1
|
Jobu Y, Nishigawa M, Furihata K, Furihata M, Uchida K, Taniuchi K. Inhibitory effects of the combination of rapamycin with gemcitabine plus paclitaxel on the growth of pancreatic cancer tumors. Hum Cell 2025; 38:44. [PMID: 39794664 PMCID: PMC11723851 DOI: 10.1007/s13577-024-01165-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/16/2024] [Indexed: 01/13/2025]
Abstract
We previously examined the antitumor effects of short interfering RNA nanoparticles targeting mammalian target of rapamycin (mTOR) in an orthotopic pancreatic cancer mouse model. We herein report the inhibitory effects of the mTOR inhibitor rapamycin on tumor growth in a novel established mouse model of pancreatic cancer using human pancreatic cancer cell line-derived organoids. Gemcitabine, 5-fluorouracil, and gemcitabine plus nab-paclitaxel are clinically used to treat advanced pancreatic cancer. In vitro assays showed that rapamycin strongly inhibited cell invasion, while gemcitabine, 5-fluorouracil, and gemcitabine plus paclitaxel primarily inhibited cell proliferation with minimal effects on invasion. In vivo mouse experiments demonstrated that rapamycin exhibited superior antitumor activity to S-1 (a metabolically activated prodrug of 5-fluorouracil) and another mTOR inhibitor, everolimus, while its efficacy was similar to that of gemcitabine plus paclitaxel (which was used instead of nab-paclitaxel due to concerns about allergic reactions in mice to human albumin) in a mouse model of pancreatic cancer using human pancreatic cancer cell line-derived organoids. Furthermore, the combination of rapamycin with gemcitabine plus paclitaxel exerted synergistic inhibitory effects on the growth of pancreatic cancer tumors. Although the inhibition of tumor growth was significantly stronger in everolimus-treated mice than in control mice, there were no additive anti-growth effects when combined with gemcitabine plus paclitaxel. The present results suggest that the combination of rapamycin with gemcitabine plus paclitaxel achieved the greatest reduction in tumor volumes in the mouse xenograft model and, thus, has significant clinical promise.
Collapse
Affiliation(s)
- Yuri Jobu
- Department of Gastroenterology and Hepatology, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi, 783-8505, Japan
| | - Miki Nishigawa
- Department of Gastroenterology and Hepatology, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi, 783-8505, Japan
| | - Kaoru Furihata
- Department of Pathology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Mutsuo Furihata
- Department of Pathology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Kazushige Uchida
- Department of Gastroenterology and Hepatology, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi, 783-8505, Japan
| | - Keisuke Taniuchi
- Department of Gastroenterology and Hepatology, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi, 783-8505, Japan.
| |
Collapse
|
2
|
Chen R, Wu J, Che Y, Jiao Y, Sun H, Zhao Y, Chen P, Meng L, Zhao T. Machine learning-driven prognostic analysis of cuproptosis and disulfidptosis-related lncRNAs in clear cell renal cell carcinoma: a step towards precision oncology. Eur J Med Res 2024; 29:176. [PMID: 38491523 PMCID: PMC10943875 DOI: 10.1186/s40001-024-01763-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/01/2024] [Indexed: 03/18/2024] Open
Abstract
Cuproptosis and disulfidptosis, recently discovered mechanisms of cell death, have demonstrated that differential expression of key genes and long non-coding RNAs (lncRNAs) profoundly influences tumor development and affects their drug sensitivity. Clear cell renal cell carcinoma (ccRCC), the most common subtype of kidney cancer, presently lacks research utilizing cuproptosis and disulfidptosis-related lncRNAs (CDRLRs) as prognostic markers. In this study, we analyzed RNA-seq data, clinical information, and mutation data from The Cancer Genome Atlas (TCGA) on ccRCC and cross-referenced it with known cuproptosis and disulfidptosis-related genes (CDRGs). Using the LASSO machine learning algorithm, we identified four CDRLRs-ACVR2B-AS1, AC095055.1, AL161782.1, and MANEA-DT-that are strongly associated with prognosis and used them to construct a prognostic risk model. To verify the model's reliability and validate these four CDRLRs as significant prognostic factors, we performed dataset grouping validation, followed by RT-qPCR and external database validation for differential expression and prognosis of CDRLRs in ccRCC. Gene function and pathway analysis were conducted using Gene Ontology (GO) and Gene Set Enrichment Analysis (GSEA) for high- and low-risk groups. Additionally, we have analyzed the tumor mutation burden (TMB) and the immune microenvironment (TME), employing the oncoPredict and Immunophenoscore (IPS) algorithms to assess the sensitivity of diverse risk categories to targeted therapeutics and immunosuppressants. Our predominant objective is to refine prognostic predictions for patients with ccRCC and inform treatment decisions by conducting an exhaustive study on cuproptosis and disulfidptosis.
Collapse
Affiliation(s)
- Ronghui Chen
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261053, China
- Department of Oncology, People's Hospital of Rizhao, Rizhao, 276826, China
| | - Jun Wu
- Department of Oncology, People's Hospital of Rizhao, Rizhao, 276826, China
| | - Yinwei Che
- Department of Central Laboratory, Shandong Provincial Key Medical and Health Laboratory, Rizhao Key Laboratory of Basic Research on Anesthesia and Respiratory Intensive Care, The People's Hospital of Rizhao, Rizhao, 276826, Shandong, China
| | - Yuzhuo Jiao
- Department of Central Laboratory, Shandong Provincial Key Medical and Health Laboratory, Rizhao Key Laboratory of Basic Research on Anesthesia and Respiratory Intensive Care, The People's Hospital of Rizhao, Rizhao, 276826, Shandong, China
| | - Huashan Sun
- Department of Central Laboratory, Shandong Provincial Key Medical and Health Laboratory, Rizhao Key Laboratory of Basic Research on Anesthesia and Respiratory Intensive Care, The People's Hospital of Rizhao, Rizhao, 276826, Shandong, China
| | - Yinuo Zhao
- Department of Pathology, People's Hospital of Rizhao, Rizhao, 276826, China
| | - Pingping Chen
- Department of Pathology, People's Hospital of Rizhao, Rizhao, 276826, China
| | - Lingxin Meng
- Department of Oncology, People's Hospital of Rizhao, Rizhao, 276826, China.
| | - Tao Zhao
- Department of Central Laboratory, Shandong Provincial Key Medical and Health Laboratory, Rizhao Key Laboratory of Basic Research on Anesthesia and Respiratory Intensive Care, The People's Hospital of Rizhao, Rizhao, 276826, Shandong, China
| |
Collapse
|
3
|
Wu Y, Chen S, Yang X, Sato K, Lal P, Wang Y, Shinkle AT, Wendl MC, Primeau TM, Zhao Y, Gould A, Sun H, Mudd JL, Hoog J, Mashl RJ, Wyczalkowski MA, Mo CK, Liu R, Herndon JM, Davies SR, Liu D, Ding X, Evrard YA, Welm BE, Lum D, Koh MY, Welm AL, Chuang JH, Moscow JA, Meric-Bernstam F, Govindan R, Li S, Hsieh J, Fields RC, Lim KH, Ma CX, Zhang H, Ding L, Chen F. Combining the Tyrosine Kinase Inhibitor Cabozantinib and the mTORC1/2 Inhibitor Sapanisertib Blocks ERK Pathway Activity and Suppresses Tumor Growth in Renal Cell Carcinoma. Cancer Res 2023; 83:4161-4178. [PMID: 38098449 PMCID: PMC10722140 DOI: 10.1158/0008-5472.can-23-0604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/17/2023] [Accepted: 09/25/2023] [Indexed: 12/18/2023]
Abstract
Current treatment approaches for renal cell carcinoma (RCC) face challenges in achieving durable tumor responses due to tumor heterogeneity and drug resistance. Combination therapies that leverage tumor molecular profiles could offer an avenue for enhancing treatment efficacy and addressing the limitations of current therapies. To identify effective strategies for treating RCC, we selected ten drugs guided by tumor biology to test in six RCC patient-derived xenograft (PDX) models. The multitargeted tyrosine kinase inhibitor (TKI) cabozantinib and mTORC1/2 inhibitor sapanisertib emerged as the most effective drugs, particularly when combined. The combination demonstrated favorable tolerability and inhibited tumor growth or induced tumor regression in all models, including two from patients who experienced treatment failure with FDA-approved TKI and immunotherapy combinations. In cabozantinib-treated samples, imaging analysis revealed a significant reduction in vascular density, and single-nucleus RNA sequencing (snRNA-seq) analysis indicated a decreased proportion of endothelial cells in the tumors. SnRNA-seq data further identified a tumor subpopulation enriched with cell-cycle activity that exhibited heightened sensitivity to the cabozantinib and sapanisertib combination. Conversely, activation of the epithelial-mesenchymal transition pathway, detected at the protein level, was associated with drug resistance in residual tumors following combination treatment. The combination effectively restrained ERK phosphorylation and reduced expression of ERK downstream transcription factors and their target genes implicated in cell-cycle control and apoptosis. This study highlights the potential of the cabozantinib plus sapanisertib combination as a promising treatment approach for patients with RCC, particularly those whose tumors progressed on immune checkpoint inhibitors and other TKIs. SIGNIFICANCE The molecular-guided therapeutic strategy of combining cabozantinib and sapanisertib restrains ERK activity to effectively suppress growth of renal cell carcinomas, including those unresponsive to immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Yige Wu
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
| | - Siqi Chen
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
| | - Xiaolu Yang
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Kazuhito Sato
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
| | - Preet Lal
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Yuefan Wang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Andrew T. Shinkle
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Michael C. Wendl
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
- Department of Genetics, Washington University in St. Louis, St. Louis, Missouri
- McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri
| | - Tina M. Primeau
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Yanyan Zhao
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Alanna Gould
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Hua Sun
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
| | - Jacqueline L. Mudd
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Jeremy Hoog
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - R. Jay Mashl
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
| | - Matthew A. Wyczalkowski
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
| | - Chia-Kuei Mo
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
| | - Ruiyang Liu
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
| | - John M. Herndon
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri
- Department of Surgery, Washington University in St. Louis, St. Louis, Missouri
| | - Sherri R. Davies
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Di Liu
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Xi Ding
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Yvonne A. Evrard
- Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Bryan E. Welm
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - David Lum
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Mei Yee Koh
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Alana L. Welm
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Jeffrey H. Chuang
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Jeffrey A. Moscow
- Investigational Drug Branch, National Cancer Institute, Bethesda, Maryland
| | | | - Ramaswamy Govindan
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- Department of Genetics, Washington University in St. Louis, St. Louis, Missouri
| | - Shunqiang Li
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- Department of Genetics, Washington University in St. Louis, St. Louis, Missouri
| | - James Hsieh
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Ryan C. Fields
- Department of Genetics, Washington University in St. Louis, St. Louis, Missouri
| | - Kian-Huat Lim
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- Department of Genetics, Washington University in St. Louis, St. Louis, Missouri
| | - Cynthia X. Ma
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- Department of Genetics, Washington University in St. Louis, St. Louis, Missouri
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Li Ding
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
- Department of Genetics, Washington University in St. Louis, St. Louis, Missouri
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri
| | - Feng Chen
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- Department of Genetics, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
4
|
Liu S, Yao Y, Hou M, Mei J, Sun L, Zhang G. Identification and validation of a ferroptosis-related signature for prediction of the prognosis and tumor microenvironment in patients with chromophobe renal cell carcinoma. BMC Cancer 2023; 23:1079. [PMID: 37940859 PMCID: PMC10634106 DOI: 10.1186/s12885-023-11589-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Ferroptosis is a novel form of regulated cell death that is different from other forms, which has an important role in tumor growth inhibition. The purpose of this study was to construct and validate a prognostic signature related to ferroptosis in chromophobe renal cell carcinoma (ChRCC) and to explore its role in immune cell infiltration and systemic therapy. METHODS The gene expression profiles of ChRCC patients obtained from The Cancer Genome Atlas (TCGA) database were used to identify differentially expressed prognostic ferroptosis-related genes (FRGs) by univariate Cox proportional hazards analyses. Ferroptosis molecular subtypes were obtained by consensus clustering analysis. The FRG-based signature in the training set was established by least absolute shrinkage and selection operator analysis and verified in the testing set. The association between molecular subtypes and the prognostic signature and immune microenvironment was explored to predict responses to immunotherapy. Immunohistochemistry was used to verify expression of the FRG-based signature externally. RESULTS ChRCC patients were divided into two FRG subtypes. Two FRGs (TFRC and SLC7A11) were identified to construct the prognostic signature. The high-risk group and cluster 2 had worse overall survival than the low-risk group and cluster 1, respectively. The low-risk group and cluster 1 had higher levels of immune cell infiltration and expression of MHC and immune checkpoint molecules than the high-risk group and cluster 2. The risk score was a predictor of overall survival and had a good predictive ability, which was verified in the testing set and evaluated by ROC and calibration curves. The high-risk group had a higher tumor mutation burden. The different sensitivities of targeted drugs in patients with different risks were evaluated. External immunohistochemical analysis showed that TFRC and SLC7A11 were highly expressed in tumor tissues compared with para-cancer normal tissues, and the expression level was significantly associated with a more advanced stage and worse cancer-specific survival. CONCLUSIONS An FRG signature was identified and validated to predict the clinicopathological features and prognosis of ChRCC. A significant association between the signature and immune cell infiltration, immune checkpoint expression, and drug response is helpful to guide comprehensive treatment of ChRCC.
Collapse
Affiliation(s)
- Shuai Liu
- Department of Urology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Rd, 266003, Qingdao, P.R. China
| | - Yu Yao
- Department of Urology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Rd, 266003, Qingdao, P.R. China
| | - Mingyu Hou
- Department of Pathology, The Affiliated Hospital of Qingdao University, 266003, Qingdao, P.R. China
| | - Jingchang Mei
- Department of Urology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Rd, 266003, Qingdao, P.R. China
| | - Lijiang Sun
- Department of Urology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Rd, 266003, Qingdao, P.R. China
| | - Guiming Zhang
- Department of Urology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Rd, 266003, Qingdao, P.R. China.
| |
Collapse
|
5
|
Sigaud R, Albert TK, Hess C, Hielscher T, Winkler N, Kocher D, Walter C, Münter D, Selt F, Usta D, Ecker J, Brentrup A, Hasselblatt M, Thomas C, Varghese J, Capper D, Thomale UW, Hernáiz Driever P, Simon M, Horn S, Herz NA, Koch A, Sahm F, Hamelmann S, Faria-Andrade A, Jabado N, Schuhmann MU, Schouten-van Meeteren AYN, Hoving E, Brummer T, van Tilburg CM, Pfister SM, Witt O, Jones DTW, Kerl K, Milde T. MAPK inhibitor sensitivity scores predict sensitivity driven by the immune infiltration in pediatric low-grade gliomas. Nat Commun 2023; 14:4533. [PMID: 37500667 PMCID: PMC10374577 DOI: 10.1038/s41467-023-40235-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
Pediatric low-grade gliomas (pLGG) show heterogeneous responses to MAPK inhibitors (MAPKi) in clinical trials. Thus, more complex stratification biomarkers are needed to identify patients likely to benefit from MAPKi therapy. Here, we identify MAPK-related genes enriched in MAPKi-sensitive cell lines using the GDSC dataset and apply them to calculate class-specific MAPKi sensitivity scores (MSSs) via single-sample gene set enrichment analysis. The MSSs discriminate MAPKi-sensitive and non-sensitive cells in the GDSC dataset and significantly correlate with response to MAPKi in an independent PDX dataset. The MSSs discern gliomas with varying MAPK alterations and are higher in pLGG compared to other pediatric CNS tumors. Heterogenous MSSs within pLGGs with the same MAPK alteration identify proportions of potentially sensitive patients. The MEKi MSS predicts treatment response in a small set of pLGG patients treated with trametinib. High MSSs correlate with a higher immune cell infiltration, with high expression in the microglia compartment in single-cell RNA sequencing data, while low MSSs correlate with low immune infiltration and increased neuronal score. The MSSs represent predictive tools for the stratification of pLGG patients and should be prospectively validated in clinical trials. Our data supports a role for microglia in the response to MAPKi.
Collapse
Affiliation(s)
- Romain Sigaud
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), Heidelberg, Germany.
| | - Thomas K Albert
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Caroline Hess
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Faculty of Biochemistry, Heidelberg University, Heidelberg, Germany
| | - Thomas Hielscher
- Division of Biostatistics, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Nadine Winkler
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Daniela Kocher
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Carolin Walter
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Daniel Münter
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Florian Selt
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Diren Usta
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jonas Ecker
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Angela Brentrup
- Neurosurgery Dept., University Hospital Münster, Münster, Germany
| | - Martin Hasselblatt
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Christian Thomas
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Julian Varghese
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - David Capper
- Berlin Institute of Health, Anna-Louisa-Karsch-Straße 2, 10178, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neuropathology, Berlin, Germany
| | - Ulrich W Thomale
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Pediatric Neurosurgery, Berlin, Germany
| | - Pablo Hernáiz Driever
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, German HIT-LOGGIC-Registry for pLGG in children and adolescents, Department of Pediatric Oncology and Hematology, Berlin, Germany
| | - Michèle Simon
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, German HIT-LOGGIC-Registry for pLGG in children and adolescents, Department of Pediatric Oncology and Hematology, Berlin, Germany
| | - Svea Horn
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, German HIT-LOGGIC-Registry for pLGG in children and adolescents, Department of Pediatric Oncology and Hematology, Berlin, Germany
| | - Nina Annika Herz
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, German HIT-LOGGIC-Registry for pLGG in children and adolescents, Department of Pediatric Oncology and Hematology, Berlin, Germany
| | - Arend Koch
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neuropathology, Berlin, Germany
| | - Felix Sahm
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan Hamelmann
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0C7, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, H4A 3J1, Canada
- Department of Pediatrics, McGill University, and The Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Martin U Schuhmann
- Section of Pediatric Neurosurgery, Department of Neurosurgery, University Hospital Tübingen, Tübingen, Germany
| | | | - Eelco Hoving
- Princess Màxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Tilman Brummer
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, University of Freiburg, Freiburg, Germany, Centre for Biological Signaling Studies BIOSS, University of Freiburg and German Consortium for Translational Cancer Research (DKTK), Freiburg, Germany, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Cornelis M van Tilburg
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Olaf Witt
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - David T W Jones
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kornelius Kerl
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Till Milde
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), Heidelberg, Germany.
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
6
|
Xia QD, Li B, Sun JX, Liu CQ, Xu JZ, An Y, Xu MY, Zhang SH, Zhong XY, Zeng N, Ma SY, He HD, Zhang YC, Guan W, Li H, Wang SG. Integrated bioinformatic analysis and cell line experiments reveal the significant role of the novel immune checkpoint TIGIT in kidney renal clear cell carcinoma. Front Oncol 2023; 13:1096341. [PMID: 37035135 PMCID: PMC10079921 DOI: 10.3389/fonc.2023.1096341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/14/2023] [Indexed: 04/11/2023] Open
Abstract
Background T cell immunoglobulin and ITIM domain (TIGIT) is a widely concerned immune checkpoint, which plays an essential role in immunosuppression and immune evasion. However, the role of TIGIT in normal organ tissues and renal clear cell carcinoma is unclear. We aim to identify the critical role of TIGIT in renal clear cell carcinoma and find potential targeted TIGIT drugs. Materials and methods Data retrieved from the GTEX database and TCGA database was used to investigate the expression of TIGIT in normal whole-body tissues and abnormal pan-cancer, then the transcriptome atlas of patients with kidney renal clear cell carcinoma (KIRC) in the TCGA database were applied to distinguish the TIGIT related features, including differential expression status, prognostic value, immune infiltration, co-expression, and drug response of sunitinib an anti-PD1/CTLA4 immunotherapy in KIRC. Furthermore, we constructed a gene-drug network to discover a potential drug targeting TIGIT and verified it by performing molecular docking. Finally, we conducted real-time polymerase chain reaction (PCR) and assays for Transwell migration and CCK-8 to explore the potential roles of TIGIT. Results TIGIT showed a moderate expression in normal kidney tissues and was confirmed as an essential prognostic factor that was significantly higher expressed in KIRC tissues, and high expression of TIGIT is associated with poor OS, PFS, and DSS in KIRC. Also, the expression of TIGIT was closely associated with the pathological characteristics of the tumor, high expression of TIGIT in KIRC was observed with several critical functions or pathways such as apoptosis, BCR signaling, TCR signaling et al. Moreover, the expression of TIGIT showed a strong positive correlation with infiltration of CD8+ T cells and Tregs and a positive correlation with the drug sensitivity of sunitinib simultaneously. Further Tide ips score analysis and submap analysis reveal that patients with high TIGIT expression significantly show a better response to anti-PD1 immunotherapy. Following this, we discovered Selumetinib and PD0325901 as potential drugs targeting TIGIT and verified the interaction between these two drugs and TIGIT protein by molecular docking. Finally, we verified the essential role of TIGIT in the proliferation and migration functions by using KIRC cell lines. Conclusions TIGIT plays an essential role in tumorigenesis and progression in KIRC. High expression of TIGIT results in poor survival of KIRC and high drug sensitivity to sunitinib. Besides, Selumetinib and PD0325901 may be potential drugs targeting TIGIT, and combined therapy of anti-TIGIT and other treatments show great potential in treating KIRC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Wei Guan
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Li
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shao-Gang Wang
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Smith MR, Costa G. RNA-binding proteins and translation control in angiogenesis. FEBS J 2022; 289:7788-7809. [PMID: 34796614 DOI: 10.1111/febs.16286] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/17/2021] [Accepted: 11/17/2021] [Indexed: 01/14/2023]
Abstract
Tissue vascularization through the process of angiogenesis ensures adequate oxygen and nutrient supply during development and regeneration. The complex morphogenetic events involved in new blood vessel formation are orchestrated by a tightly regulated crosstalk between extra and intracellular factors. In this context, RNA-binding protein (RBP) activity and protein translation play fundamental roles during the cellular responses triggered by particular environmental cues. A solid body of work has demonstrated that key RBPs (such as HuR, TIS11 proteins, hnRNPs, NF90, QKIs and YB1) are implicated in both physiological and pathological angiogenesis. These RBPs are critical for the metabolism of messenger (m)RNAs encoding angiogenic modulators and, importantly, strong evidence suggests that RBP-mRNA interactions can be altered in disease. Lesser known, but not less important, the mechanistic aspects of protein synthesis can also regulate the generation of new vessels. In this review, we outline the key findings demonstrating the implications of RBP-mediated RNA regulation and translation control in angiogenesis. Furthermore, we highlight how these mechanisms of post-transcriptional control of gene expression have led to promising therapeutic strategies aimed at targeting undesired blood vessel formation.
Collapse
Affiliation(s)
- Madeleine R Smith
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, UK
| | - Guilherme Costa
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, UK
| |
Collapse
|
8
|
Modulation of Early Mitotic Inhibitor 1 (EMI1) depletion on the sensitivity of PARP inhibitors in BRCA1 mutated triple-negative breast cancer cells. PLoS One 2021; 16:e0235025. [PMID: 33412559 PMCID: PMC7790533 DOI: 10.1371/journal.pone.0235025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022] Open
Abstract
Triple negative breast cancer (TNBC) represents approximately 10-15% of all breast cancers and has a poor outcome as it lacks a receptor target for therapy, and TNBC is frequently associated with a germline mutation of BRCA1. Poly (ADP-ribose) polymerase inhibitor (PARPi) drugs have demonstrated some effectiveness in treating BRCA1 or BRCA2 mutated breast and ovarian cancers but resistance to PARPi is common. Published results found that resistance to Olaparib, a PARPi, can be due to downregulation of EMI1 and the consequent upregulation of the RAD51 recombinase. Using a tissue culture-based cell viability assay, we extended those observations to another PARPi and to other chemotherapy drugs that affect DNA repair or the cell cycle. As we expected, EMI1 downregulation resulted in resistance to another PARPi drug, Talazoparib. EMI1 downregulation also led to resistance to other cytotoxic drugs, Cisplatin and CHK1 inhibitor. Notably, increasing the RAD51 protein expression only recapitulated some, but not all, of the effects of EMI1 depletion in conferring to the cell resistance to different PARPi and the other cytotoxic drugs. These results suggest that the downstream effects of EMI1 downregulation that contribute to PARPi resistance are increasing the concentration of RAD51 protein in the cell and blocking mitotic entry. We found that combining CHK1 inhibitor with olaparib results in restoration of sensitivity even when EMI1 expression is downregulated. This combination therapy may be a means to overcome the PARPi resistance in BRCA1-deficient TNBC cells.
Collapse
|
9
|
Moustafa D, Abd Elwahed MR, Elsaid HH, Parvin JD. Modulation of Early Mitotic Inhibitor 1 (EMI1) Depletion on the Sensitivity of PARP Inhibitors in BRCA1 Mutated Triple-Negative Breast Cancer Cells.. [DOI: 10.1101/2020.06.09.142026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
AbstractTriple negative breast cancer (TNBC) represents approximately 10–15% of all breast cancers and has a poor outcome as it lacks a receptor target for therapy, and TNBC is frequently associated with a germline mutation of BRCA1. Poly (ADP-ribose) polymerase inhibitor (PARPi) drugs have demonstrated some effectiveness in treating BRCA1 or BRCA2 mutated breast and ovarian cancers but resistance to PARPi is common. Published results found that resistance to Olaparib, a PARPi, can be due to downregulation of EMI1 and the consequent upregulation of the RAD51 recombinase. Using a tissue culture-based cell viability assay, we extended those observations to another PARPi and to other chemotherapy drugs that affect DNA repair or the cell cycle. As we expected, EMI1 downregulation resulted in resistance to another PARPi drug, Talazoparib. EMI1 downregulation also led to resistance to other cytotoxic drugs, Cisplatin and CHK1 inhibitor. Surprisingly, EMI1 depletion also led to resistance to a MEK inhibitor, though this inhibitor blocks cells in G1 phase of the cell cycle and would not be expected to be sensitive to EMI1 levels. Notably, increasing the RAD51 protein expression only partially recapitulated the effects of EMI1 depletion in causing resistance to different PARPi and the other cytotoxic drugs. These results suggest that the downstream effects of EMI1 downregulation that contribute to PARPi resistance are increasing the concentration of RAD51 protein in the cell and blocking mitotic entry. We found that combining CHK1 inhibitor with olaparib results in restoration of sensitivity even when EMI1 expression is downregulated. This combination therapy may be a means to overcome the PARPi resistance in BRCA1-deficient TNBC cells.
Collapse
|
10
|
Zou Y, Zhou J, Xu B, Li W, Wang Z. Ribonucleotide reductase subunit M2 as a novel target for clear-cell renal cell carcinoma. Onco Targets Ther 2019; 12:3267-3275. [PMID: 31118677 PMCID: PMC6501780 DOI: 10.2147/ott.s196347] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/06/2019] [Indexed: 12/03/2022] Open
Abstract
Background: Sufficient supply of deoxyribonucleoside triphosphates (dNTPs) is required for the uncontrolled replication of cancers. The current study aimed to investigate the biological and clinical role of ribonucleotide reductase subunit M2 (RRM2), a key enzyme regulating the dNTP pool, in clear-cell renal cell carcinoma (ccRCC). Methods: The expression of RRM2 on disease progression and patient outcome was assessed in ccRCC. Then, the effect of RRM2 inhibition on renal cell carcinoma (RCC) growth using siRNA or Triapine, an RRM2-specific inhibitor, was characterized in RCC cell lines. Results: The expression of RRM2 was up-regulated in ccRCC tissues as compared to the normal tissues. Patients with high RRM2 expression tend to have advanced pT stages, high Fuhrman grades, and shortened overall survival (OS). RRM2-siRNAs or Triapine significantly inhibited the cell growth by inducing G0/G1 cell cycle arrest in RCC cells through the attenuation of dNTP pool. Conclusions: The current results provided evidence that RRM2 might act as a novel target for ccRCC, and exploration of nonnucleoside, reversible, small-molecule inhibitors against RRM2 could be promising.
Collapse
Affiliation(s)
- Yun Zou
- Department of Urology and Andrology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Juan Zhou
- Department of Urology and Andrology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Bin Xu
- Department of Urology and Andrology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Wenzhi Li
- Department of Urology and Andrology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Zhong Wang
- Department of Urology and Andrology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| |
Collapse
|
11
|
Nayman AH, Siginc H, Zemheri E, Yencilek F, Yildirim A, Telci D. Dual-Inhibition of mTOR and Bcl-2 Enhances the Anti-tumor Effect of Everolimus against Renal Cell Carcinoma In Vitro and In Vivo. J Cancer 2019; 10:1466-1478. [PMID: 31031856 PMCID: PMC6485234 DOI: 10.7150/jca.29192] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 01/03/2019] [Indexed: 12/14/2022] Open
Abstract
Renal cell carcinoma (RCC) is the predominant type of kidney cancer. Mammalian target of rapamycin (mTOR) inhibitor everolimus is currently used as a second-line therapy for sorafenib or sunitinib-refractory metastatic RCC patients. The clinical limitation confronted during everolimus therapy is the onset of drug resistance that decreases the efficacy of the drug. Elevated level of anti-apoptotic Bcl-2 protein is proposed to be an emerging feedback loop for the acquired drug-resistance in various cancer types. In this study, the Bcl-2 inhibitor ABT-737 was used in combination with everolimus to enhance its anti-tumor effectiveness in everolimus-resistant RCC cell lines. Everolimus and ABT-737 combination synergistically led to a decrease in the proliferation of primary site A-498 and metastatic site Caki-1 RCC cell lines, which was accompanied by a reduction in protein levels of cell cycle and mTOR pathway proteins. In both RCC cell lines, everolimus-ABT-737 combination not only induced apoptosis, caspase and PARP-1 cleavage but also a decrease in Bcl-2 protein levels in parallel with a concomitant increase in Bim and Noxa levels. In order to confirm our in vitro findings, we have generated everolimus-resistant RenCa cell line (RenCares) to establish a RCC mouse xenograft model. Animals co-treated with everolimus and ABT-737 exhibited a complete suppression of tumor growth without any notable toxicity. This study thus proposes the everolimus-ABT-737 combination as a novel therapeutic strategy for the treatment of RCC to overcome the current clinical problem of everolimus resistance.
Collapse
Affiliation(s)
- Ayse Hande Nayman
- Yeditepe University, Faculty of Engineering, Department of Genetics and Bioengineering, Kayisdagi Cad., 34755, Istanbul, Turkey
| | - Halime Siginc
- Yeditepe University, Faculty of Engineering, Department of Genetics and Bioengineering, Kayisdagi Cad., 34755, Istanbul, Turkey
| | - Ebru Zemheri
- Department of Pathology, Umraniye Training and Research Hospital, Istanbul, Turkey
| | - Faruk Yencilek
- Yeditepe University, Faculty/School of Medicine, Yeditepe University Hospital, Istanbul, Turkey
| | - Asif Yildirim
- Department of Urology/Faculty of Medicine, Medeniyet University, Istanbul, Turkey
| | - Dilek Telci
- Yeditepe University, Faculty of Engineering, Department of Genetics and Bioengineering, Kayisdagi Cad., 34755, Istanbul, Turkey
| |
Collapse
|
12
|
Bunda S, Heir P, Metcalf J, Li ASC, Agnihotri S, Pusch S, Yasin M, Li M, Burrell K, Mansouri S, Singh O, Wilson M, Alamsahebpour A, Nejad R, Choi B, Kim D, von Deimling A, Zadeh G, Aldape K. CIC protein instability contributes to tumorigenesis in glioblastoma. Nat Commun 2019; 10:661. [PMID: 30737375 PMCID: PMC6368580 DOI: 10.1038/s41467-018-08087-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/07/2018] [Indexed: 01/12/2023] Open
Abstract
Capicua (CIC) is a transcriptional repressor that counteracts activation of genes downstream of receptor tyrosine kinase (RTK)/Ras/ERK signaling. It is well-established that tumorigenesis, especially in glioblastoma (GBM), is attributed to hyperactive RTK/Ras/ERK signaling. While CIC is mutated in other tumors, here we show that CIC has a tumor suppressive function in GBM through an alternative mechanism. We find that CIC protein levels are negligible in GBM due to continuous proteasome-mediated degradation, which is mediated by the E3 ligase PJA1 and show that this occurs through binding of CIC to its DNA target and phosphorylation on residue S173. PJA1 knockdown increased CIC stability and extended survival using in-vivo models of GBM. Deletion of the ERK binding site resulted in stabilization of CIC and increased therapeutic efficacy of ERK inhibition in GBM models. Our results provide a rationale to target CIC degradation in Ras/ERK-driven tumors, including GBM, to increase efficacy of ERK inhibitors. Capicua (CIC) is a tumour suppressor in oligodendroglioma. Here, the authors show that ERK activation mediates CIC regulation via ubiquitination and degradation by PJA1 and a degradation resistant form of CIC enhances efficacy of ERK inhibition in glioblastoma.
Collapse
Affiliation(s)
- Severa Bunda
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, Toronto, ON, M5G 2C1, Canada
| | - Pardeep Heir
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, Toronto, ON, M5G 2C1, Canada
| | - Julie Metcalf
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, Toronto, ON, M5G 2C1, Canada
| | - Annie Si Cong Li
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, Toronto, ON, M5G 2C1, Canada
| | - Sameer Agnihotri
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, Toronto, ON, M5G 2C1, Canada.,Department of Neurosurgery, University of Pittsburgh Medical Center, UPMC Presbyterian, Suite B-400, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - Stefan Pusch
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, D-69120, Germany.,German Consortium of Translational Cancer Research (DKTK), Clinical Cooperation Unit Neuropathology German Cancer Research Center (DKFZ), Heidelberg, D-69120, Germany
| | - Mamatjan Yasin
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, Toronto, ON, M5G 2C1, Canada
| | - Mira Li
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, Toronto, ON, M5G 2C1, Canada
| | - Kelly Burrell
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, Toronto, ON, M5G 2C1, Canada
| | - Sheila Mansouri
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, Toronto, ON, M5G 2C1, Canada
| | - Olivia Singh
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, Toronto, ON, M5G 2C1, Canada
| | - Mark Wilson
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, Toronto, ON, M5G 2C1, Canada
| | - Amir Alamsahebpour
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, Toronto, ON, M5G 2C1, Canada
| | - Romina Nejad
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, Toronto, ON, M5G 2C1, Canada
| | - Bethany Choi
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, Toronto, ON, M5G 2C1, Canada
| | - David Kim
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, Toronto, ON, M5G 2C1, Canada
| | - Andreas von Deimling
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, D-69120, Germany.,German Consortium of Translational Cancer Research (DKTK), Clinical Cooperation Unit Neuropathology German Cancer Research Center (DKFZ), Heidelberg, D-69120, Germany
| | - Gelareh Zadeh
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, Toronto, ON, M5G 2C1, Canada. .,Division of Neurosurgery, Toronto Western Hospital, Toronto, ON, M5G 2C1, Canada. .,Insititute of Medical Science, University Health Network and University of Toronto, Toronto, ON, M5S 3E1, Canada.
| | - Kenneth Aldape
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, Toronto, ON, M5G 2C1, Canada. .,Laboratory of Pathology, National Cancer Institute, Bethesda, MD, 20892, USA.
| |
Collapse
|
13
|
Zou Y, Li W, Zhou J, Zhang J, Huang Y, Wang Z. ERK Inhibitor Enhances Everolimus Efficacy through the Attenuation of dNTP Pools in Renal Cell Carcinoma. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 14:550-561. [PMID: 30771617 PMCID: PMC6374702 DOI: 10.1016/j.omtn.2019.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/01/2019] [Accepted: 01/01/2019] [Indexed: 01/10/2023]
Abstract
The clinical efficiency of everolimus, an mammalian target of rapamycin (mTOR) inhibitor, is palliative as sequential or second-line therapy for renal cell carcinoma (RCC). However, the limited response of everolimus in RCC remains uncertain. In the present study, everolimus-resistant RCC models were established to understand the mechanisms and to seek combination approaches. Consequently, the activation of ERK was found to contribute toward everolimus-acquired resistance and poor prognosis in patients with RCC. In addition, the efficacy and mechanism of combination treatment underlying RCC using everolimus and ERK inhibitors was investigated. The ERK inhibitor in combination with everolimus synergistically inhibited the proliferation of RCC cells by arresting the cell cycle in the G1 phase. The combination treatment markedly attenuated the deoxyribonucleoside triphosphate (dNTP) pools by downregulating the mRNA expression of RRM1 and RRM2 through E2F1. The overexpression of E2F1 or supplementation of dNTP rescued the anti-proliferation activity of the everolimus-SCH772984 combination. The antitumor efficacy of combination therapy was reiterated in RCC xenograft models. Thus, the current findings provided evidence that the everolimus-ERK inhibitor combination is a preclinical therapeutic strategy for RCC.
Collapse
Affiliation(s)
- Yun Zou
- Department of Urology and Andrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Wenzhi Li
- Department of Urology and Andrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Juan Zhou
- Department of Urology and Andrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Jin Zhang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yiran Huang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Zhong Wang
- Department of Urology and Andrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China.
| |
Collapse
|
14
|
Zeng Y, Tian X, Wang Q, He W, Fan J, Gou X. Attenuation of everolimus-induced cytotoxicity by a protective autophagic pathway involving ERK activation in renal cell carcinoma cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:911-920. [PMID: 29719377 PMCID: PMC5914548 DOI: 10.2147/dddt.s160557] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Aim The mammalian target of rapamycin (mTOR) pathway is a critical target for cancer treatment and the mTOR inhibitor everolimus (RAD001) has been approved for treatment of renal cell carcinoma (RCC). However, the limited efficacy of RAD001 has led to the development of drug resistance. Autophagy is closely related to cell survival and death, which may be activated under RAD001 stimulation. The aim of the present study was to identify the underlying mechanisms of RAD001 resistance in RCC cells through cytoprotective autophagy involving activation of the extracellular signal-regulated kinase (ERK) pathway. Methods and results: RAD001 strongly induced autophagy of RCC cells in a dose- and time-dependent manner, as confirmed by Western blot analysis. Importantly, suppression of autophagy by the pharmacological inhibitor chloroquine effectively enhanced RAD001-induced apoptotic cytotoxicity, as demonstrated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and Western blot analysis, indicating a cytoprotective role for RAD001-induced autophagy. In addition, as was shown by the MTT assay, flow cytometry, and Western blot analysis, RAD001 robustly activated ERK, but not c-Jun N-terminal kinase and p38. Activation of ERK was inhibited by the pharmacological inhibitor selumetinib (AZD6244), which effectively promoted RAD001-induced cell death. Moreover, employing AZD6244 markedly attenuated RAD001-induced autophagy and enhanced RAD001-induced apoptosis, which play a central role in RAD001-induced cell death. Furthermore, RAD001-induced autophagy is regulated by ERK-mediated phosphorylation of Beclin-1 and B-cell lymphoma 2, as confirmed by Western blot analysis. Conclusion These results suggest that RAD001-induced autophagy involves activation of the ERK, which may impair cytotoxicity of RAD001 in RCC cells. Thus, inhibition of the activation of ERK pathway-mediated autophagy may be useful to overcome chemoresistance to RAD001.
Collapse
Affiliation(s)
- Yizhou Zeng
- Department of Urinary Surgery, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Xiaofang Tian
- Department of Urinary Surgery, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Quan Wang
- Department of Urinary Surgery, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Weiyang He
- Department of Urinary Surgery, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Jing Fan
- Department of Urinary Surgery, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Xin Gou
- Department of Urinary Surgery, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
| |
Collapse
|