Snail1/β-catenin-driven epithelial mesenchymal transition (EMT). Our analysis reveals that GSK-3β's context-dependent functions create both therapeutic opportunities and challenges - while inhibition suppresses tumor growth via β-catenin degradation, it may simultaneously activate NF-κB-mediated oncogenic processes. These paradoxical effects are particularly evident in the tumor microenvironment, where GSK-3β modulation differentially regulates CD8+ T cell function and macrophage polarization. Understanding these complex pathway interactions is crucial for developing precision therapies that exploit GSK-3β's tumor-suppressive roles while mitigating its oncogenic potential.
Collapse
Affiliation(s)
- Zufa Sabeel
- College of Life Science and Technology, State Key Laboratory of Green Biomanufacturing, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Jianfeng Wang
- Department of Urology, China-Japan Friendship Hospital, Beijing, China
| | - Jian Dong
- College of Life Science and Technology, State Key Laboratory of Green Biomanufacturing, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Yan Liu
- College of Life Science and Technology, State Key Laboratory of Green Biomanufacturing, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Changyuan Yu
- College of Life Science and Technology, State Key Laboratory of Green Biomanufacturing, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China.
| | - Zhao Yang
- College of Life Science and Technology, State Key Laboratory of Green Biomanufacturing, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China.
| |
Collapse
|
2
|
Song B, Kim D, Ho JN, Le VH, Lee S. Crizotinib Inhibits Viability, Migration, and Invasion by Suppressing the c-Met/ PI3K/ Akt Pathway in the Three-Dimensional Bladder Cancer Spheroid Model. Curr Oncol 2025; 32:236. [PMID: 40277792 PMCID: PMC12025888 DOI: 10.3390/curroncol32040236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/01/2025] [Accepted: 04/16/2025] [Indexed: 04/26/2025] Open
Abstract
We aimed to evaluate the therapeutic potential of crizotinib, a broad-spectrum tyrosine kinase inhibitor against bladder cancer (BC) cells, based on a three-dimensional (3D) cell culture system. After proliferating cell masses (spheroids) using T24 cisplatin-naïve and T24R2 cisplatin-resistant human BC cell lines, the spheroids were exposed to various crizotinib concentrations in order to derive an ideal crizotinib concentration to suppress cell survival, migration, and invasion. Crizotinib suppressed cell proliferation, migration, and invasion in both T24 and T24R2 BC cell lines under a 3D spheroid model, which was more appropriate than the conventional two-dimensional cell culture model. Real-time quantitative polymerase chain reaction analysis revealed a reduced expression of E-cadherin and an enhanced expression of vimentin, suggesting EMT suppression and the subsequent suppression of tumor aggressiveness following crizotinib administration. Meanwhile, the expressions of apoptosis-related genes increased. Western blot analysis revealed that the expression levels of phosphorylated mesenchymal-epithelial transition factor (c-Met) and phosphorylated Akt decreased following crizotinib administration, suggesting that the antitumor effect of crizotinib can be associated with the inhibition of the phosphorylated activation of the c-Met/PI3K/Akt pathway. Crizotinib showed a potential antitumor effect on both cisplatin-naïve and cisplatin-resistant human BC cells, likely through c-Met-induced PI3K/Akt pathway inhibition.
Collapse
Affiliation(s)
- Byeongdo Song
- Department of Urology, Hanyang University Guri Hospital, 153, Gyeongchun-ro, Guri-si 11923, Gyeonggi-do, Republic of Korea;
| | - Danhyo Kim
- Department of Urology, Seoul National University Bundang Hospital, 166, Gumi-ro, Bundang-gu, Seongnam-si 13620, Gyunggi-do, Republic of Korea; (D.K.); (J.-N.H.); (V.-H.L.)
| | - Jin-Nyoung Ho
- Department of Urology, Seoul National University Bundang Hospital, 166, Gumi-ro, Bundang-gu, Seongnam-si 13620, Gyunggi-do, Republic of Korea; (D.K.); (J.-N.H.); (V.-H.L.)
| | - Van-Hung Le
- Department of Urology, Seoul National University Bundang Hospital, 166, Gumi-ro, Bundang-gu, Seongnam-si 13620, Gyunggi-do, Republic of Korea; (D.K.); (J.-N.H.); (V.-H.L.)
- Department of Urology, Vinmec International Hospital, 458 P. Minh Khai, Hanoi 100000, Vietnam
| | - Sangchul Lee
- Department of Urology, Seoul National University Bundang Hospital, 166, Gumi-ro, Bundang-gu, Seongnam-si 13620, Gyunggi-do, Republic of Korea; (D.K.); (J.-N.H.); (V.-H.L.)
- Department of Urology, Seoul National University College of Medicine, 71, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| |
Collapse
|
3
|
Dastghaib S, Shafiee SM, Ramezani F, Ashtari N, Tabasi F, Saffari-Chaleshtori J, Siri M, Vakili O, Igder S, Zamani M, Niknam M, Nasery MM, Kokabi F, Wiechec E, Mostafavi-Pour Z, Mokarram P, Ghavami S. NRF-mediated autophagy and UPR: Exploring new avenues to overcome cancer chemo-resistance. Eur J Pharmacol 2025; 988:177210. [PMID: 39706466 DOI: 10.1016/j.ejphar.2024.177210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/06/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
The development of chemo-resistance remains a significant hurdle in effective cancer therapy. NRF1 and NRF2, key regulators of redox homeostasis, play crucial roles in the cellular response to oxidative stress, with implications for both tumor growth and resistance to chemotherapy. This study delves into the dualistic role of NRF2, exploring its protective functions in normal cells and its paradoxical support of tumor survival and drug resistance in cancerous cells. We investigate the interplay between the PERK/NRF signaling pathway, ER stress, autophagy, and the unfolded protein response, offering a mechanistic perspective on how these processes contribute to chemoresistance. Our findings suggest that targeting NRF signaling pathways may offer new avenues for overcoming resistance to chemotherapeutic agents, highlighting the importance of a nuanced approach to redox regulation in cancer treatment. This research provides a molecular basis for the development of NRF-targeted therapies, potentially enhancing the efficacy of existing cancer treatments and offering hope for more effective management of resistant tumors.
Collapse
Affiliation(s)
- Sanaz Dastghaib
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, 7193635899, Shiraz, Iran
| | - Sayed Mohammad Shafiee
- Autophagy Research Center, Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, 7134845794, Shiraz, Iran
| | - Fatemeh Ramezani
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, 51664, Tabriz, Iran
| | - Niloufar Ashtari
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada
| | - Farhad Tabasi
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| | - Javad Saffari-Chaleshtori
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, 7134845794, Shiraz, Iran; Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, 8813833435, Shahrekord, Iran
| | - Morvarid Siri
- Autophagy Research Center, Shiraz University of Medical Sciences, 7134845794, Shiraz, Iran
| | - Omid Vakili
- Autophagy Research Center, Shiraz University of Medical Sciences, 7134845794, Shiraz, Iran; Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, 73461-81746, Isfahan, Iran
| | - Somayeh Igder
- Department of Clinical Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, 6135715794, Ahvaz, Iran
| | - Mozhdeh Zamani
- Autophagy Research Center, Shiraz University of Medical Sciences, 7134845794, Shiraz, Iran
| | - Maryam Niknam
- Autophagy Research Center, Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, 7134845794, Shiraz, Iran
| | - Mahshid Moballegh Nasery
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), 7616911319, Tehran, Iran
| | - Fariba Kokabi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, 9177948564, Mashhad, Iran
| | - Emilia Wiechec
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Academy of Silesia, Faculty of Medicine, Rolna 43, 40-555, Katowice, Poland; Department of Otorhinolaryngology in Linköping, Anaesthetics, Operations and Specialty Surgery Center, Region Östergotland, 58185, Linköping, Sweden
| | - Zohreh Mostafavi-Pour
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, 7134845794, Shiraz, Iran; Autophagy Research Center, Shiraz University of Medical Sciences, 7134845794, Shiraz, Iran.
| | - Pooneh Mokarram
- Autophagy Research Center, Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, 7134845794, Shiraz, Iran.
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada; Academy of Silesia, Faculty of Medicine, Rolna 43, 40-555, Katowice, Poland; Research Institutes of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB, R3E 0V9, Canada; Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, R3E 0V9, Canada.
| |
Collapse
|
4
|
Jamialahmadi K, Noruzi S. Matrix metalloproteinases, chemoresistance and cancer. PATHOPHYSIOLOGICAL ASPECTS OF PROTEASES IN CANCER 2025:385-409. [DOI: 10.1016/b978-0-443-30098-1.00023-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
5
|
Mao R, Zhou F, Hong Y, Li Y, Zhu C, Jin L, Li S. CRH upregulates supervillin through ERK and AKT pathways to promote bladder cancer cell migration. Cell Biol Int 2024; 48:1743-1754. [PMID: 39090812 DOI: 10.1002/cbin.12227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024]
Abstract
Corticotropin-releasing hormone (CRH) has been well documented playing a role in the regulation of cellular processes, immune responses, and inflammatory processes that can influence the occurrence and development of tumors. Supervillin (SVIL) is a membrane-associated and actin-binding protein, which is actively involved in the proliferation, spread, and migration of cancer cells. This work investigated CRH's influence on bladder cancer cells' migration and relevant mechanisms. By using human bladder cancer cells T24 and RT4 in wound healing experiments and transwell assay, we found that the migration ability of the T24 cells was significantly increased after CRH treatment. In vivo experiments showed that CRH significantly promoted the metastases of T24 cells in cell line-derived xenograft (CDX) mouse model. Interestingly, downregulation of SVIL by SVIL-specifc small hairpin RNAs significantly reduced the promoting effect of CRH on bladder cancer cell migration. Furthermore, CRH significantly increased SVIL messenger RNA and protein expression in T24 cells, accompanied with AKT and ERK phosphorylation in T24 cells. Pretreatment with AKT inhibitor (MK2206) blocked the CRH-induced SVIL expression and ERK phosphorylation. Also, inhibition of ERK signaling pathway by U0126 significantly reduced the CRH-induced SVIL expression and AKT phosphorylation. It suggested that cross-talking between AKT and ERK pathways was involved in the effect of CRH on SVIL. Taken together, we demonstrated that CRH induced migration of bladder cancer cells, in which AKT and ERK pathways -SVIL played a key role.
Collapse
Affiliation(s)
- Rongchen Mao
- Department of Pharmacology, Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Feier Zhou
- Department of Pharmacology, Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yali Hong
- Department of Pharmacology, Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yongqi Li
- Department of Pharmacology, Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Chao Zhu
- Department of Pharmacology, Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Lai Jin
- Department of Pharmacology, Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Shengnan Li
- Department of Pharmacology, Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Naimy S, Sølberg JBK, Kuczek DE, Løvendorf MB, Bzorek M, Litman T, Mund A, Rahbek Gjerdrum LM, Clark RA, Mann M, Dyring-Andersen B. Comparative Quantitative Proteomic Analysis of Melanoma Subtypes, Nevus-Associated Melanoma, and Corresponding Nevi. J Invest Dermatol 2024; 144:1608-1621.e4. [PMID: 38185415 DOI: 10.1016/j.jid.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024]
Abstract
A substantial part of cutaneous malignant melanomas develops from benign nevi. However, the precise molecular events driving the transformation from benign to malignant melanoma are not well-understood. We used laser microdissection and mass spectrometry to analyze the proteomes of melanoma subtypes, including superficial spreading melanomas (n = 17), nodular melanomas (n = 17), and acral melanomas (n = 15). Furthermore, we compared the proteomes of nevi cells with those of melanoma cells within the same specimens (nevus-associated melanoma (n = 14)). In total, we quantified 7935 proteins. Despite the genomic and clinical differences of the melanoma subtypes, our analysis revealed relatively similar proteomes, except for the upregulation of proteins involved in immune activation in nodular melanomas versus acral melanomas. Examining nevus-associated melanoma versus nevi, we found 1725 differentially expressed proteins (false discovery rate < 0.05). Among these proteins were 140 that overlapped with cancer hallmarks, tumor suppressors, and regulators of metabolism and cell cycle. Pathway analysis indicated aberrant activation of the phosphoinositide 3-kinase-protein kinase B-mTOR pathways and the Hippo-YAP pathway. Using a classifier, we identified six proteins capable of distinguishing melanoma from nevi samples. Our study represents a comprehensive comparative analysis of the proteome in melanoma subtypes and associated nevi, offering insights into the biological behavior of these distinct entities.
Collapse
Affiliation(s)
- Soraya Naimy
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Julie B K Sølberg
- Department of Dermatology and Allergy, Herlev and Gentofte Hospital, Copenhagen University Hospitals, Copenhagen, Denmark
| | - Dorota E Kuczek
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marianne Bengtson Løvendorf
- Department of Dermatology and Allergy, Herlev and Gentofte Hospital, Copenhagen University Hospitals, Copenhagen, Denmark; Leo Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Bzorek
- Department of Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Thomas Litman
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Mund
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Rachael A Clark
- Department of Dermatology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Matthias Mann
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Beatrice Dyring-Andersen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Dermatology and Allergy, Herlev and Gentofte Hospital, Copenhagen University Hospitals, Copenhagen, Denmark; Leo Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
7
|
Liu L, Wu J, Yan Y, Cheng S, Yu S, Wang Y. DERL2 (derlin 2) stabilizes BAG6 (BAG cochaperone 6) in chemotherapy resistance of cholangiocarcinoma. J Physiol Biochem 2024; 80:81-97. [PMID: 37815698 PMCID: PMC10810035 DOI: 10.1007/s13105-023-00986-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 09/12/2023] [Indexed: 10/11/2023]
Abstract
DERL2 (derlin 2) is a critical component of the endoplasmic reticulum quality control pathway system whose mutations play an important role in carcinogenesis, including cholangiocarcinoma (CHOL). However, its role and its underlying mechanism have yet to be elucidated. Herein, we revealed that DERL2 was highly expressed in CHOL and considered as an independent prognostic indicator for inferior survival in CHOL. DERL2 ectopically expressed in CHOL cells promoted cell proliferation and colony formation rates, and depleting DERL2 in CHOL cells curbed tumor growth in vitro and in vivo. More interestingly, the knockout of DERL2 augmented the growth-inhibitory effect of gemcitabine chemotherapy on CHOL cells by inducing cell apoptosis. Mechanistically, we discovered that DERL2 interacted with BAG6 (BAG cochaperone 6), thereby extending its half-life and reinforcing the oncogenic role of BAG6 in CHOL progression.
Collapse
Affiliation(s)
- Luzheng Liu
- Department of Interventional Radiology and Vascular Surgery, The Second Affiliated Hospital of Hainan Medical University, Hainan, 570311, China
| | - Jincai Wu
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan, 570311, China
| | - Yanggang Yan
- Department of Interventional Radiology and Vascular Surgery, The Second Affiliated Hospital of Hainan Medical University, Hainan, 570311, China
| | - Shoucai Cheng
- Department of Interventional Radiology and Vascular Surgery, The Second Affiliated Hospital of Hainan Medical University, Hainan, 570311, China
| | - Shuyong Yu
- Department of Gastrointestinal Surgery, Hainan Cancer Hospital, Hainan, 570312, China.
| | - Yong Wang
- Department of Interventional Radiology and Vascular Surgery, The Second Affiliated Hospital of Hainan Medical University, Hainan, 570311, China.
| |
Collapse
|
8
|
Rezaei S, Nikpanjeh N, Rezaee A, Gholami S, Hashemipour R, Biavarz N, Yousefi F, Tashakori A, Salmani F, Rajabi R, Khorrami R, Nabavi N, Ren J, Salimimoghadam S, Rashidi M, Zandieh MA, Hushmandi K, Wang Y. PI3K/Akt signaling in urological cancers: Tumorigenesis function, therapeutic potential, and therapy response regulation. Eur J Pharmacol 2023; 955:175909. [PMID: 37490949 DOI: 10.1016/j.ejphar.2023.175909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/01/2023] [Accepted: 07/11/2023] [Indexed: 07/27/2023]
Abstract
In addition to environmental conditions, lifestyle factors, and chemical exposure, aberrant gene expression and mutations involve in the beginning and development of urological tumors. Even in Western nations, urological malignancies are among the top causes of patient death, and their prevalence appears to be gender dependent. The prognosis for individuals with urological malignancies remains dismal and unfavorable due to the ineffectiveness of conventional treatment methods. PI3K/Akt is a popular biochemical mechanism that is activated in tumor cells as a result of PTEN loss. PI3K/Akt escalates growth and metastasis. Moreover, due to the increase in tumor cell viability caused by PI3K/Akt activation, cancer cells may acquire resistance to treatment. This review article examines the function of PI3K/Akt in major urological tumors including bladder, prostate, and renal tumors. In prostate, bladder, and kidney tumors, the level of PI3K and Akt are notably elevated. In addition, the activation of PI3K/Akt enhances the levels of Bcl-2 and XIAP, hence increasing the tumor cell survival rate. PI3K/Akt ] upregulates EMT pathways and matrix metalloproteinase expression to increase urological cancer metastasis. Furthermore, stimulation of PI3K/Akt results in drug- and radio-resistant cancers, but its suppression by anti-tumor drugs impedes the tumorigenesis.
Collapse
Affiliation(s)
- Sahar Rezaei
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Negin Nikpanjeh
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Aryan Rezaee
- Iran University of Medical Sciences, Tehran, Iran
| | - Sarah Gholami
- Young Researcher and Elite Club, Islamic Azad University, Babol Branch, Babol, Iran
| | - Reza Hashemipour
- Faculty of Veterinary Medicine, Islamic Azad University, Karaj Branch, Karaj, Iran
| | - Negin Biavarz
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Farnaz Yousefi
- Department of Clinical Science, Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Ali Tashakori
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Farshid Salmani
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada.
| |
Collapse
|
9
|
Zhang X, Wang G, Wang W, Ran C, Piao F, Ma Z, Zhang Z, Zheng G, Cao F, Xie H, Cui D, Samuel Okoye C, Yu X, Wang Z, Zhao D. Bone marrow mesenchymal stem cells paracrine TGF-β1 to mediate the biological activity of osteoblasts in bone repair. Cytokine 2023; 164:156139. [PMID: 36738525 DOI: 10.1016/j.cyto.2023.156139] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND Bone marrow mesenchymal stem cells (BMSCs) are an important source of seed cells for regenerative medicine and tissue engineering therapy. BMSCs have multiple differentiation potentials and can release paracrine factors to facilitate tissue repair. Although the role of the osteogenic differentiation of BMSCs has been fully confirmed, the function and mechanism of BMSC paracrine factors in bone repair are still largely unclear. This study aimed to determine the roles of transforming growth factor beta-1 (TGF-β1) produced by BMSCs in bone tissue repair. METHODS To confirm our hypothesis, we used a Transwell system to coculture hBMSCs and human osteoblast-like cells without contact, which could not only avoid the interference of the osteogenic differentiation of hBMSCs but also establish the cell-cell relationship between hBMSCs and human osteoblast-like cells and provide stable paracrine substances. In the transwell coculture system, alkaline phosphatase activity, mineralized nodule formation, cell migration and chemotaxis analysis assays were conducted. RESULTS Osteogenesis, migration and chemotaxis of osteoblast-like cells were regulated by BMSCs in a paracrine manner via the upregulation of osteogenic and migration-associated genes. A TGF-β receptor I inhibitor (LY3200882) significantly antagonized BMSC-induced biological activity and related gene expression in osteoblast-like cells. Interestingly, coculture with osteoblast-like cells significantly increased the production of TGF-β1 by BMSCs, and there was potential intercellular communication between BMSCs and osteoblast-like cells. CONCLUSIONS Our findings provide evidence that the biological mechanism of BMSC-produced TGF-β1 promotes bone regeneration and repair, providing a theoretical basis and new directions for the application of BMSC transplantation in the treatment of osteonecrosis and bone injury.
Collapse
Affiliation(s)
- Xiuzhi Zhang
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, China
| | - Guangkuo Wang
- Department of Orthopaedics, Huaihe Hospital of Henan University, Kaifeng, Henan 475000, China
| | - Weidan Wang
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, China.
| | - Chunxiao Ran
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, China
| | - Fengyuan Piao
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, China
| | - Zhijie Ma
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, China
| | - Zhaodong Zhang
- Department of Orthopaedics, Huaihe Hospital of Henan University, Kaifeng, Henan 475000, China
| | - Guoshuang Zheng
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, China
| | - Fang Cao
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, China
| | - Hui Xie
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, China
| | - Daping Cui
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, China
| | - Chukwuemeka Samuel Okoye
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, China
| | - Xiaoming Yu
- School of Material Science and Engineering, Shenyang Ligong University, Shenyang 110159, China
| | - Ziming Wang
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, China
| | - Dewei Zhao
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, China.
| |
Collapse
|
10
|
Zhang TM, Liao L, Yang SY, Huang MY, Zhang YL, Deng L, Hu SY, Yang F, Zhang FL, Shao ZM, Li DQ. TOLLIP-mediated autophagic degradation pathway links the VCP-TMEM63A-DERL1 signaling axis to triple-negative breast cancer progression. Autophagy 2023; 19:805-821. [PMID: 35920704 PMCID: PMC9980475 DOI: 10.1080/15548627.2022.2103992] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most challenging breast cancer subtype to treat due to the lack of effective targeted therapies. Transmembrane (TMEM) proteins represent attractive drug targets for cancer therapy, but biological functions of most members of the TMEM family remain unknown. Here, we report for the first time that TMEM63A (transmembrane protein 63A), a poorly characterized TMEM protein with unknown functions in human cancer, functions as a novel oncogene to promote TNBC cell proliferation, migration, and invasion in vitro and xenograft tumor growth and lung metastasis in vivo. Mechanistic investigations revealed that TMEM63A localizes in endoplasmic reticulum (ER) and lysosome membranes, and interacts with VCP (valosin-containing protein) and its cofactor DERL1 (derlin 1). Furthermore, TMEM63A undergoes autophagy receptor TOLLIP-mediated autophagic degradation and is stabilized by VCP through blocking its lysosomal degradation. Strikingly, TMEM63A in turn stabilizes oncoprotein DERL1 through preventing TOLLIP-mediated autophagic degradation. Notably, pharmacological inhibition of VCP by CB-5083 or knockdown of DERL1 partially abolishes the oncogenic effects of TMEM63A on TNBC progression both in vitro and in vivo. Collectively, these findings uncover a previously unknown functional and mechanistic role for TMEM63A in TNBC progression and provide a new clue for targeting TMEM63A-driven TNBC tumors by using a VCP inhibitor.Abbreviations: ATG16L1, autophagy related 16 like 1; ATG5, autophagy related 5; ATP5F1B/ATP5B, ATP synthase F1 subunit beta; Baf-A1, bafilomycin A1; CALCOCO2/NDP52, calcium binding and coiled-coil domain 2; CANX, calnexin; DERL1, derlin 1; EGFR, epidermal growth factor receptor; ER, endoplasmic reticulum; ERAD, endoplasmic reticulum-associated degradation; HSPA8, heat shock protein family A (Hsp70) member 8; IP, immunoprecipitation; LAMP2A, lysosomal associated membrane protein 2; NBR1, NBR1 autophagy cargo receptor; OPTN, optineurin; RT-qPCR, reverse transcription-quantitative PCR; SQSTM1/p62, sequestosome 1; TAX1BP1, Tax1 binding protein 1; TMEM63A, transmembrane protein 63A; TNBC, triple-negative breast cancer; TOLLIP, toll interacting protein; VCP, valosin containing protein.
Collapse
Affiliation(s)
- Tai-Mei Zhang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai Yangpu, China
| | - Li Liao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai Yangpu, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, Yangpu, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, Yangpu, China
| | - Shao-Ying Yang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai Yangpu, China
| | - Min-Ying Huang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai Yangpu, China
| | - Yin-Ling Zhang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai Yangpu, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, Yangpu, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, Yangpu, China
| | - Ling Deng
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai Yangpu, China
| | - Shu-Yuan Hu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai Yangpu, China
| | - Fan Yang
- Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai, Yangpu, China
| | - Fang-Lin Zhang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai Yangpu, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, Yangpu, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, Yangpu, China
| | - Zhi-Min Shao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai Yangpu, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, Yangpu, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, Yangpu, China.,Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai, Yangpu, China.,Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai, Yangpu, China.,Shanghai Key Laboratory of Radiation Oncology, Shanghai Medical College, Fudan University, Shanghai, Yangpu, China
| | - Da-Qiang Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai Yangpu, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, Yangpu, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, Yangpu, China.,Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai, Yangpu, China.,Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai, Yangpu, China.,Shanghai Key Laboratory of Radiation Oncology, Shanghai Medical College, Fudan University, Shanghai, Yangpu, China
| |
Collapse
|
11
|
Li F, Zheng Z, Chen W, Li D, Zhang H, Zhu Y, Mo Q, Zhao X, Fan Q, Deng F, Han C, Tan W. Regulation of cisplatin resistance in bladder cancer by epigenetic mechanisms. Drug Resist Updat 2023; 68:100938. [PMID: 36774746 DOI: 10.1016/j.drup.2023.100938] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Bladder cancer is one of the most common malignancies in the world. Cisplatin is one of the most potent and widely used anticancer drugs and has been employed in several malignancies. Cisplatin-based combination chemotherapies have become important adjuvant therapies for bladder cancer patients. Cisplatin-based treatment often results in the development of chemoresistance, leading to therapeutic failure and limiting its application and effectiveness in bladder cancer. To develop improved and more effective cancer therapy, research has been conducted to elucidate the underlying mechanism of cisplatin resistance. Epigenetic modifications have been demonstrated involved in drug resistance to chemotherapy, and epigenetic biomarkers, such as urine tumor DNA methylation assay, have been applied in patients screening or monitoring. Here, we provide a systematic description of epigenetic mechanisms, including DNA methylation, noncoding RNA regulation, m6A modification and posttranslational modifications, related to cisplatin resistance in bladder cancer.
Collapse
Affiliation(s)
- Fei Li
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zaosong Zheng
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wei Chen
- Department of Urology, Institute of Precision Medicine, Zigong Forth People's Hospital, Zigong, Sichuan, China
| | - Dongqing Li
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Henghui Zhang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuanchao Zhu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qixin Mo
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xinlei Zhao
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qin Fan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Fan Deng
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, China
| | - Conghui Han
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.
| | - Wanlong Tan
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
12
|
Long noncoding RNA TUG1 decreases bladder cancer chemo-sensitivity toward doxorubicin through elevating KPNA2 expression and activating the PI3K/AKT pathway via adsorbing miR-582-5p. Anticancer Drugs 2023; 34:144-154. [PMID: 36539367 DOI: 10.1097/cad.0000000000001393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Long noncoding RNA taurine-upregulated gene1 (TUG1) has been reported to be implicated in the chemo-resistance of bladder cancer. Hence, this study aimed to survey regulatory mechanism by which TUG1 regulates the chemo-resistance of bladder cancer cells to doxorubicin (DOX). Relative expression of TUG1, miR-582-5p, and karyopherin alpha 2 (KPNA2) was detected by qRT-PCR. The viability and proliferation of DOX-resistant bladder cancer cells were determined by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay. Protein levels were measured by western blot analysis. The apoptosis, migration, and invasion of DOX-resistant bladder cancer cells were determined by flow cytometry or transwell assays. The relationship between TUG1 or KPNA2 and miR-582-5p was verified by dual-luciferase reporter assay. TUG1 and KPNA2 were upregulated while miR-582-5p was downregulated in resistant bladder cancer tissues and cells. TUG1 inhibition elevated cell chemo-sensitivity, facilitated cell apoptosis, and curbed proliferation, migration, invasion, and autophagy of DOX-resistant bladder cancer cells. Also, TUG1 acted as a sponge for miR-582-5p, and miR-582-5p inhibitor reversed TUG1 knockdown-mediated influence on DOX chemo-sensitivity and malignant behaviors in DOX-resistant bladder cancer cells. Furthermore, miR-582-5p targeted KPNA2, and KPNA2 overexpression counteracted the inhibitory impact of miR-582-5p mimic on DOX chemo-resistance and malignant behaviors in DOX-resistant bladder cancer cells. Additionally, TUG1 silencing inactivated the PI3K/AKT pathway through sponging miR-582-5p. TUG1 sponged miR-582-5p to increase KPNA2 expression and activated the KPNA2/PI3K/AKT pathway, thereby elevating DOX chemo-resistance and malignant behaviors in bladder cancer cells.
Collapse
|
13
|
Tan S, Fu L, Dong Q. AATF is Overexpressed in Human Bladder Cancer and Regulates Chemo-Sensitivity Through Survivin. Onco Targets Ther 2022; 14:5493-5505. [PMID: 35002255 PMCID: PMC8721289 DOI: 10.2147/ott.s319734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 10/06/2021] [Indexed: 01/17/2023] Open
Abstract
Objective Dysregulation of apoptosis antagonizing transcription factor (AATF) has been reported to be closely associated with human cancers. However, its involvement in human bladder cancer (BC) remains unexplored. This study aimed to investigate the clinical significance and biological roles of AATF in human bladder cancers. Methods AATF protein expression was examined in 107 cases of bladder cancer tissues using immunohistochemistry. AATF plasmid transfection and small interfering RNA (siRNA) knockdown were performed in T24 and 5637 cell lines. CCK-8, colony formation, annexin V/PI, JC-1 staining, and Western blotting were carried out to investigate the biological roles and underlying mechanisms of AATF in bladder cancer cells. Results Our results showed that AATF expression was upregulated in human bladder cancer specimens and correlated with T stage. Analysis of the Oncomine database showed elevation of AATF mRNA in BC tissues. The Cancer Genome Atlas (TCGA) data suggested that high AATF expression correlated with poor patient survival. Western blotting showed that AATF protein expression was higher in BC cell lines compared to normal bladder transitional epithelial cell line SV-HUC-1. CCK-8 and colony assays showed that ectopic AATF expression upregulated cell growth rate and colony numbers. CCK-8, annexin V/propidium iodide (PI), JC-1 assays and Western blotting showed that AATF overexpression decreased cisplatin sensitivity, downregulated cisplatin-induced apoptosis and upregulated mitochondrial membrane potential, with decreased cytochrome c and cleaved-PARP expression. AATF siRNA knockdown showed the opposite effects. Mechanistically, AATF overexpression upregulated cyclin E and Survivin at both mRNA and protein levels. The decreased cisplatin sensitivity/apoptosis induced by ectopic AATF were reversed after treatment with Survivin inhibitor YM155. Conclusion Our results showed that AATF was overexpressed in human bladder cancers and promoted malignant behavior by regulating cyclin E and Survivin, indicating AATF could serve as a malignant biomarker and potential therapeutic target in BC.
Collapse
Affiliation(s)
- Shutao Tan
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Lin Fu
- Department of Pathology, College of Basic Medical Science, China Medical University and Department of Pathology, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Qianze Dong
- Department of Pathology, College of Basic Medical Science, China Medical University and Department of Pathology, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
14
|
Zhang Y, Bai X, Zhang Y, Li Y. Daam1 Overexpression Promotes Gastric Cancer Progression and Regulates ERK and AKT Signaling Pathways. Onco Targets Ther 2021; 14:4609-4619. [PMID: 34475767 PMCID: PMC8408046 DOI: 10.2147/ott.s316157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Objective The dishevelled-associated activator of morphogenesis 1 (DAAM1) has been reported to be closely associated with human cancers. However, its involvement in human gastric cancer (GC) remains largely unexplored. This study aimed to investigate the clinical significance and biological roles of Daam1 in human GC. Methods Daam1 protein expression was examined in 124 cases of gastric adenocarcinomas using immunohistochemistry. Daam1 plasmid and siRNA transfection were carried out in SGC7901 and AGS cell lines. CCK-8, colony formation, Annexin V/PI, JC-1 staining, and Western blotting were used to explore the biological functions and potential underlying mechanisms of Daam1 in GC cells. Results Our results showed that Daam1 was overexpressed in GC specimens. A high Daam1 level was associated with tumor-node-metastasis (TNM) stage, T status, nodal metastasis, and poor patient survival. Analysis of the Oncomine dataset revealed upregulation of Daam1 mRNA in GC tissues. Western blot showed that Daam1 protein expression was higher in GC cell lines compared to the normal GES-1 cell line. CCK-8 and colony formation assays showed that ectopic Daam1 expression upregulated the cell growth rate and colony number in SGC-7901 cells, while Daam1 siRNA knockdown downregulated the growth rate and colony number in AGS cells. CCK-8 and Annexin V/PI apoptosis assays demonstrated that Daam1 overexpression decreased cisplatin sensitivity and downregulated cisplatin-induced apoptosis. JC1 staining showed that Daam1 overexpression upregulated, while Daam1 depletion downregulated mitochondrial membrane potential. Mechanistically, Daam1 overexpression downregulated p21 and upregulated p-ERK and p-AKT. The increased proliferation rate and decreased cisplatin sensitivity/apoptosis induced by ectopic Daam1 were reversed after treatment with AKT and ERK inhibitors. Conclusion Taken together, our results showed that Daam1 overexpression was associated with poor prognosis and promoted malignant activity via regulation of ERK and AKT pathways in GC cells, indicating Daam1 is a malignant biomarker and potential therapeutic target in GC.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xue Bai
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yi Zhang
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yan Li
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
15
|
Fan L, Yang J, Shen C, Wu Z, Hu H. Circ_0030586 inhibits cell proliferation and stemness in bladder cancer by inactivating the ERK signaling via miR-665/NR4A3 axis. Acta Histochem 2021; 123:151745. [PMID: 34175686 DOI: 10.1016/j.acthis.2021.151745] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 10/21/2022]
Abstract
Increasing evidence reveals that circular RNAs (circRNAs) serve as oncogenes or tumor suppressors in the development of various tumors including bladder cancer (BCa). In this study, we explored the function and mechanism of circ_0030586 (also named circABCC4, ATP binding cassette subfamily C member 4) in BCa. The expression of circ_0030586 was significantly decreased in BCa tissues and cells, as suggested by RT-qPCR. The circular characteristics of circ_0030586 were verified by agarose gel electrophoresis and RNase R treatment. Colony formation, 5-Ethynyl-2'-deoxyuridine and sphere formation assays revealed that overexpression of circ_0030586 suppressed BCa cell proliferation and stemness in vitro. According to xenograft experiment, circ_0030586 overexpression suppressed tumor growth in vivo. Mechanistically, RNA pulldown and luciferase reporter assays were carried out to explore the interaction between genes. Circ_0030586 served as a competing endogenous RNA (ceRNA) for hsa-miR-665 to upregulate the expression of nuclear receptor subfamily 4 group A member 3 (NR4A3) which is a downstream target gene of miR-665 in BCa. MiR-665 exhibited high expression in BCa tissues and cells while NR4A3 expression was downregulated in BCa. MiR-665 overexpression or NR4A3 silencing reversed the suppressive effect of circ_0030586 overexpression on BCa cell proliferation and stemness. Moreover, western blot analysis revealed that circ_0030586 inactivated the extracellular signal-regulated kinase (ERK) pathway by upregulating NR4A3 expression. In conclusion, circ_0030586 inhibits BCa cell proliferation and stemness by serving as a ceRNA for miR-665 to upregulate NR4A3 expression and thus inactivate the ERK signaling.
Collapse
|
16
|
Nie Z, Chen M, Wen X, Gao Y, Huang D, Cao H, Peng Y, Guo N, Ni J, Zhang S. Endoplasmic Reticulum Stress and Tumor Microenvironment in Bladder Cancer: The Missing Link. Front Cell Dev Biol 2021; 9:683940. [PMID: 34136492 PMCID: PMC8201605 DOI: 10.3389/fcell.2021.683940] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023] Open
Abstract
Bladder cancer is a common malignant tumor of the urinary system. Despite recent advances in treatments such as local or systemic immunotherapy, chemotherapy, and radiotherapy, the high metastasis and recurrence rates, especially in muscle-invasive bladder cancer (MIBC), have led to the evaluation of more targeted and personalized approaches. A fundamental understanding of the tumorigenesis of bladder cancer along with the development of therapeutics to target processes and pathways implicated in bladder cancer has provided new avenues for the management of this disease. Accumulating evidence supports that the tumor microenvironment (TME) can be shaped by and reciprocally act on tumor cells, which reprograms and regulates tumor development, metastasis, and therapeutic responses. A hostile TME, caused by intrinsic tumor attributes (e.g., hypoxia, oxidative stress, and nutrient deprivation) or external stressors (e.g., chemotherapy and radiation), disrupts the normal synthesis and folding process of proteins in the endoplasmic reticulum (ER), culminating in a harmful situation called ER stress (ERS). ERS is a series of adaptive changes mediated by unfolded protein response (UPR), which is interwoven into a network that can ultimately mediate cell proliferation, apoptosis, and autophagy, thereby endowing tumor cells with more aggressive behaviors. Moreover, recent studies revealed that ERS could also impede the efficacy of anti-cancer treatment including immunotherapy by manipulating the TME. In this review, we discuss the relationship among bladder cancer, ERS, and TME; summarize the current research progress and challenges in overcoming therapeutic resistance; and explore the concept of targeting ERS to improve bladder cancer treatment outcomes.
Collapse
Affiliation(s)
- Zhenyu Nie
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Mei Chen
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Xiaohong Wen
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Yuanhui Gao
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Denggao Huang
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Hui Cao
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Yanling Peng
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Na Guo
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Jie Ni
- Cancer Care Center, St. George Hospital, Sydney, NSW, Australia.,St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Shufang Zhang
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| |
Collapse
|
17
|
Mutant Kras as a Biomarker Plays a Favorable Role in FL118-Induced Apoptosis, Reactive Oxygen Species (ROS) Production and Modulation of Survivin, Mcl-1 and XIAP in Human Bladder Cancer. Cancers (Basel) 2020; 12:cancers12113413. [PMID: 33217967 PMCID: PMC7698790 DOI: 10.3390/cancers12113413] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary FL118 is a novel orally available small molecule anticancer drug. We found that bladder cancer cells with a mutant Kras is highly sensitive to FL118-induced cell growth inhibition and cell death induction through inhibiting the anti-cancer cell death and drug resistance factors (survivin, Mcl-1, XIAP). In the Kras-mutation bladder cancer cells, FL118 can stimulate the reactive oxygen species (ROS) over-production for killing bladder cancer cells and inhibiting bladder cancer cell-established tumor growth. Elimination of mutant Kras by Kras-specific shRNA technology in mutant Kras-containing bladder cancer cell-established tumor decreased FL118 effectiveness to inhibit bladder cancer tumor growth. In this regard, mutant Kras is a potential favorable biomarker for FL118. This finding is significant because mutant Kras is known to be a formidable challenge treatment resistant factor in various types of cancer. Thus, FL118 could use mutant Kras as favorable biomarker for patient selection to carry out precision medicine. Abstract Tumor heterogeneity in key gene mutations in bladder cancer (BC) is a major hurdle for the development of effective treatments. Using molecular, cellular, proteomics and animal models, we demonstrated that FL118, an innovative small molecule, is highly effective at killing T24 and UMUC3 high-grade BC cells, which have Hras and Kras mutations, respectively. In contrast, HT1376 BC cells with wild-type Ras are insensitive to FL118. This concept was further demonstrated in additional BC and colorectal cancer cells with mutant Kras versus those with wild-type Kras. FL118 strongly induced PARP cleavage (apoptosis hallmark) and inhibited survivin, XIAP and/or Mcl-1 in both T24 and UMUC3 cells, but not in the HT1376 cells. Silencing mutant Kras reduced both FL118-induced PARP cleavage and downregulation of survivin, XIAP and Mcl-1 in UMUC3 cells, suggesting mutant Kras is required for FL118 to exhibit higher anticancer efficacy. FL118 increased reactive oxygen species (ROS) production in T24 and UMUC3 cells, but not in HT1376 cells. Silencing mutant Kras in UMUC3 cells reduced FL118-mediated ROS generation. Proteomics analysis revealed that a profound and opposing Kras-relevant signaling protein is changed in UMUC3 cells and not in HT1376 cells. Consistently, in vivo studies indicated that UMUC3 tumors are highly sensitive to FL118 treatment, while HT1376 tumors are highly resistant to this agent. Silencing mutant Kras in UMUC3 cell-derived tumors decreases UMUC3 tumor sensitivity to FL118 treatment. Together, our studies revealed that mutant Kras is a favorable biomarker for FL118 targeted treatment.
Collapse
|
18
|
Kandel RR, Neal SE. The role of rhomboid superfamily members in protein homeostasis: Mechanistic insight and physiological implications. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118793. [PMID: 32645330 PMCID: PMC7434706 DOI: 10.1016/j.bbamcr.2020.118793] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/30/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022]
Abstract
Cells are equipped with protein quality control pathways in order to maintain a healthy proteome; a process known as protein homeostasis. Dysfunction in protein homeostasis leads to the development of many diseases that are associated with proteinopathies. Recently, the rhomboid superfamily has attracted much attention concerning their involvement in protein homeostasis. While their functional role has become much clearer in the last few years, their systemic significance in mammals remains elusive. Here we delineate the current knowledge of rhomboids in protein quality control and how these functions are integrated at the organismal level.
Collapse
Affiliation(s)
- Rachel R Kandel
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, United States of America
| | - Sonya E Neal
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, United States of America.
| |
Collapse
|
19
|
Qin X, Denton WD, Huiting LN, Smith KS, Feng H. Unraveling the regulatory role of endoplasmic-reticulum-associated degradation in tumor immunity. Crit Rev Biochem Mol Biol 2020; 55:322-353. [PMID: 32633575 DOI: 10.1080/10409238.2020.1784085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During malignant transformation and cancer progression, tumor cells face both intrinsic and extrinsic stress, endoplasmic reticulum (ER) stress in particular. To survive and proliferate, tumor cells use multiple stress response pathways to mitigate ER stress, promoting disease aggression and treatment resistance. Among the stress response pathways is ER-associated degradation (ERAD), which consists of multiple components and steps working together to ensure protein quality and quantity. In addition to its established role in stress responses and tumor cell survival, ERAD has recently been shown to regulate tumor immunity. Here we summarize current knowledge on how ERAD promotes protein degradation, regulates immune cell development and function, participates in antigen presentation, exerts paradoxical roles on tumorigenesis and immunity, and thus impacts current cancer therapy. Collectively, ERAD is a critical protein homeostasis pathway intertwined with cancer development and tumor immunity. Of particular importance is the need to further unveil ERAD's enigmatic roles in tumor immunity to develop effective targeted and combination therapy for successful treatment of cancer.
Collapse
Affiliation(s)
- Xiaodan Qin
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, Center for Cancer Research, Boston University School of Medicine, Boston, MA, USA
| | - William D Denton
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, Center for Cancer Research, Boston University School of Medicine, Boston, MA, USA
| | - Leah N Huiting
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, Center for Cancer Research, Boston University School of Medicine, Boston, MA, USA
| | - Kaylee S Smith
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, Center for Cancer Research, Boston University School of Medicine, Boston, MA, USA
| | - Hui Feng
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, Center for Cancer Research, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
20
|
Fan J, Tian L, Huang S, Zhang J, Zhao B. Derlin-1 Promotes the Progression of Human Hepatocellular Carcinoma via the Activation of AKT Pathway. Onco Targets Ther 2020; 13:5407-5417. [PMID: 32606758 PMCID: PMC7295458 DOI: 10.2147/ott.s222895] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 05/16/2020] [Indexed: 11/23/2022] Open
Abstract
Introduction Hepatocellular carcinoma (HCC) is the third leading cause of cancer death worldwide. In the present research, we explored a new oncogene, derlin-1 (DERL1), and studied its role and mechanism in human HCC. Methods We assessed the expression and prognosis value of DERL1 in human HCC by using GEPIA dataset analysis and immunohistochemistry. To elucidate the specific function of DERL1, we suppressed its expression in two HCC cell lines, HuH7 and Hep3B, and overexpressed DERL1 in Hep3B cells. Cell proliferation and migration was detected by CCK8 and transwell assays. Cell flow cytometry was used to evaluate cell apoptosis. Results Our results demonstrated that DERL1 was highly expressed in HCC samples (n = 369) than in normal samples (n = 160). Similar results were obtained in 60 clinical samples that we collected from the local hospital. The high expression rate of DERL1 reached 78.3% (47/60). DERL1 overexpression samples were concentrated in patients with tumor diameters >5cm or lymph node metastases. Thus, we speculated that DERL1 operated as a tumor promotor in HCC, and its expression might be proposed as a predictor for tumor metastasis of human HCC. Interference of DERL1 markedly blocked cell proliferation and migration, and induced the apoptosis of HCC cells in vitro. Phosphorylation of Akt was significantly inhibited in cells transfected with DERL1 siRNA compared to their control cells in HuH7 and Hep3B cell lines. The opposite result was observed in the DERL1 overexpression cells. Conclusion Our findings prove that DERL1 promotes tumor progression via AKT pathway and provide a new potential target for the clinical treatment and diagnosis of human HCC.
Collapse
Affiliation(s)
- Jiye Fan
- Life Science of College, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China.,Department of Pharmacy, Hebei Chemical and Pharmaceutical College, Shijiazhuang, Hebei 050026, People's Republic of China
| | - Liying Tian
- Department of Pharmacy, Hebei Chemical and Pharmaceutical College, Shijiazhuang, Hebei 050026, People's Republic of China
| | - Shuhong Huang
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Science, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Jing Zhang
- Department of Pharmacy, Hebei Chemical and Pharmaceutical College, Shijiazhuang, Hebei 050026, People's Republic of China
| | - Baohua Zhao
- Life Science of College, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| |
Collapse
|
21
|
Liu Y, Xiong S, Liu S, Chen J, Yang H, Liu G, Li G. Analysis of Gene Expression in Bladder Cancer: Possible Involvement of Mitosis and Complement and Coagulation Cascades Signaling Pathway. J Comput Biol 2020; 27:987-998. [PMID: 31545079 DOI: 10.1089/cmb.2019.0237] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Ying Liu
- Key Laboratory of Southwest Rice Biology and Genetic Breeding, Ministry of Agriculture, Rice and Sorghum Research Institute, Sichuan Academy of Agricultural Sciences, Deyang City, P.R. China
| | - Shenghua Xiong
- Department of Anesthesia, Sichuan Province Transportation Hall Hospital, Chengdu City, P.R. China
| | - Shiying Liu
- Department of Medical Laboratory, The General Hospital of Western Theater Command, Chengdu City, P.R. China
| | - Jie Chen
- Department of Medical Laboratory, The General Hospital of Western Theater Command, Chengdu City, P.R. China
| | - Hao Yang
- Department of Medical Laboratory, People's Hospital of Deyang City, Deyang City, P.R. China
| | - Gang Liu
- Department of Medical Laboratory, The General Hospital of Western Theater Command, Chengdu City, P.R. China
| | - Gengmi Li
- Key Laboratory of Southwest Rice Biology and Genetic Breeding, Ministry of Agriculture, Rice and Sorghum Research Institute, Sichuan Academy of Agricultural Sciences, Deyang City, P.R. China
- Department of Medical Laboratory, The General Hospital of Western Theater Command, Chengdu City, P.R. China
| |
Collapse
|
22
|
Liu Y, Wang Z, Liu H, Wang X, Zhang Z, Xiao B, An B, Zhang J. Derlin-1 functions as a growth promoter in breast cancer. Biol Chem 2020; 401:377-387. [PMID: 31721721 DOI: 10.1515/hsz-2018-0442] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 10/08/2019] [Indexed: 12/31/2022]
Abstract
Breast cancer is one of the most common malignant tumors in women. Derlin-1 has been found to be overexpressed in several human cancers in addition to playing an important role in tumor processes; however, the expression patterns and functions of Derlin-1 in human breast cancer are not fully understood. In this study, we found that Derlin-1 overexpression was higher in breast cancer compared to normal samples through TCGA and GTEx database analyses. Kaplan-Meier plotter analysis showed that Derlin-1 was a predicting factor for patient prognosis. Derlin-1 expression was significantly up-regulated in breast cancer tissues (18/30, 60.00%) compared to corresponding paracancerous tissue (9/30, 30.00%, p < 0.05) as detected by immunohistochemistry, and the expression of Derlin-1 was correlated to pathological grading. siRNA interference of Derlin-1 inhibited cell proliferation, which is associated with the promotion of apoptosis and migration. Derlin-1 knockdown suppressed the protein levels of p-AKT and Cyclin D1 while up-regulating Caspase3 and Bax. GEPIA database analysis showed that MTDH and ATAD2 were downstream target genes, and the expression of MTDH and was suppressed in Derlin-1 knockdown cells. Taken together, our results demonstrated ATAD2 that Derlin-1 is overexpressed in breast cancer and promoted a malignant phenotype through the AKT signaling pathway.
Collapse
Affiliation(s)
- Yansong Liu
- Department of Breast Surgery, Shandong Cancer Hospital, 440 Jiyan Road, Jinan 250000, Shandong, China
| | - Ziming Wang
- Department of Breast Surgery, The Second Children and Women's Healthcare of Jinan City, 12 Fengcheng West Road, Laiwu District, Jinan 271100, Shandong, China
| | - Handong Liu
- Department of Breast Surgery, Jinan Integrated Traditional Chinese and Western Medicine Hospital, 8 Wanyuan East Road, Laiwu District, Jinan 271100, Shandong, China
| | - Xin Wang
- Department of General Surgery, Yinan People's Hospital, 50 Lishan Road, Yinan 276300, Shandong, China
| | - Zhonghua Zhang
- Department of General Surgery, Dongping Country People's Hospital, Dongping, Shandong, China
| | - Bin Xiao
- Department of Breast, Shanxian Hygeia Hospital, West Lake Road, Shanxian 274300, Shandong, China
| | - Baoming An
- Department of General Surgery, Wulian People's Hospital, 50 Limin Road, Wulian 262300, Shandong, China
| | - Jun Zhang
- Department of Breast, Zhangqiu Hospital of Chinese Medicine, 1463 Mingshui Road, Zhangqiu District, Jinan 250200, Shandong, China
| |
Collapse
|
23
|
Zeng J, Tian Q, Zeng Z, Cai J, Ye M, Liu Y, Liu A. Derlin-1 exhibits oncogenic activities and indicates an unfavorable prognosis in breast cancer. Cell Biol Int 2019; 44:593-602. [PMID: 31670413 DOI: 10.1002/cbin.11259] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/26/2019] [Indexed: 01/22/2023]
Abstract
Derlin-1 is involved in the elimination of misfolded proteins and has been implicated in the progression of human cancers. However, its prognostic value and biological function in breast cancer remain unknown. Here, we show that Derlin-1 is overexpressed in breast cancer and exhibits oncogenic activities via interaction with UBE2C. Increased expression of Derlin-1 is correlated with lymph node metastasis, advanced clinical stage, and unfavorable overall survival in two cohorts containing over 1,000 patients. Multivariate analyses by the Cox regression model suggest Derlin-1 is an independent factor for poor prognosis. In vitro experiments demonstrate that Derlin-1 expression is transcriptionally upregulated by c-Myc. Ectopic expression of Derlin-1 promotes breast cancer cell proliferation and migration, whereas the knockdown of Derlin-1 results in the opposite phenotypes. Mechanistically, Derlin-1 directly binds to UBE2C to increase the phosphorylation of AKT and ERK. The treatment of UBE2C siRNA markedly attenuates Derlin-1-mediated cell growth and migration. Collectively, our data suggest Derlin-1 is a potential prognostic factor and functions as an oncogene in breast cancer.
Collapse
Affiliation(s)
- Jinsheng Zeng
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Jiangxi, 330006, China
| | - Qiuhong Tian
- Department of Oncology, The First Affiliated Hospital of Nanchang University, 330006, Jiangxi, China
| | - Zhimin Zeng
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, 330006, Jiangxi, China
| | - Jing Cai
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, 330006, Jiangxi, China
| | - Meiyu Ye
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Jiangxi, 330006, China
| | - Yaxiong Liu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Jiangxi, 330006, China
| | - Anwen Liu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, 330006, Jiangxi, China
| |
Collapse
|
24
|
Shao X, Lv N, Liao J, Long J, Xue R, Ai N, Xu D, Fan X. Copy number variation is highly correlated with differential gene expression: a pan-cancer study. BMC MEDICAL GENETICS 2019; 20:175. [PMID: 31706287 PMCID: PMC6842483 DOI: 10.1186/s12881-019-0909-5] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 10/15/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Cancer is a heterogeneous disease with many genetic variations. Lines of evidence have shown copy number variations (CNVs) of certain genes are involved in development and progression of many cancers through the alterations of their gene expression levels on individual or several cancer types. However, it is not quite clear whether the correlation will be a general phenomenon across multiple cancer types. METHODS In this study we applied a bioinformatics approach integrating CNV and differential gene expression mathematically across 1025 cell lines and 9159 patient samples to detect their potential relationship. RESULTS Our results showed there is a close correlation between CNV and differential gene expression and the copy number displayed a positive linear influence on gene expression for the majority of genes, indicating that genetic variation generated a direct effect on gene transcriptional level. Another independent dataset is utilized to revalidate the relationship between copy number and expression level. Further analysis show genes with general positive linear influence on gene expression are clustered in certain disease-related pathways, which suggests the involvement of CNV in pathophysiology of diseases. CONCLUSIONS This study shows the close correlation between CNV and differential gene expression revealing the qualitative relationship between genetic variation and its downstream effect, especially for oncogenes and tumor suppressor genes. It is of a critical importance to elucidate the relationship between copy number variation and gene expression for prevention, diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Xin Shao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ning Lv
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jie Liao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jinbo Long
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Rui Xue
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ni Ai
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Donghang Xu
- Department of Pharmacy, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| | - Xiaohui Fan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
25
|
Zhang Z, Zhang X, Zhao D, Liu B, Wang B, Yu W, Li J, Yu X, Cao F, Zheng G, Zhang Y, Liu Y. TGF‑β1 promotes the osteoinduction of human osteoblasts via the PI3K/AKT/mTOR/S6K1 signalling pathway. Mol Med Rep 2019; 19:3505-3518. [PMID: 30896852 PMCID: PMC6471541 DOI: 10.3892/mmr.2019.10051] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 03/06/2019] [Indexed: 12/22/2022] Open
Abstract
Transforming growth factor β1 (TGF-β1) has been suggested to be a candidate cytokine in the field of bone tissue engineering. Cytokines serve important roles in tissue engineering, particularly in the repair of bone damage; however, the underlying molecular mechanisms remain unclear. In the present study, the effects of TGF-β1 on the osteogenesis and motility of hFOB1.19 human osteoblasts were demonstrated via the phenotype and gene expression of cells. Additionally, the role of the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin/S6 kinase 1 (PI3K/AKT/mTOR/S6K1) signalling pathway in the effects of TGF-β1 on osteoblasts was investigated. It was demonstrated using Cell Counting Kit-8 and flow cytometry assays that the proliferation of human osteoblasts was promoted by 1 ng/ml TGF-β1. In addition, alkaline phosphatase activity, Alizarin red staining, scratch-wound and Transwell assays were conducted. It was revealed that osteogenesis and the migration of cells were regulated by TGF-β1 via the upregulation of osteogenic and migration-associated genes. Alterations in the expression of osteogenesis- and migration-associated genes were evaluated following pre-treatment with a PI3K/AKT inhibitor (LY294002) and an mTOR/S6K1 inhibitor (rapamycin), with or without TGF-β1. The results indicated that TGF-β1 affected the osteogenesis and mineralisation of osteoblasts via the PI3K/AKT signalling pathway. Furthermore, TGF-β1 exhibited effects on mTOR/S6K1 downstream of PI3K/AKT. The present study demonstrated that TGF-β1 promoted the proliferation, differentiation and migration of human hFOB1.19 osteoblasts, and revealed that TGF-β1 affected the biological activity of osteoblasts via the PI3K/AKT/mTOR/S6K1 signalling pathway. Our findings may provide novel insight to aid the development of bone tissue engineering methods for the treatment of bone injury.
Collapse
Affiliation(s)
- Zhaodong Zhang
- Department of Orthopaedics, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Xiuzhi Zhang
- Department of Orthopaedics, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Dewei Zhao
- Department of Orthopaedics, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Baoyi Liu
- Department of Orthopaedics, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Benjie Wang
- Department of Orthopaedics, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Weiting Yu
- Department of Orthopaedics, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Junlei Li
- Department of Orthopaedics, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Xiaobing Yu
- Department of Orthopaedics, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Fang Cao
- Department of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, P.R. China
| | - Guoshuang Zheng
- Department of Orthopaedics, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Yao Zhang
- Department of Orthopaedics, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Yupeng Liu
- Department of Orthopaedics, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| |
Collapse
|
26
|
Li L, Liu M, Zhang Z, Zhang W, Liu N, Sheng X, Wei P. Derlin1 functions as an oncogene in cervical cancer via AKT/mTOR signaling pathway. Biol Res 2019; 52:8. [PMID: 30808417 PMCID: PMC6391802 DOI: 10.1186/s40659-019-0215-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/01/2019] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Cervical cancer (CC) ranks third in the morbidity and mortality of female cancer around the world. Derlin1 has been found to be overexpressed in several human cancers. However, it is still unclear about its roles in CC. The research aims to explore the relationship between Derlin1 and CC. METHODS We purchased a human CC tissues microarray, which contained CC tissues and corresponding para-cancerous tissues from 93 patients with primary cervical squamous cell carcinoma. Immunohistochemical staining was used to confirm the expression of Derlin1 in these tissues. And we detected the differential expression of Derlin1 in cervical cancer cell lines and normal cervical epithelial cells (H8). Further, the cervical cancer cell lines SiHa and C33A were used as an in vitro model, which was down-regulated the expression of Derlin1 using siRNA interference technology. The effects of Derlin1 down-regulating in CC cell lines on cell proliferation and migration were detected by CCK8 assay and transwell assay, respectively. The effect of Derlin1 down-regulating on apoptosis was analyzed by flow cytometry, and apoptosis-related proteins were detected using western blotting. In-depth mechanisms were studied using western blotting. In addition, the effects of Derlin1 up-regulating in normal cervical epithelial cells also were exposed. RESULTS Derlin1 was significantly elevated in CC tissues (81.7%, 76/93), and the expression of Derlin1 was positively correlated with the tumor size, pathological grade, and lymph node metastasis in CC patients. And Derlin1 was high expressed in cervical cancer cell lines compared to H8 cells. Knockdown of Derlin1 in cervical cancer cell lines inhibited cell proliferation and migration. Moreover, knockdown of Derlin1 induced apoptosis and affected the expression of apoptosis-related proteins, including Bcl-2, Bax, Bim, caspase3 and caspase9. Further experiments showed that AKT/mTOR signal pathway might be involve in this processes that knockdown of Derlin1 inhibited the expression of p-AKT and p-mTOR. Over-expression of Derlin1 in H8 cells promoted cell proliferation and migration via up-regulated the expression of p-AKT and p-mTOR. CONCLUSION Derlin1 is an oncogene in CC via AKT/mTOR pathway. It might be a potential therapeutic target for CC.
Collapse
Affiliation(s)
- Ling Li
- Department of Oncology, People's Hospital of Tengzhou City, Tengzhou, 277599, Shandong, China
| | - Ming Liu
- Department of Gynecologic Oncology, Shandong Tumor Hospital and Institute, No. 440, Yan Ji Road, Jinan, 250117, Shandong, China
| | - Zhihu Zhang
- Shandong Academy of Occupational Health and Medicine, Jinan, 250062, Shandong, China
| | - Wei Zhang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Binzhou Medical College, Binzhou, Shandong, China
| | - Naifu Liu
- Department of Gynecologic Oncology, Shandong Tumor Hospital and Institute, No. 440, Yan Ji Road, Jinan, 250117, Shandong, China
| | - Xiugui Sheng
- Department of Gynecologic Oncology, Tumor Hospital of Chinese Academy of Medical Sciences, Shenzhen, 518116, China
| | - Ping Wei
- Department of Gynecologic Oncology, Shandong Tumor Hospital and Institute, No. 440, Yan Ji Road, Jinan, 250117, Shandong, China.
| |
Collapse
|
27
|
Zhou J, Xiang AZ, Guo JF, Cui HD. miR-30b suppresses the progression of breast cancer through inhibition of the PI3K/Akt signaling pathway by targeting Derlin-1. Transl Cancer Res 2019; 8:180-190. [PMID: 35116747 PMCID: PMC8798179 DOI: 10.21037/tcr.2019.01.21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 12/21/2018] [Indexed: 11/09/2022]
Abstract
Background MicroRNAs (miRNAs) play an essential role in the initiation, progression and metastasis of breast cancer. It has been confirmed that miR-30b is involved in various cancers. However, the specific involvement of miR-30b on breast cancer metastasis remains unknown. In the current study, we aimed to investigate the role of miR-30b in the progression and metastasis of breast cancer in vitro. Methods We up-regulated the expression of miR-30b in breast cancer cell lines SKBR3 and MDA-MB-231 by transfecting pCMV-miR-30b vector. CCK8, colony formation, Transwell, and flow cytometry assays were used to examine cell proliferation, migration, invasion and apoptosis, respectively. A dual-luciferase reporter assay was performed to identify the relationship between miR-30b and the target gene. Western blot assay was used to detect related proteins. Results Our data showed that the overexpression of miR-30b significantly inhibited proliferation, migration and invasion abilities in SKBR3 and MDA-MB-231 cells. Meanwhile, overexpression of miR-30b induced cell apoptosis for both SKBR3 and MDA-MB-231 cells by regulating the expression of apoptosis-related proteins (Bcl-2, Bax, active Caspase-3, and Caspase-9). Moreover, miR-30b inhibited the activation of the PI3K/Akt signaling pathway by decreasing the phosphorylation levels of Akt and mTOR. Furthermore, we determined that miR-30b could down-regulate the expression of Derlin-1 in a post-transcriptional manner by employing the dual-luciferase reporter and western blot assays. Further analysis demonstrated that depletion of Derlin-1 inhibited Akt phosphorylation, and Derlin-1 could restore the effect of miR-30b on Akt. In addition, the CCK8 assay showed that Derlin-1 could partly reverse the inhibition of cell proliferation of SKBR3 and MDA-MB-231 cells mediated by miR-30b. Conclusions Our data demonstrated that miR-30b suppresses the progression and metastasis of breast cancer via inhibition of the PI3K/Akt signaling pathway by targeting Derlin-1 in vitro. This suggests that miR-30b might be a novel potent target for breast cancer therapy.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Ai-Zhai Xiang
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Ju-Feng Guo
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Hai-Dong Cui
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| |
Collapse
|
28
|
Guo X, Huang H, Jin H, Xu J, Risal S, Li J, Li X, Yan H, Zeng X, Xue L, Chen C, Huang C. ISO, via Upregulating MiR-137 Transcription, Inhibits GSK3β-HSP70-MMP-2 Axis, Resulting in Attenuating Urothelial Cancer Invasion. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 12:337-349. [PMID: 30195772 PMCID: PMC6037888 DOI: 10.1016/j.omtn.2018.05.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 05/02/2018] [Accepted: 05/20/2018] [Indexed: 01/23/2023]
Abstract
Our most recent studies demonstrate that miR-137 is downregulated in human bladder cancer (BC) tissues, while treatment of human BC cells with isorhapontigenin (ISO) elevates miR-137 abundance. Since ISO showed a strong inhibition of invasive BC formation in the N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN)-induced invasive BC mouse model, the elucidation of a potential biological effect of miR-137 on antagonizing BC invasion and molecular mechanisms underlying ISO upregulation of miR-137 are very important. Here we discovered that ectopic expression of miR-137 led to specific inhibition of BC invasion in human high-grade BC T24T and UMUC3 cells, while miR-137 deletion promoted the invasion of both cells, indicating the inhibitory effect of miR-137 on human BC invasion. Mechanistic studies revealed that ISO treatment induced miR-137 transcription by promoting c-Jun phosphorylation and, in turn, abolishing matrix metalloproteinase-2 (MMP-2) abundance and invasion in BC cells. Moreover, miR-137 was able to directly bind to the 3' UTR of Glycogen synthase kinase-3β (GSK3β) mRNA and inhibit GSK3β protein translation, consequently leading to a reduction of heat shock protein-70 (HSP70) translation via targeting the mTOR/S6 axis. Collectively, our studies discover an unknown function of miR-137, directly targeting the 3' UTR of GSK3β mRNA and, thereby, inhibiting GSK3β protein translation, mTOR/S6 activation, and HSP70 protein translation and, consequently, attenuating HSP70-mediated MMP-2 expression and invasion in human BC cells. These novel discoveries provide a deep insight into understanding the biomedical significance of miR-137 downregulation in invasive human BCs and the anti-cancer effect of ISO treatment on mouse invasive BC formation.
Collapse
Affiliation(s)
- Xirui Guo
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA; School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Haishan Huang
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Honglei Jin
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA; School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jiheng Xu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA; School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Sanjiv Risal
- The Center of Drug Discovery, Northeastern University, Boston, MA 02115, USA
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Xin Li
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Huiying Yan
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xingruo Zeng
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Lei Xue
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Changyan Chen
- The Center of Drug Discovery, Northeastern University, Boston, MA 02115, USA
| | - Chuanshu Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA.
| |
Collapse
|
29
|
Wang D, Yang S, Wang H, Wang J, Zhang Q, Zhou S, He Y, Zhang H, Deng F, Xu H, Zhong S, Fu L, Tang J. The progress of circular RNAs in various tumors. Am J Transl Res 2018; 10:1571-1582. [PMID: 30018701 PMCID: PMC6038087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 04/06/2018] [Indexed: 06/08/2023]
Abstract
Circular RNAs (circRNAs), a novel type of non-coding RNAs, presented as covalently closed continuous loops. Recent researches had found that circRNAs could function as microRNA sponges, regulators of gene transcription and encoding proteins. They were relatively stable and expressed widely in cytoplasm, which played important roles in carcinogenesis of cancers, such as esophageal cancer, gastric cancer, colorectal cancer, hepatocarcinoma, bladder cancer, glioma, breast cancer, osteosarcoma and so on. Furthermore, they were involved in many biological functions, like cell proliferation, drug resistance, cell cycle, invasion and metastasis. Therefore, the further studies were meaningful on the mechanism of cancers and circRNAs. In the review, we will summarize the current biogenesis of circRNAs and the roles of them in various cancers, which might be a novel biomarker and therapeutic avenue.
Collapse
Affiliation(s)
- Dandan Wang
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical UniversityNanjing 210029, China
| | - Sujin Yang
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical UniversityNanjing 210029, China
| | - Hui Wang
- Jiangsu Jiankang Vocational CollegeNanjing 210000, China
| | - Jinyan Wang
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical UniversityNanjing 210029, China
| | - Qian Zhang
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical UniversityNanjing 210029, China
| | - Siying Zhou
- The First Clinical Medical College, Nanjing University of Traditional Chinese MedicineNanjing 210023, China
| | - Yunjie He
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical UniversityNanjing 210029, China
| | - Heda Zhang
- Department of General Surgery, Southeast University Medical SchoolNanjing 210009, China
| | - Fei Deng
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical UniversityNanjing 210029, China
| | - Hanzi Xu
- Department of Radiation Oncology, Jiangsu Cancer Hospital Affiliated to Nanjing Medical UniversityNanjing 210009, China
| | - Shanliang Zhong
- Center of Clinical Laboratory Science, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical UniversityNanjing 210009, China
| | - Li Fu
- Department of Breast Cancer Pathology and Research Laboratory, Key Laboratory of Breast Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and HospitalTianjin, China
| | - Jinhai Tang
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical UniversityNanjing 210029, China
| |
Collapse
|
30
|
Luo KW, Lung WY, Chun-Xie, Luo XL, Huang WR. EGCG inhibited bladder cancer T24 and 5637 cell proliferation and migration via PI3K/AKT pathway. Oncotarget 2018; 9:12261-12272. [PMID: 29552308 PMCID: PMC5844744 DOI: 10.18632/oncotarget.24301] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/13/2017] [Indexed: 12/31/2022] Open
Abstract
Epigallocatechin-3-gallate (EGCG), the bioactive polyphenol in green tea, has been demonstrated to have various biological activities. We previously found that EGCG inhibited SW780 tumor growth by down-regulation of NF-κB and MMP-9. This study demonstrated that EGCG inhibited bladder cancer T24 and 5637 cell proliferation and migration via PI3K/AKT pathway, without modulation of NF-κB. Our results showed that treatment of EGCG resulted in significant inhibition of cell proliferation by induction of apoptosis, without obvious toxicity to normal bladder SV-HUC-1 cells. EGCG also inhibited 5637 and T24 cell migration and invasion at 25-100 μM. Western blot confirmed that EGCG induced apoptosis in T24 and 5637cells by activation of caspases-3 and PARP. Besides, EGCG up-regulated PTEN and decreased the expression of phosphorylated PI3K, AKT in both T24 and 5637 cells. In addition, animal study demonstrated that EGCG (100 mg/kg, i.p. injected daily for 4 weeks) decreased the tumor weight in mice bearing T24 tumors by 51.2%, as compared with the untreated control. EGCG also decreased the expression of phosphorylated PI3K and AKT in tumor, indicating the important role of PI3K/AKT in EGCG inhibited tumor growth. When AKT was inhibited, EGCG showed no obvious effect in cell migration in T24 and 5637 cells. In conclusion, our study elucidated that EGCG was effective in inhibition of T24 and 5637 cell proliferation and migration, and presented evidence that EGCG inhibited cell proliferation and tumor growth by modulation of PI3K/AKT pathway.
Collapse
Affiliation(s)
- Ke-Wang Luo
- Key Laboratory, People's Hospital of Longhua, Shenzhen, China.,Key Laboratory of Medical Programming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Wing-Yin Lung
- Key Laboratory of Medical Programming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Chun-Xie
- Key Laboratory, People's Hospital of Longhua, Shenzhen, China
| | - Xin-Le Luo
- Key Laboratory, People's Hospital of Longhua, Shenzhen, China
| | - Wei-Ren Huang
- Key Laboratory of Medical Programming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
31
|
Li Z, Zhang TB, Jia DH, Sun WQ, Wang CL, Gu AZ, Yang XM. Genipin inhibits the growth of human bladder cancer cells via inactivation of PI3K/Akt signaling. Oncol Lett 2017; 15:2619-2624. [PMID: 29434982 DOI: 10.3892/ol.2017.7588] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 05/23/2017] [Indexed: 01/02/2023] Open
Abstract
Genipin, a natural compound derived from the fruit of Gardenia jasminoides, possesses numerous biological properties. The aim of the present study was to investigate the anticancer effects of genipin in human bladder cancer. T24 and 5637 bladder cancer cells were treated with different concentrations of genipin (0-200 µM) and tested for cell viability, colony formation, cell cycle progression and apoptosis. A xenograft model of bladder cancer was established to determine the anticancer effect of genipin in vivo. The involvement of the phosphoinositide-3 kinase (PI3K)/Akt pathway in the action of genipin was examined. Genipin treatment significantly inhibited the viability and clonogenic growth of bladder cancer cells and inhibited the growth of T24 xenograft tumors, compared with vehicle controls (P<0.05). Genipin-treated cells exhibited a cell cycle arrest at the G0/G1-phase, which was accompanied by a deregulation of numerous cell cycle regulators. Genipin-treated cells demonstrated a significant increase in the percentage of apoptotic cells, loss of mitochondrial membrane potential, Bax translocation to the mitochondria and the release of cytochrome c to the cytosol. Additionally, genipin treatment significantly (P<0.05) reduced the phosphorylation levels of PI3K and Akt in bladder cancer cells. Importantly, genipin-mediated anticancer effects were reversed by the overexpression of constitutively active Akt. In conclusion, to the best of our knowledge, the present study demonstrates for the first time the growth inhibitory effects of genipin in bladder cancer cells, and indicates its potential as a natural anticancer agent for bladder cancer.
Collapse
Affiliation(s)
- Zheng Li
- Department of Urology, Nanyang City Center Hospital, Nanyang, Henan 473009, P.R. China
| | - Tian-Biao Zhang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Dong-Hui Jia
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Wen-Qi Sun
- Department of Urology, Nanyang City Center Hospital, Nanyang, Henan 473009, P.R. China
| | - Chao-Liang Wang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Ao-Zheng Gu
- Department of Urology, Nanyang City Center Hospital, Nanyang, Henan 473009, P.R. China
| | - Xiao-Ming Yang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| |
Collapse
|
32
|
The long non-coding RNA CRNDE acts as a ceRNA and promotes glioma malignancy by preventing miR-136-5p-mediated downregulation of Bcl-2 and Wnt2. Oncotarget 2017; 8:88163-88178. [PMID: 29152149 PMCID: PMC5675701 DOI: 10.18632/oncotarget.21513] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/08/2017] [Indexed: 11/25/2022] Open
Abstract
The colorectal neoplasia differentially expressed (CRNDE) gene encodes a long non-coding RNA (lncRNA) that is the most unregulated among 129 lncRNAs differentially expressed in gliomas. In this study, we confirmed high CRNDE expression in clinical glioma specimens and observed through experiments in human glioma cell lines a novel molecular mechanism by which CRNDE may contribute to glioma pathogenesis. By inducing or silencing CRNDE expression, we detected a positive correlation between CRNDE levels and the proliferative, migratory, and invasive capacities of glioma cells, which were concomitant with a decreased apoptosis rate. Our experiments also suggest that these effects are mediated by downregulation of miR-136-5p, which correlated with the glioma WHO grade. Based on predicted CRNDE/miR-136-5p/mRNA interactions, both the mRNA and protein expression analyses suggested that miR-136-5p-mediated repression of Bcl-2 and Wnt2 underlies the pro-tumoral actions of CRNDE. We therefore propose that CRNDE functions as a competing endogenous RNA (ceRNA) that binds to and negatively regulates miR-136-5p, thereby protecting Bcl-2 and Wnt2 from miR-136-5p-mediated inhibition in glioma.
Collapse
|
33
|
Zheng HC. The molecular mechanisms of chemoresistance in cancers. Oncotarget 2017; 8:59950-59964. [PMID: 28938696 PMCID: PMC5601792 DOI: 10.18632/oncotarget.19048] [Citation(s) in RCA: 455] [Impact Index Per Article: 56.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/24/2017] [Indexed: 12/11/2022] Open
Abstract
Overcoming intrinsic and acquired drug resistance is a major challenge in treating cancer patients because chemoresistance causes recurrence, cancer dissemination and death. This review summarizes numerous molecular aspects of multi-resistance, including transporter pumps, oncogenes (EGFR, PI3K/Akt, Erk and NF-κB), tumor suppressor gene (p53), mitochondrial alteration, DNA repair, autophagy, epithelial-mesenchymal transition (EMT), cancer stemness, and exosome. The chemoresistance-related proteins are localized to extracellular ligand, membrane receptor, cytosolic signal messenger, and nuclear transcription factors for various events, including proliferation, apoptosis, EMT, autophagy and exosome. Their cross-talk frequently appears, such as the regulatory effects of EGFR-Akt-NF-κB signal pathway on the transcription of Bcl-2, Bcl-xL and survivin or EMT-related stemness. It is essential for the realization of the target, individualized and combine therapy to clarify these molecular mechanisms, explore the therapy target, screen chemosensitive population, and determine the efficacy of chemoreagents by cell culture and orthotopic model.
Collapse
Affiliation(s)
- Hua-Chuan Zheng
- Department of Experimental Oncology and Animal Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|