1
|
Şoroğlu CV, Uslu-Bıçak İ, Toprak SF, Yavuz AS, Sözer S. Effect of hypoxia on HIF-1α and NOS3 expressions in CD34 + cells of JAK2V617F-positive myeloproliferative neoplasms. Adv Med Sci 2023; 68:169-175. [PMID: 37075583 DOI: 10.1016/j.advms.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/20/2023] [Accepted: 03/25/2023] [Indexed: 04/21/2023]
Abstract
PURPOSE Myeloproliferative neoplasms (MPN) are a heterogeneous group of hematopoietic stem-cell diseases with excessive proliferation of one or more blood cell lines. In this study, we evaluated the effect of different oxygen concentrations on HIF-1α and NOS3 gene expression to determine the effect of the bone marrow microenvironment on JAK2V617F positive Philadelphia chromosome negative (Ph-) MPNs. PATIENTS AND METHODS Peripheral blood mononuclear cells (MNC) of 12 patients with Ph- MPN were collected. The presence of JAK2V617F allele status was determined with allele-specific nested PCR analysis. MPN CD34+ and CD34depleted populations were isolated from MNC by magnetic beads. Separate cell cultures of CD34+/depleted populations were managed at different oxygen concentrations including anoxia (∼0%), hypoxia (∼3%), and normoxia (∼20%) conditions for 24 h. HIF-1α and NOS3 gene expression changes were examined in each population related to JAK2V617F status with real time RT-PCR. RESULT It was revealed that relative HIF-1α and NOS3 expressions were significantly increased in response to decreased oxygen concentration in all samples. Relative HIF-1α and NOS3 expressions were found to be higher especially in CD34+ and CD34depleted populations carrying JAK2V617F mutations compared to MPN patients carrying wild-type JAK2. CONCLUSION JAK2V617F might have specific role in HIF-1α and NOS3 regulations with respect to low oxygen concentrations in Ph- MPN. Further evaluations might reveal the effect of JAK2V617F on Ph- MPN pathogenesis in bone marrow microenvironment.
Collapse
Affiliation(s)
- Can Veysel Şoroğlu
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey; Institute of Health Sciences, Istanbul University, Istanbul, Turkey
| | - İldeniz Uslu-Bıçak
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey; Institute of Health Sciences, Istanbul University, Istanbul, Turkey
| | - Selin Fulya Toprak
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey; Institute of Health Sciences, Istanbul University, Istanbul, Turkey
| | - Akif Selim Yavuz
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Selçuk Sözer
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
2
|
D’Silva SZ, Singh M, Pinto AS. NK cell defects: implication in acute myeloid leukemia. Front Immunol 2023; 14:1112059. [PMID: 37228595 PMCID: PMC10203541 DOI: 10.3389/fimmu.2023.1112059] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
Acute Myeloid Leukemia (AML) is a complex disease with rapid progression and poor/unsatisfactory outcomes. In the past few years, the focus has been on developing newer therapies for AML; however, relapse remains a significant problem. Natural Killer cells have strong anti-tumor potential against AML. This NK-mediated cytotoxicity is often restricted by cellular defects caused by disease-associated mechanisms, which can lead to disease progression. A stark feature of AML is the low/no expression of the cognate HLA ligands for the activating KIR receptors, due to which these tumor cells evade NK-mediated lysis. Recently, different Natural Killer cell therapies have been implicated in treating AML, such as the adoptive NK cell transfer, Chimeric antigen receptor-modified NK (CAR-NK) cell therapy, antibodies, cytokine, and drug treatment. However, the data available is scarce, and the outcomes vary between different transplant settings and different types of leukemia. Moreover, remission achieved by some of these therapies is only for a short time. In this mini-review, we will discuss the role of NK cell defects in AML progression, particularly the expression of different cell surface markers, the available NK cell therapies, and the results from various preclinical and clinical trials.
Collapse
Affiliation(s)
- Selma Z. D’Silva
- Transplant Immunology and Immunogenetics Lab, Advanced Centre for Treatment, Education and Research in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Meenakshi Singh
- Transplant Immunology and Immunogenetics Lab, Advanced Centre for Treatment, Education and Research in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Andrea S. Pinto
- Transplant Immunology and Immunogenetics Lab, Advanced Centre for Treatment, Education and Research in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| |
Collapse
|
3
|
Klitgaard TL, Schjørring OL, Severinsen MT, Perner A, Rasmussen BS. Lower versus higher oxygenation targets in ICU patients with haematological malignancy - insights from the HOT-ICU trial. BJA OPEN 2022; 4:100090. [PMID: 37588787 PMCID: PMC10430820 DOI: 10.1016/j.bjao.2022.100090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/14/2022] [Indexed: 08/18/2023]
Abstract
Background Patients admitted to an intensive care unit (ICU) with active haematological malignancy and hypoxaemic respiratory failure have a high mortality. Oxygen supplementation is essential, but limited information exists on the optimum oxygenation targets in these patients. Methods This subgroup analysis was specified before completion of the Handling Oxygenation Targets in the ICU (HOT-ICU) trial. The trial investigated the effects of a lower (8 kPa) vs a higher (12 kPa) arterial oxygenation target and was stratified for active haematological malignancy, chronic obstructive pulmonary disease, and site. We here report the primary outcome (90-day mortality) and selected secondary outcomes in the subgroup of patients with active haematological malignancy. Results The HOT-ICU trial included 168 patients with active haematological malignancy; 82 were randomly allocated to an arterial oxygenation target of 8 kPa, and 86 to 12 kPa. At 90 days, 53/81 patients (65%) in the lower-oxygenation group and 47/86 patients (55%) in the higher-oxygenation group had died: adjusted relative risk 1.22 (95% confidence interval 0.95-1.56); at 1 year, the numbers were 58/81 (72%) vs 56/86 (65%): adjusted relative risk 1.11 (95% confidence interval 0.90-1.36). No statistically significant differences were found for any secondary outcomes. Conclusion In ICU patients with active haematological malignancies and hypoxaemic respiratory failure, we found a high mortality at 90 days and 1 year. Our results did not preclude clinically relevant benefits or harms of a lower oxygenation target in patients with active haematological malignancy. A randomised trial may, therefore, be worthwhile for these patients. Clinical trial registration NCT03174002.
Collapse
Affiliation(s)
- Thomas L. Klitgaard
- Department of Anaesthesia and Intensive Care, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Olav L. Schjørring
- Department of Anaesthesia and Intensive Care, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Marianne T. Severinsen
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Haematology, Clinical Research Centre, Aalborg University Hospital, Aalborg, Denmark
| | - Anders Perner
- Department of Intensive Care, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Bodil S. Rasmussen
- Department of Anaesthesia and Intensive Care, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
4
|
Expression of proliferation-related genes in BM-MSC-treated ALL cells in hypoxia condition is regulated under the influence of epigenetic factors in-vitro. Med Oncol 2022; 39:88. [PMID: 35581482 DOI: 10.1007/s12032-022-01671-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/12/2022] [Indexed: 10/18/2022]
Abstract
Mesenchymal stem cells affect ALL cell biology under hypoxic conditions. We studied survival, proliferation, expression, and promoter methylation levels of essential genes involved in expanding MOLT-4 cells co-cultured with BM-MSC under the hypoxic condition. Here, MOLT-4 cells were co-cultured with BMMSCs under hypoxic conditions. First, the apoptosis rate was evaluated by Flow cytometry. Then, MOLT-4 cells' proliferation rate was assessed using MTT assay, and the expressions and methylation rates of genes were determined by qRT-PCR and MS-qPCR, respectively. The results showed that although MOLT-4 cells proliferation and survival rates were reduced under hypoxic conditions, this reduction was not statistically significant. Also, we showed that hypoxic conditions caused upregulation of candidate genes and affected their methylation status. Besides, it was revealed that Pontin was downregulated, while KDM3A, SKP2, and AURKA had an upward trend in the presence of MOLT-4 cells plus BM-MSC. The co-culture of leukemia cells with BMMSCs under hypoxic conditions may be a potential therapeutic approach for ALL.
Collapse
|
5
|
Editorial on Special Issue “Immunotherapy, Tumor Microenvironment and Survival Signaling”. Cancers (Basel) 2021; 14:cancers14010091. [PMID: 35008254 PMCID: PMC8750357 DOI: 10.3390/cancers14010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
Recently, novel types of immunotherapies such as CAR-T cell therapy demonstrated efficacy in leukemia, lymphoma, and multiple myeloma [...]
Collapse
|
6
|
Olschok K, Han L, de Toledo MAS, Böhnke J, Graßhoff M, Costa IG, Theocharides A, Maurer A, Schüler HM, Buhl EM, Pannen K, Baumeister J, Kalmer M, Gupta S, Boor P, Gezer D, Brümmendorf TH, Zenke M, Chatain N, Koschmieder S. CALR frameshift mutations in MPN patient-derived iPSCs accelerate maturation of megakaryocytes. Stem Cell Reports 2021; 16:2768-2783. [PMID: 34678208 PMCID: PMC8581168 DOI: 10.1016/j.stemcr.2021.09.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022] Open
Abstract
Calreticulin (CALR) mutations are driver mutations in myeloproliferative neoplasms (MPNs), leading to activation of the thrombopoietin receptor and causing abnormal megakaryopoiesis. Here, we generated patient-derived CALRins5- or CALRdel52-positive induced pluripotent stem cells (iPSCs) to establish an MPN disease model for molecular and mechanistic studies. We demonstrated myeloperoxidase deficiency in granulocytic cells derived from homozygous CALR mutant iPSCs, rescued by repairing the mutation using CRISPR/Cas9. iPSC-derived megakaryocytes showed characteristics of primary megakaryocytes such as formation of demarcation membrane system and cytoplasmic pro-platelet protrusions. Importantly, CALR mutations led to enhanced megakaryopoiesis and accelerated megakaryocytic development in a thrombopoietin-independent manner. Mechanistically, our study identified differentially regulated pathways in mutated versus unmutated megakaryocytes, such as hypoxia signaling, which represents a potential target for therapeutic intervention. Altogether, we demonstrate key aspects of mutated CALR-driven pathogenesis dependent on its zygosity, and found novel therapeutic targets, making our model a valuable tool for clinical drug screening in MPNs. CALR-mutated iPSCs allow efficient modeling of human MPN disease CRISPR-mediated repair of CALR mutations rescues normal iPSC function Megakaryopoiesis in CALR-mutated iPSCs is hyperplastic and accelerated Transcriptome screen of mutated megakaryocytes identifies novel therapeutic options
Collapse
Affiliation(s)
- Kathrin Olschok
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Lijuan Han
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany; Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Marcelo A S de Toledo
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Janik Böhnke
- Institute for Biomedical Engineering, Department of Cell Biology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany; Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Martin Graßhoff
- Institute for Computational Genomics Joint Research Center for Computational Biomedicine, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Ivan G Costa
- Institute for Computational Genomics Joint Research Center for Computational Biomedicine, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Alexandre Theocharides
- Division of Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Angela Maurer
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Herdit M Schüler
- Institute for Human Genetics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Eva Miriam Buhl
- Institute for Pathology, Electron Microscopy Facility, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Kristina Pannen
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Julian Baumeister
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Milena Kalmer
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Siddharth Gupta
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Peter Boor
- Institute for Pathology, Electron Microscopy Facility, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Deniz Gezer
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Tim H Brümmendorf
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Martin Zenke
- Institute for Biomedical Engineering, Department of Cell Biology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany; Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Nicolas Chatain
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany.
| |
Collapse
|
7
|
The Tumor Microenvironment-Dependent Transcription Factors AHR and HIF-1α Are Dispensable for Leukemogenesis in the Eµ-TCL1 Mouse Model of Chronic Lymphocytic Leukemia. Cancers (Basel) 2021; 13:cancers13184518. [PMID: 34572746 PMCID: PMC8466120 DOI: 10.3390/cancers13184518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 01/24/2023] Open
Abstract
Simple Summary Chronic lymphocytic leukemia (CLL) is the most common leukemia in Western countries, mostly affecting the elderly. The survival of leukemic cells depends on multiple soluble factors and on the stimulation of the BCR signaling pathway. Microenvironment-dependent transcription factors also contribute to CLL biology. Here, we generated new transgenic murine conditional knock-out models of CLL to study the role of the two transcription factors HIF-1α and AHR. Unexpectedly, we observed that both factors are dispensable for leukemia development in these models. Abstract Chronic lymphocytic leukemia (CLL) is the most frequent leukemia in the elderly and is characterized by the accumulation of mature B lymphocytes in peripheral blood and primary lymphoid organs. In order to proliferate, leukemic cells are highly dependent on complex interactions with their microenvironment in proliferative niches. Not only soluble factors and BCR stimulation are important for their survival and proliferation, but also the activation of transcription factors through different signaling pathways. The aryl hydrocarbon receptor (AHR) and hypoxia-inducible factor (HIF)-1α are two transcription factors crucial for cancer development, whose activities are dependent on tumor microenvironment conditions, such as the presence of metabolites from the tryptophan pathway and hypoxia, respectively. In this study, we addressed the potential role of AHR and HIF-1α in chronic lymphocytic leukemia (CLL) development in vivo. To this end, we crossed the CLL mouse model Eµ-TCL1 with the corresponding transcription factor-conditional knock-out mice to delete one or both transcription factors in CD19+ B cells only. Despite AHR and HIF-1α being activated in CLL cells, deletion of either or both of them had no impact on CLL progression or survival in vivo, suggesting that these transcription factors are not crucial for leukemogenesis in CLL.
Collapse
|
8
|
Lu X, Han L, Busquets J, Collins M, Lodi A, Marszalek JR, Konopleva M, Tiziani S. The Combined Treatment With the FLT3-Inhibitor AC220 and the Complex I Inhibitor IACS-010759 Synergistically Depletes Wt- and FLT3-Mutated Acute Myeloid Leukemia Cells. Front Oncol 2021; 11:686765. [PMID: 34490088 PMCID: PMC8417744 DOI: 10.3389/fonc.2021.686765] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/27/2021] [Indexed: 11/13/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive hematologic malignancy with a high mortality rate and relapse risk. Although progress on the genetic and molecular understanding of this disease has been made, the standard of care has changed minimally for the past 40 years and the five-year survival rate remains poor, warranting new treatment strategies. Here, we applied a two-step screening platform consisting of a primary cell viability screening and a secondary metabolomics-based phenotypic screening to find synergistic drug combinations to treat AML. A novel synergy between the oxidative phosphorylation inhibitor IACS-010759 and the FMS-like tyrosine kinase 3 (FLT3) inhibitor AC220 (quizartinib) was discovered in AML and then validated by ATP bioluminescence and apoptosis assays. In-depth stable isotope tracer metabolic flux analysis revealed that IACS-010759 and AC220 synergistically reduced glucose and glutamine enrichment in glycolysis and the TCA cycle, leading to impaired energy production and de novo nucleotide biosynthesis. In summary, we identified a novel drug combination, AC220 and IACS-010759, which synergistically inhibits cell growth in AML cells due to a major disruption of cell metabolism, regardless of FLT3 mutation status.
Collapse
Affiliation(s)
- Xiyuan Lu
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX, United States
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Lina Han
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jonathan Busquets
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX, United States
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Meghan Collins
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX, United States
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Alessia Lodi
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX, United States
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Joseph R. Marszalek
- TRACTION - Translational Research to AdvanCe Therapeutics and Innovation in ONcology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Stefano Tiziani
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX, United States
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
- Department of Oncology, Dell Medical School, LiveSTRONG Cancer Institutes, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
9
|
Kuek V, Hughes AM, Kotecha RS, Cheung LC. Therapeutic Targeting of the Leukaemia Microenvironment. Int J Mol Sci 2021; 22:6888. [PMID: 34206957 PMCID: PMC8267786 DOI: 10.3390/ijms22136888] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023] Open
Abstract
In recent decades, the conduct of uniform prospective clinical trials has led to improved remission rates and survival for patients with acute myeloid leukaemia and acute lymphoblastic leukaemia. However, high-risk patients continue to have inferior outcomes, where chemoresistance and relapse are common due to the survival mechanisms utilised by leukaemic cells. One such mechanism is through hijacking of the bone marrow microenvironment, where healthy haematopoietic machinery is transformed or remodelled into a hiding ground or "sanctuary" where leukaemic cells can escape chemotherapy-induced cytotoxicity. The bone marrow microenvironment, which consists of endosteal and vascular niches, can support leukaemogenesis through intercellular "crosstalk" with niche cells, including mesenchymal stem cells, endothelial cells, osteoblasts, and osteoclasts. Here, we summarise the regulatory mechanisms associated with leukaemia-bone marrow niche interaction and provide a comprehensive review of the key therapeutics that target CXCL12/CXCR4, Notch, Wnt/b-catenin, and hypoxia-related signalling pathways within the leukaemic niches and agents involved in remodelling of niche bone and vasculature. From a therapeutic perspective, targeting these cellular interactions is an exciting novel strategy for enhancing treatment efficacy, and further clinical application has significant potential to improve the outcome of patients with leukaemia.
Collapse
Affiliation(s)
- Vincent Kuek
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (V.K.); (A.M.H.); (R.S.K.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Anastasia M. Hughes
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (V.K.); (A.M.H.); (R.S.K.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| | - Rishi S. Kotecha
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (V.K.); (A.M.H.); (R.S.K.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children’s Hospital, Perth, WA 6009, Australia
- School of Medicine, University of Western Australia, Perth, WA 6009, Australia
| | - Laurence C. Cheung
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (V.K.); (A.M.H.); (R.S.K.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| |
Collapse
|
10
|
Kaweme NM, Zhou F. Optimizing NK Cell-Based Immunotherapy in Myeloid Leukemia: Abrogating an Immunosuppressive Microenvironment. Front Immunol 2021; 12:683381. [PMID: 34220833 PMCID: PMC8247591 DOI: 10.3389/fimmu.2021.683381] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022] Open
Abstract
Natural killer (NK) cells are prominent cytotoxic and cytokine-producing components of the innate immune system representing crucial effector cells in cancer immunotherapy. Presently, various NK cell-based immunotherapies have contributed to the substantial improvement in the reconstitution of NK cells against advanced-staged and high-risk AML. Various NK cell sources, including haploidentical NK cells, adaptive NK cells, umbilical cord blood NK cells, stem cell-derived NK cells, chimeric antigen receptor NK cells, cytokine-induced memory-like NK cells, and NK cell lines have been identified. Devising innovative approaches to improve the generation of therapeutic NK cells from the aforementioned sources is likely to enhance NK cell expansion and activation, stimulate ex vivo and in vivo persistence of NK cells and improve conventional treatment response of myeloid leukemia. The tumor-promoting properties of the tumor microenvironment and downmodulation of NK cellular metabolic activity in solid tumors and hematological malignancies constitute a significant impediment in enhancing the anti-tumor effects of NK cells. In this review, we discuss the current NK cell sources, highlight ongoing interventions in enhancing NK cell function, and outline novel strategies to circumvent immunosuppressive factors in the tumor microenvironment to improve the efficacy of NK cell-based immunotherapy and expand their future success in treating myeloid leukemia.
Collapse
Affiliation(s)
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
11
|
Simioni C, Conti I, Varano G, Brenna C, Costanzi E, Neri LM. The Complexity of the Tumor Microenvironment and Its Role in Acute Lymphoblastic Leukemia: Implications for Therapies. Front Oncol 2021; 11:673506. [PMID: 34026651 PMCID: PMC8131840 DOI: 10.3389/fonc.2021.673506] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 03/30/2021] [Indexed: 12/15/2022] Open
Abstract
The microenvironment that surrounds a tumor, in addition to the tumor itself, plays an important role in the onset of resistance to molecularly targeted therapies. Cancer cells and their microenvironment interact closely between them by means of a molecular communication that mutually influences their biological characteristics and behavior. Leukemia cells regulate the recruitment, activation and program of the cells of the surrounding microenvironment, including those of the immune system. Studies on the interactions between the bone marrow (BM) microenvironment and Acute Lymphoblastic Leukemia (ALL) cells have opened a scenario of potential therapeutic targets which include cytokines and their receptors, signal transduction networks, and hypoxia-related proteins. Hypoxia also enhances the formation of new blood vessels, and several studies show how angiogenesis could have a key role in the pathogenesis of ALL. Knowledge of the molecular mechanisms underlying tumor-microenvironment communication and angiogenesis could contribute to the early diagnosis of leukemia and to personalized molecular therapies. This article is part of a Special Issue entitled: Innovative Multi-Disciplinary Approaches for Precision Studies in Leukemia edited by Sandra Marmiroli (University of Modena and Reggio Emilia, Modena, Italy) and Xu Huang (University of Glasgow, Glasgow, United Kingdom).
Collapse
Affiliation(s)
- Carolina Simioni
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.,Laboratory for Technologies of Advanced Therapies (LTTA) - Electron Microscopy Center, University of Ferrara, Ferrara, Italy
| | - Ilaria Conti
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Gabriele Varano
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Cinzia Brenna
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Eva Costanzi
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Luca M Neri
- Laboratory for Technologies of Advanced Therapies (LTTA) - Electron Microscopy Center, University of Ferrara, Ferrara, Italy.,Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
12
|
Wang JP, Liao YT, Wu SH, Huang HK, Chou PH, Chiang ER. Adipose Derived Mesenchymal Stem Cells from a Hypoxic Culture Reduce Cartilage Damage. Stem Cell Rev Rep 2021; 17:1796-1809. [PMID: 33893621 DOI: 10.1007/s12015-021-10169-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2021] [Indexed: 12/26/2022]
Abstract
The method to benifit tissue engineering of adipose-derived stem cells (ADSCs) to cartilage has been an objective of intense research in treating increasing cartilage-related disease. In this study, whether hypoxic expansion would enhance the proliferation and in vitro chondrogenic differentiation of ADSCs was studied, and then hypoxic expansion was applied to reduce cartilage damage in a rat model in vivo. Hypoxic expansion increased the proliferation and decreased the expression of aging-related genes, including p16, p21, and p53, of human ADSCs in comparison with normoxic expansion. In addition, the γH2AX expression was reduced in the hypoxic ADSCs. The chondrogenic markers were enhanced in the hypoxic ADSC differentiated chondrogenic pellets, including SOX9 on day 7 and gene expressions of COL 2 and COL 10 on day 21. To determine the in vitro chondrogenic differentiation potential of ADSCs, ADSC differentiated 21-day chondrogenic pellets were stained by Alcian blue staining and the immunostaining of COL 2 and COL 10, the results of which confirmed the enhancement of differentiation potential after the hypoxic expansion. Moreover, cartilage injury in a rat model was reduced by hypoxic ADSC treatment that was determined by histological and immunohistochemical staining detections. The effects of hypoxic expansion of ADSCs and bone marrow-derived stem cells (BMSCs) on chondrogenic differentiation potential were also compared. Smaller sizes were presented in the in vitro hypoxic BMSC differentiated chondrogenic pellets, whereas the chondrogenic marker expressions were significantly higher than those of the hypoxic ADSCs. However, there was no significant difference between the treatments of the hypoxic ADSCs and BMSCs in the cartilage injury in vivo. In conclusion, hypoxic expansion increases the chondrogenic differentiation potential of ADSCs and BMSCs in vitro and enhances them to reduce cartilage damage in vivo. Although the hypoxic BMSCs showed compact chondrogenic pellet formation and higher potential of chondrogenesis, the easy access and large resources of ADSCs still uplifted the application.
Collapse
Affiliation(s)
- Jung-Pan Wang
- School of Medicine, Department of Surgery, National Yang Ming Chiao Tung University, Taipei, Taiwan. .,Department of Orthopaedics & Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan.
| | - Yu-Ting Liao
- Department of Orthopaedics & Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Szu-Hsien Wu
- School of Medicine, Department of Surgery, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Surgery, Division of Plastic and Reconstructive Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hui-Kuang Huang
- School of Medicine, Department of Surgery, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Orthopaedics & Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Orthopaedics, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, Taiwan.,Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Po-Hsin Chou
- Department of Orthopaedics & Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - En-Rung Chiang
- School of Medicine, Department of Surgery, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Orthopaedics & Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
13
|
Rajagopal P, Jayandharan GR, Krishnan UM. Evaluation of the Anticancer Activity of pH-Sensitive Polyketal Nanoparticles for Acute Myeloid Leukemia. Mol Pharm 2021; 18:2015-2031. [PMID: 33780253 DOI: 10.1021/acs.molpharmaceut.0c01243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Polyketals are a class of acid-responsive polymers that have been relatively less explored for drug delivery applications compared to polyesters. The degradation of these polymers is accelerated in an acidic medium and does not result in acidic byproducts. Their biocompatibility depends on the diol used for the synthesis. The present work aims to synthesize, characterize, and fabricate nanospheres of an aliphatic polyketal for delivery of the nucleotide analogue cytarabine toward the treatment of acute myeloid leukemia (AML). The internalization mechanism of the nanospheres was probed, and its implication on the nuclear localization and escape from the endo-lysosomal compartments were studied. The drug-loaded polyketal nanoparticles reduced the cell viability to a greater extent compared with the free drug. The effect of the drug-loaded polyketal nanoparticles on the differential gene expression of leukemic cells was investigated for the first time to understand their therapeutic implications. It was found that treatment with drug-loaded polyketal nanoparticles downregulated AML-specific genes involved in cell proliferation and recurrence compared to the free drug. The protein expression studies were performed for selected genes obtained from gene expression analysis. Biodistribution studies showed that the poly(cyclohexane-1,4-diyl acetone dimethylene ketal) (PCADK) nanoparticles exhibit prolonged circulation time. Overall, our results suggest that polyketal-based delivery of cytarabine represents a more effective alternative strategy for AML therapy.
Collapse
Affiliation(s)
- Pratheppa Rajagopal
- Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University Thanjavur 613401, India.,School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, India
| | - Giridhara R Jayandharan
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India.,The Mehta Family Centre for Engineering In Medicine, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University Thanjavur 613401, India.,School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, India.,School of Arts, Science & Humanities, SASTRA Deemed University, Thanjavur 613401, India
| |
Collapse
|
14
|
Mpakou V, Spathis A, Bouchla A, Tsakiraki Z, Kontsioti F, Papageorgiou S, Bazani E, Gkontopoulos K, Thomopoulos T, Glezou I, Galanopoulos A, Symeonidis A, Diamantopoulos PT, Viniou NA, Kontandreopoulou CN, Zafeiropoulou K, Kotsianidis I, Lamprianidou E, Foukas P, Mpamias A, Pappa V. Upregulated hypoxia inducible factor 1α signaling pathway in high risk myelodysplastic syndrome and acute myeloid leukemia patients is associated with better response to 5-azacytidine-data from the Hellenic myelodysplastic syndrome study group. Hematol Oncol 2021; 39:231-242. [PMID: 33332639 DOI: 10.1002/hon.2834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/09/2020] [Accepted: 12/15/2020] [Indexed: 11/07/2022]
Abstract
5-azacytidine (5-AZA) is considered the standard of care for patients with high-risk myelodysplastic syndromes (MDS) and patients with acute myeloid leukemia (AML) not candidate for intensive chemotherapy. However, even after an initial favorable response, almost all patients relapse, with the exact mechanisms underlying primary or secondary 5-AZA resistance remaining largely unknown. Several reports have previously demonstrated the significance of hypoxia in the regulation of both physiological and malignant hematopoiesis. In MDS, high hypoxia inducible factor 1α (Hif-1α) expression has been correlated with poor overall survival and disease progression, while its involvement in the disease's pathogenesis was recently reported. We herein investigated the possible association of the Hif-1α signaling pathway with response to 5-AZA therapy in MDS/AML patients. Our data demonstrated that 5-AZA-responders present with higher Hif-1α mRNA and protein expression compared to 5-AZA-non-responders/stable disease patients, before the initiation of therapy, while, interestingly, no significant differences in Hif-1α mRNA expression at the 6-month follow-up were observed. Moreover, we found that 5-AZA-responders exhibited elevated mRNA levels of the Hif-1α downstream targets lactate dehydrogenase a (LDHa) and BCL2 interacting protein 3 like (BNIP3L), a further indication of an overactivated Hif-1a signaling pathway in these patients. Kaplan-Meier survival analysis revealed a significant correlation between high Hif-1α mRNA expression and better survival rates, while logistic regression analysis showed that Hif-1α mRNA expression is an independent predictor of response to 5-AZA therapy. From the clinical point of view, apart from proposing Hif-1α mRNA expression as a significant predictive factor for response to 5-AZA, our data offer new perspectives on MDS combinational therapies, suggesting a potential synergistic activity of 5-AZA and Hif-1α inducers, such as propyl hydroxylases inhibitors (PHDi).
Collapse
Affiliation(s)
- Vassiliki Mpakou
- Second Department of Internal Medicine and Research Institute, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens, Greece
| | - Aris Spathis
- Second Department of Pathology, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens, Greece
| | - Anthi Bouchla
- Second Department of Internal Medicine and Research Institute, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens, Greece
| | - Zoi Tsakiraki
- Second Department of Pathology, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens, Greece
| | - Frieda Kontsioti
- Second Department of Internal Medicine and Research Institute, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens, Greece
| | - Sotirios Papageorgiou
- Second Department of Internal Medicine and Research Institute, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens, Greece
| | - Efthymia Bazani
- Second Department of Internal Medicine and Research Institute, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens, Greece
| | - Konstantinos Gkontopoulos
- Second Department of Internal Medicine and Research Institute, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens, Greece
| | - Thomas Thomopoulos
- Second Department of Internal Medicine and Research Institute, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens, Greece
| | - Irene Glezou
- Second Department of Internal Medicine and Research Institute, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens, Greece
| | - Athanasios Galanopoulos
- Department of Clinical Hematology, G. Gennimatas District General Hospital, Athens, Greece.,The Hellenic MDS Study Group, Hellenic Society of Haematology, Athens, Greece
| | - Argiris Symeonidis
- The Hellenic MDS Study Group, Hellenic Society of Haematology, Athens, Greece.,Hematology Division, Dept of Int. Medicine, University of Patras Medical School, Patras, Greece
| | - Panagiotis T Diamantopoulos
- First Department of Internal Medicine, Hematology Unit, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Nora-Athina Viniou
- The Hellenic MDS Study Group, Hellenic Society of Haematology, Athens, Greece.,First Department of Internal Medicine, Hematology Unit, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Christina-Nefeli Kontandreopoulou
- First Department of Internal Medicine, Hematology Unit, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Kalliopi Zafeiropoulou
- Hematology Division, Dept of Int. Medicine, University of Patras Medical School, Patras, Greece
| | - Ioannis Kotsianidis
- The Hellenic MDS Study Group, Hellenic Society of Haematology, Athens, Greece.,Department of Hematology, Democritus University of Thrace, Medical School, Alexandroupolis, Greece
| | - Eleftheria Lamprianidou
- Department of Hematology, Democritus University of Thrace, Medical School, Alexandroupolis, Greece
| | - Periklis Foukas
- Second Department of Pathology, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens, Greece
| | - Aristoteles Mpamias
- Second Department of Internal Medicine and Research Institute, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens, Greece
| | - Vasiliki Pappa
- Second Department of Internal Medicine and Research Institute, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens, Greece.,The Hellenic MDS Study Group, Hellenic Society of Haematology, Athens, Greece
| |
Collapse
|
15
|
Rodríguez-García A, García-Vicente R, Morales ML, Ortiz-Ruiz A, Martínez-López J, Linares M. Protein Carbonylation and Lipid Peroxidation in Hematological Malignancies. Antioxidants (Basel) 2020; 9:E1212. [PMID: 33271863 PMCID: PMC7761105 DOI: 10.3390/antiox9121212] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/20/2020] [Accepted: 11/28/2020] [Indexed: 02/07/2023] Open
Abstract
Among the different mechanisms involved in oxidative stress, protein carbonylation and lipid peroxidation are both important modifications associated with the pathogenesis of several diseases, including cancer. Hematopoietic cells are particularly vulnerable to oxidative damage, as the excessive production of reactive oxygen species and associated lipid peroxidation suppress self-renewal and induce DNA damage and genomic instability, which can trigger malignancy. A richer understanding of the clinical effects of oxidative stress might improve the prognosis of these diseases and inform therapeutic strategies. The most common protein carbonylation and lipid peroxidation compounds, including hydroxynonenal, malondialdehyde, and advanced oxidation protein products, have been investigated for their potential effect on hematopoietic cells in several studies. In this review, we focus on the most important protein carbonylation and lipid peroxidation biomarkers in hematological malignancies, their role in disease development, and potential treatment implications.
Collapse
Affiliation(s)
- Alba Rodríguez-García
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (i+12), Hematological Malignancies Clinical Research Unit H120-CNIO, CIBERONC, ES 28041 Madrid, Spain; (A.R.-G.); (R.G.-V.); (M.L.M.); (A.O.-R.); (J.M.-L.)
| | - Roberto García-Vicente
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (i+12), Hematological Malignancies Clinical Research Unit H120-CNIO, CIBERONC, ES 28041 Madrid, Spain; (A.R.-G.); (R.G.-V.); (M.L.M.); (A.O.-R.); (J.M.-L.)
| | - María Luz Morales
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (i+12), Hematological Malignancies Clinical Research Unit H120-CNIO, CIBERONC, ES 28041 Madrid, Spain; (A.R.-G.); (R.G.-V.); (M.L.M.); (A.O.-R.); (J.M.-L.)
| | - Alejandra Ortiz-Ruiz
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (i+12), Hematological Malignancies Clinical Research Unit H120-CNIO, CIBERONC, ES 28041 Madrid, Spain; (A.R.-G.); (R.G.-V.); (M.L.M.); (A.O.-R.); (J.M.-L.)
| | - Joaquín Martínez-López
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (i+12), Hematological Malignancies Clinical Research Unit H120-CNIO, CIBERONC, ES 28041 Madrid, Spain; (A.R.-G.); (R.G.-V.); (M.L.M.); (A.O.-R.); (J.M.-L.)
- Department of Medicine, Medicine School, Universidad Complutense de Madrid, ES 28040 Madrid, Spain
| | - María Linares
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (i+12), Hematological Malignancies Clinical Research Unit H120-CNIO, CIBERONC, ES 28041 Madrid, Spain; (A.R.-G.); (R.G.-V.); (M.L.M.); (A.O.-R.); (J.M.-L.)
- Department of Biochemistry and Molecular Biology, Pharmacy School, Universidad Complutense de Madrid, ES 28040 Madrid, Spain
| |
Collapse
|
16
|
Todd VM, Johnson RW. Hypoxia in bone metastasis and osteolysis. Cancer Lett 2020; 489:144-154. [PMID: 32561416 PMCID: PMC7429356 DOI: 10.1016/j.canlet.2020.06.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/15/2020] [Accepted: 06/01/2020] [Indexed: 12/19/2022]
Abstract
Hypoxia is a common feature in tumors, driving pathways that promote epithelial-to-mesenchymal transition, invasion, and metastasis. Clinically, high levels of hypoxia-inducible factor (HIF) expression and stabilization at the primary site in many cancer types is associated with poor patient outcomes. Experimental evidence suggests that HIF signaling in the primary tumor promotes their dissemination to the bone, as well as the release of factors such as LOX that act distantly on the bone to stimulate osteolysis and form a pre-metastatic niche. Additionally, the bone itself is a generally hypoxic organ, fueling the activation of HIF signaling in bone resident cells, promoting tumor cell homing to the bone as well as osteoclastogenesis. The hypoxic microenvironment of the bone also stimulates the vicious cycle of tumor-induced bone destruction, further fueling tumor cell growth and osteolysis. Furthermore, hypoxia appears to regulate key tumor dormancy factors. Thus, hypoxia acts both on the tumor cells as well as the metastatic site to promote tumor cell metastasis.
Collapse
Affiliation(s)
- Vera M Todd
- Graduate Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Bone Biology, Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rachelle W Johnson
- Graduate Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Bone Biology, Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
17
|
Anselmi L, Bertuccio SN, Lonetti A, Prete A, Masetti R, Pession A. Insights on the Interplay between Cells Metabolism and Signaling: A Therapeutic Perspective in Pediatric Acute Leukemias. Int J Mol Sci 2020; 21:ijms21176251. [PMID: 32872391 PMCID: PMC7503381 DOI: 10.3390/ijms21176251] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 12/12/2022] Open
Abstract
Nowadays, thanks to extensive studies and progress in precision medicine, pediatric leukemia has reached an extremely high overall survival rate. Nonetheless, a fraction of relapses and refractory cases is still present, which are frequently correlated with poor prognosis. Although several molecular features of these diseases are known, still the field of energy metabolism, which is widely studied in adult, has not been frequently explored in childhood leukemias. Metabolic reprogramming is a hallmark of cancer and is deeply connected with other genetic and signaling aberrations generally known to be key features of both acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). This review aims to clear the current knowledge on metabolic rewiring in pediatric ALL and AML, also highlighting the influence of the main signaling pathways and suggesting potential ideas to further exploit this field to discover new prognostic biomarkers and, above all, beneficial therapeutic options.
Collapse
Affiliation(s)
- Laura Anselmi
- Pediatric Hematology and Oncology Unit, S.Orsola-Malpighi Hospital, University of Bologna, 40126 Bologna, Italy;
| | - Salvatore Nicola Bertuccio
- Pediatric Hematology-Oncology Unit, Department of Medical and Surgical Sciences DIMEC, University of Bologna, 40126 Bologna, Italy; (A.P.); (R.M.); (A.P.)
- Correspondence:
| | - Annalisa Lonetti
- Giorgio Prodi Interdepartmental Cancer Research Centre, University of Bologna, 40126 Bologna, Italy;
| | - Arcangelo Prete
- Pediatric Hematology-Oncology Unit, Department of Medical and Surgical Sciences DIMEC, University of Bologna, 40126 Bologna, Italy; (A.P.); (R.M.); (A.P.)
| | - Riccardo Masetti
- Pediatric Hematology-Oncology Unit, Department of Medical and Surgical Sciences DIMEC, University of Bologna, 40126 Bologna, Italy; (A.P.); (R.M.); (A.P.)
| | - Andrea Pession
- Pediatric Hematology-Oncology Unit, Department of Medical and Surgical Sciences DIMEC, University of Bologna, 40126 Bologna, Italy; (A.P.); (R.M.); (A.P.)
- Giorgio Prodi Interdepartmental Cancer Research Centre, University of Bologna, 40126 Bologna, Italy;
| |
Collapse
|
18
|
Rytelewski M, Harutyunyan K, Baran N, Mallampati S, Zal MA, Cavazos A, Butler JM, Konoplev S, El Khatib M, Plunkett S, Marszalek JR, Andreeff M, Zal T, Konopleva M. Inhibition of Oxidative Phosphorylation Reverses Bone Marrow Hypoxia Visualized in Imageable Syngeneic B-ALL Mouse Model. Front Oncol 2020; 10:991. [PMID: 32695673 PMCID: PMC7339962 DOI: 10.3389/fonc.2020.00991] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
Abnormally low level of interstitial oxygen, or hypoxia, is a hallmark of tumor microenvironment and a known promoter of cancer chemoresistance. Inside a solid tumor mass, the hypoxia stems largely from inadequate supply of oxygenated blood through sparse or misshapen tumor vasculature whilst oxygen utilization rates are low in typical tumor's glycolytic metabolism. In acute leukemias, however, markers of intracellular hypoxia such as increased pimonidazole adduct staining and HIF-1α stabilization are observed in advanced leukemic bone marrows (BM) despite an increase in BM vasculogenesis. We utilized intravital fast scanning two-photon phosphorescence lifetime imaging microscopy (FaST-PLIM) in a BCR-ABL B-ALL mouse model to image the extracellular oxygen concentrations (pO2) in leukemic BM, and we related the extracellular oxygen levels to intracellular hypoxia, vascular markers and local leukemia burden. We observed a transient increase in BM pO2 in initial disease stages with intermediate leukemia BM burden, which correlated with an expansion of blood-carrying vascular network in the BM. Yet, we also observed increased formation of intracellular pimonidazole adducts in leukemic BM at the same time. This intermediate stage was followed by a significant decrease of extracellular pO2 and further increase of intracellular hypoxia as leukemia cellularity overwhelmed BM in disease end-stage. Remarkably, treatment of leukemic mice with IACS-010759, a pharmacological inhibitor of mitochondrial Complex I, substantially increased pO2 in the BM with advanced B-ALL, and it alleviated intracellular hypoxia reported by pimonidazole staining. High rates of oxygen consumption by B-ALL cells were confirmed by Seahorse assay including in ex vivo cells. Our results suggest that B-ALL expansion in BM is associated with intense oxidative phosphorylation (OxPhos) leading to the onset of metabolic BM hypoxia despite increased BM vascularization. Targeting mitochondrial respiration may be a novel approach to counteract BM hypoxia in B-ALL and, possibly, tumor hypoxia in other OxPhos-reliant malignancies.
Collapse
Affiliation(s)
- Mateusz Rytelewski
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Karine Harutyunyan
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Natalia Baran
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Saradhi Mallampati
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - M Anna Zal
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Antonio Cavazos
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jason M Butler
- Weill Cornell Medicine, Medical School of Biological Sciences, Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, United States
| | - Sergej Konoplev
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Mirna El Khatib
- Department of Biochemistry and Biophysics, The University of Pennsylvania, Philadelphia, PA, United States
| | - Shane Plunkett
- Department of Biochemistry and Biophysics, The University of Pennsylvania, Philadelphia, PA, United States
| | - Joseph R Marszalek
- TRACTION, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Michael Andreeff
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Tomasz Zal
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
19
|
Hwang OK, Noh YW, Hong JT, Lee JW. Hypoxia Pretreatment Promotes Chondrocyte Differentiation of Human Adipose-Derived Stem Cells via Vascular Endothelial Growth Factor. Tissue Eng Regen Med 2020; 17:335-350. [PMID: 32451775 DOI: 10.1007/s13770-020-00265-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/09/2020] [Accepted: 04/11/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Human adipose tissue-derived stem cells (ADSCs) are attractive multipotent stem cell sources with therapeutic potential in various fields requiring repair and regeneration, such as acute and chronically damaged tissues. ADSC is suitable for cell-based therapy, but its use has been hampered due to poor survival after administration. Potential therapeutic use of ADSC requires mass production of cells through in vitro expansion. Many studies have consistently observed the tendency of senescence by mesenchymal stem cell (MSC) proliferation upon expansion. Hypoxia has been reported to improve stem cell proliferation and survival. METHODS We investigated the effects of hypoxia pretreatment on ADCS proliferation, migration capacity, differentiation potential and cytokine production. We also analyzed the effects of vascular endothelial growth factor (VEGF) on osteogenic and chondrogenic differentiation of ADSCs by hypoxia pretreatment. RESULTS Hypoxia pretreatment increased the proliferation of ADSCs by increasing VEGF levels. Interestingly, hypoxia pretreatment significantly increased chondrogenic differentiation but decreased osteogenic differentiation compared to normoxia. The osteogenic differentiation of ADSC was decreased by the addition of VEGF but increased by the depletion of VEGF. We have shown that hypoxia pretreatment increases the chondrogenic differentiation of ADSCs while reducing osteogenic differentiation in a VEGF-dependent manner. CONCLUSION These results show that hypoxia pretreatment can provide useful information for studies that require selective inhibition of osteogenic differentiation, such as cartilage regeneration.
Collapse
Affiliation(s)
- Ok Kyung Hwang
- New Drug Development Center, Osong Medical Innovation Foundation, Chungbuk, 28160, Republic of Korea.,College of Pharmacy and Medical Research Center, Chungbuk National University, Chungbuk, 28160, Republic of Korea
| | - Young Woock Noh
- New Drug Development Center, Osong Medical Innovation Foundation, Chungbuk, 28160, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Chungbuk, 28160, Republic of Korea.
| | - Je-Wook Lee
- New Drug Development Center, Osong Medical Innovation Foundation, Chungbuk, 28160, Republic of Korea.
| |
Collapse
|
20
|
Pharmacological targeting of immune checkpoint A2aR improves function of anti-CD19 CAR T cells in vitro. Immunol Lett 2020; 223:44-52. [PMID: 32289340 DOI: 10.1016/j.imlet.2020.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/04/2020] [Accepted: 04/05/2020] [Indexed: 12/18/2022]
Abstract
In spite of impressive results in the treatment of acute lymphoblastic B cell leukemia (B-ALL) with chimeric antigen receptor (CAR) T cells, the clinical outcome of some hematological cancers like follicular lymphoma (FL) and chronic lymphocytic leukemia (CLL) has not been very promising likely due to immunosuppressive networks within tumor microenvironment. Hypoxia in the microenvironment of hematological malignancies and consequently generation of adenosine molecule is appeared to be correlated with immunosuppression, tumor progression, and relapse. Herein, we hypothesized that whether pharmacological targeting of adenosine 2a receptor (A2aR) can enhance antitumor activity of anti-CD19 CAR T cells in vitro. Prior to functional assays, A2aR expression was assessed in CAR-expressing T cells. Our results showed that A2aR was not only up-regulated in the fully human anti-CD19 CAR T cells (hereafter referred to as huCAR19 T cells) but also was further overexpressed following re-stimulation with target cells. Although pharmacological inhibition of A2aR could significantly increase proliferation capacity and cytokine production of huCAR19 T cells following treatment with an adenosine analog, cytotoxic activity of huCAR19 T cells was not significantly improved. Considering A2aR overexpression in huCAR19 T cells in the tumor microenvironment, our results indicated that pharmacological targeting of A2aR could not only improve huCAR19 T cells functionality in a hostile tumor microenvironment but also could have a therapeutic advantage, and sought to assess the possibility in a pre-clinical setting.
Collapse
|
21
|
Chowdury MA, Heileman KL, Moore TA, Young EWK. Biomicrofluidic Systems for Hematologic Cancer Research and Clinical Applications. SLAS Technol 2019; 24:457-476. [PMID: 31173533 DOI: 10.1177/2472630319846878] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A persistent challenge in developing personalized treatments for hematologic cancers is the lack of patient specific, physiologically relevant disease models to test investigational drugs in clinical trials and to select therapies in a clinical setting. Biomicrofluidic systems and organ-on-a-chip technologies have the potential to change how researchers approach the fundamental study of hematologic cancers and select clinical treatment for individual patient. Here, we review microfluidics cell-based technology with application toward studying hematologic tumor microenvironments (TMEs) for the purpose of drug discovery and clinical treatment selection. We provide an overview of state-of-the-art microfluidic systems designed to address questions related to hematologic TMEs and drug development. Given the need to develop personalized treatment platforms involving this technology, we review pharmaceutical drugs and different modes of immunotherapy for hematologic cancers, followed by key considerations for developing a physiologically relevant microfluidic companion diagnostic tool for mimicking different hematologic TMEs for testing with different drugs in clinical trials. Opportunities lie ahead for engineers to revolutionize conventional drug discovery strategies of hematologic cancers, including integrating cell-based microfluidics technology with machine learning and automation techniques, which may stimulate pharma and regulatory bodies to promote research and applications of microfluidics technology for drug development.
Collapse
Affiliation(s)
- Mosfera A Chowdury
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Khalil L Heileman
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON, Canada.,Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Thomas A Moore
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Edmond W K Young
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON, Canada.,Institute of Biomaterials & Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
22
|
Berahovich R, Liu X, Zhou H, Tsadik E, Xu S, Golubovskaya V, Wu L. Hypoxia Selectively Impairs CAR-T Cells In Vitro. Cancers (Basel) 2019; 11:cancers11050602. [PMID: 31052261 PMCID: PMC6562712 DOI: 10.3390/cancers11050602] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/18/2019] [Accepted: 04/26/2019] [Indexed: 01/01/2023] Open
Abstract
Hypoxia is a major characteristic of the solid tumor microenvironment. To understand how chimeric antigen receptor-T cells (CAR-T cells) function in hypoxic conditions, we characterized CD19-specific and BCMA-specific human CAR-T cells generated in atmospheric (18% oxygen) and hypoxic (1% oxygen) culture for expansion, differentiation status, and CD4:CD8 ratio. CAR-T cells expanded to a much lower extent in 1% oxygen than in 18% oxygen. Hypoxic CAR-T cells also had a less differentiated phenotype and a higher CD4:CD8 ratio than atmospheric CAR-T cells. CAR-T cells were then added to antigen-positive and antigen-negative tumor cell lines at the same or lower oxygen level and characterized for cytotoxicity, cytokine and granzyme B secretion, and PD-1 upregulation. Atmospheric and hypoxic CAR-T cells exhibited comparable cytolytic activity and PD-1 upregulation; however, cytokine production and granzyme B release were greatly decreased in 1% oxygen, even when the CAR-T cells were generated in atmospheric culture. Together, these data show that at solid tumor oxygen levels, CAR-T cells are impaired in expansion, differentiation and cytokine production. These effects may contribute to the inability of CAR-T cells to eradicate solid tumors seen in many patients.
Collapse
Affiliation(s)
- Robert Berahovich
- ProMab Biotechnologies, 2600 Hilltop Drive, Richmond, CA 94806, USA.
| | - Xianghong Liu
- ProMab Biotechnologies, 2600 Hilltop Drive, Richmond, CA 94806, USA.
| | - Hua Zhou
- ProMab Biotechnologies, 2600 Hilltop Drive, Richmond, CA 94806, USA.
| | - Elias Tsadik
- ProMab Biotechnologies, 2600 Hilltop Drive, Richmond, CA 94806, USA.
| | - Shirley Xu
- ProMab Biotechnologies, 2600 Hilltop Drive, Richmond, CA 94806, USA.
| | - Vita Golubovskaya
- ProMab Biotechnologies, 2600 Hilltop Drive, Richmond, CA 94806, USA.
- Department of Medicine, University of Oklahoma, Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Lijun Wu
- ProMab Biotechnologies, 2600 Hilltop Drive, Richmond, CA 94806, USA.
| |
Collapse
|
23
|
Corrado C, Costa V, Giavaresi G, Calabrese A, Conigliaro A, Alessandro R. Long Non Coding RNA H19: A New Player in Hypoxia-Induced Multiple Myeloma Cell Dissemination. Int J Mol Sci 2019; 20:ijms20040801. [PMID: 30781795 PMCID: PMC6413127 DOI: 10.3390/ijms20040801] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/06/2019] [Accepted: 02/11/2019] [Indexed: 12/13/2022] Open
Abstract
The long non-coding RNA H19 (lncH19) is broadly transcribed in the first stage of development and silenced in most cells of an adult organism; it appears again in several tumors where, through different molecular mediators, promotes cell proliferation, motility and metastases. LncH19 has been associated with hypoxia-inducible factor 1-alpha (HIF-1α) activation and, in some tumors, it has proved to be necessary and required to sustain hypoxic responses. Here we propose to investigate a putative role for the lncH19 in hypoxia induced multiple myeloma (MM) progression. Transcriptional analysis of MM cell lines (RPMI and MM1.S) exposed to normoxia or hypoxia (1% O2) was done in order to evaluate lncH19 levels under hypoxic stimulation. Then, to investigate the role of lncH19 in hypoxia mediated MM progression, transcriptional, protein and functional assays have been performed on hypoxia stimulated MM cell lines, silenced or not for lncH19. Our data demonstrated that hypoxic stimulation in MM cell lines induced the overexpression of lncH19, which, in turn, is required for the expression of the hypoxia induced genes involved in MM dissemination, such as C-X-C Motif Chemokine Receptor 4 (CXCR4) and Snail. Moreover, adhesion assays demonstrated that lncH19 silencing abrogates the increased adhesion on stromal cells induced by the hypoxic condition. Finally, Western blot analysis indicated that lncH19 silencing impaired HIF1α nuclear translocation. The LncH19, required for the induction of hypoxic responses in MM cells, could represent a new therapeutic target for MM.
Collapse
Affiliation(s)
- Chiara Corrado
- Department of BioMedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), Via Divisi 83, 90133 Palermo, Italy.
| | - Viviana Costa
- IRCCS ISTITUTO ORTOPEDICO RIZZOLI, 40138 Bologna, Italy.
| | - Gianluca Giavaresi
- IRCCS ISTITUTO ORTOPEDICO RIZZOLI, 40138 Bologna, Italy.
- Laboratory of Preclinical and Surgical Studies, IRCCS ISTITUTO ORTOPEDICO RIZZOLI, 40138 Bologna, Italy.
| | - Annalisa Calabrese
- Department of BioMedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), Via Divisi 83, 90133 Palermo, Italy.
| | - Alice Conigliaro
- Department of BioMedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), Via Divisi 83, 90133 Palermo, Italy.
| | - Riccardo Alessandro
- Department of BioMedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), Via Divisi 83, 90133 Palermo, Italy.
| |
Collapse
|
24
|
Contribution and prognostic value of TSGA10 gene expression in patients with acute myeloid leukemia (AML). Pathol Res Pract 2019; 215:506-511. [PMID: 30638859 DOI: 10.1016/j.prp.2019.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/15/2018] [Accepted: 01/05/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Different studies have investigated TSGA10 expression in various cancerous tissues but, so far no study has been conducted on newly diagnosed (ND) AML patients. The association of TSGA10 gene expression with hypoxia inducible factor (HIF) and angiogenic factors has remained to be fully elucidated and is still a controversial issue. The present study was designed to investigate this association in patients newly diagnosed with AML. METHODS We evaluated TSGA10, HIF-1α and VEGF mRNA levels in ND AML patients and healthy subjects using real-time PCR technique. Data were analyzed via comparative Livak method. RESULTS Based on the results of this study, TSGA10 gene expression was decreased in 28 out of 30 (93.3%) samples while VEGF and HIF-1α expression levels were increased in all ND AML patients compared to healthy controls. Diagnostic evaluation was performed by receiver operating characteristic (ROC) curve and area under the curve (AUC) calculation. Respectively, using cut-off relative quantification of 1.604, 0.0329, and 0.0042, the sensitivity values of TSGA10, VEGF, and HIF-1α gene expression were 86.7%, 90%, and 100%. Also, specificity values were 100%, 100% and 100%, respectively. TSGA10 expression was shown to be reduced in ND AML patients compared with healthy subjects and we found a negative correlation between TSGA10 and VEGF expression. CONCLUSIONS Since TSGA10 interacts with HIF-1 and affects its transcriptional activity, in ND AML patients with decreased TSGA10 expression, VEGF expression was high suggesting a TSGA10 mediated regulation of HIF-1 target genes. Altogether, the current study showed that TSGA10 could be considered as a tumor suppressor in AML patients.
Collapse
|
25
|
Barré FPY, Claes BSR, Dewez F, Peutz-Kootstra C, Munch-Petersen HF, Grønbæk K, Lund AH, Heeren RMA, Côme C, Cillero-Pastor B. Specific Lipid and Metabolic Profiles of R-CHOP-Resistant Diffuse Large B-Cell Lymphoma Elucidated by Matrix-Assisted Laser Desorption Ionization Mass Spectrometry Imaging and in Vivo Imaging. Anal Chem 2018; 90:14198-14206. [PMID: 30422637 PMCID: PMC6328237 DOI: 10.1021/acs.analchem.8b02910] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Diffuse
large B-cell lymphoma (DLBCL) is the most common B-cell
non-Hodgkin lymphoma. To treat this aggressive disease, R-CHOP, a
combination of immunotherapy (R; rituximab) and chemotherapy (CHOP;
cyclophosphamide, doxorubicin, vincristine, and prednisone), remains
the most commonly used regimen for newly diagnosed DLBCLs. However,
up to one-third of patients ultimately becomes refractory to initial
therapy or relapses after treatment, and the high mortality rate highlights
the urgent need for novel therapeutic approaches based upon selective
molecular targets. In order to understand the molecular mechanisms
underlying relapsed DLBCL, we studied differences in the lipid and
metabolic composition of nontreated and R-CHOP-resistant tumors, using
a combination of in vivo DLBCL xenograft models and mass spectrometry
imaging. Together, these techniques provide information regarding
analyte composition and molecular distributions of therapy-resistant
and sensitive areas. We found specific lipid and metabolic profiles
for R-CHOP-resistant tumors, such as a higher presence of phosphatidylinositol
and sphingomyelin fragments. In addition, we investigated intratumor
heterogeneity and identified specific lipid markers of viable and
necrotic areas. Furthermore, we could monitor metabolic changes and
found reduced adenosine triphosphate and increased adenosine monophosphate
in the R-CHOP-resistant tumors. This work highlights the power of
combining in vivo imaging and MSI to track molecular signatures in
DLBCL, which has potential application for other diseases.
Collapse
Affiliation(s)
- Florian P Y Barré
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry , Maastricht University , 6229 ER Maastricht , The Netherlands
| | - Britt S R Claes
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry , Maastricht University , 6229 ER Maastricht , The Netherlands
| | - Frédéric Dewez
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry , Maastricht University , 6229 ER Maastricht , The Netherlands
| | - Carine Peutz-Kootstra
- Department of Pathology , Maastricht University Medical Center, Cardiovascular Research Institute Maastricht , 6229 HX Maastricht , The Netherlands
| | - Helga F Munch-Petersen
- Department of Haematology and Department of Pathology , Rigshospitalet , 2100 Copenhagen , Denmark
| | - Kirsten Grønbæk
- Epigenomlaboratoriet, Rigshospitalet Dept. 3733 , Bartholin Institute , Copenhagen Biocenter, 2200 Copenhagen , Denmark.,Biotech Research and Innovation Centre (BRIC) , University of Copenhagen , 2200 Copenhagen , Denmark
| | - Anders H Lund
- Biotech Research and Innovation Centre (BRIC) , University of Copenhagen , 2200 Copenhagen , Denmark
| | - Ron M A Heeren
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry , Maastricht University , 6229 ER Maastricht , The Netherlands
| | - Christophe Côme
- Epigenomlaboratoriet, Rigshospitalet Dept. 3733 , Bartholin Institute , Copenhagen Biocenter, 2200 Copenhagen , Denmark.,Biotech Research and Innovation Centre (BRIC) , University of Copenhagen , 2200 Copenhagen , Denmark
| | - Berta Cillero-Pastor
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry , Maastricht University , 6229 ER Maastricht , The Netherlands
| |
Collapse
|
26
|
Karimpoor M, Yebra-Fernandez E, Parhizkar M, Orlu M, Craig D, Khorashad JS, Edirisinghe M. Alginate foam-based three-dimensional culture to investigate drug sensitivity in primary leukaemia cells. J R Soc Interface 2018; 15:20170928. [PMID: 29695605 PMCID: PMC5938583 DOI: 10.1098/rsif.2017.0928] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 03/28/2018] [Indexed: 01/14/2023] Open
Abstract
The development of assays for evaluating the sensitivity of leukaemia cells to anti-cancer agents is becoming an important aspect of personalized medicine. Conventional cell cultures lack the three-dimensional (3D) structure of the bone marrow (BM), the extracellular matrix and stromal components which are crucial for the growth and survival of leukaemia stem cells. To accurately predict the sensitivity of the leukaemia cells in an in vitro assay a culturing system containing the essential components of BM is required. In this study, we developed a porous calcium alginate foam-based scaffold to be used for 3D culture. The new 3D culture was shown to be cell compatible as it supported the proliferation of both normal haematopoietic and leukaemia cells. Our cell differential assay for myeloid markers showed that the porous foam-based 3D culture enhanced myeloid differentiation in both leukaemia and normal haematopoietic cells compared to two-dimensional culture. The foam-based scaffold reduced the sensitivity of the leukaemia cells to the tested antileukaemia agents in K562 and HL60 leukaemia cell line model and also primary myeloid leukaemia cells. This observation supports the application of calcium alginate foams as scaffold components of the 3D cultures for investigation of sensitivity to antileukaemia agents in primary myeloid cells.
Collapse
Affiliation(s)
- Mahroo Karimpoor
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
- Centre for Haematology, Department of Medicine, Imperial College, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Eva Yebra-Fernandez
- Molecular Pathology, North West London Pathology, Hammersmith Hospital, London, W12 0HS, UK
| | - Maryam Parhizkar
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Mine Orlu
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Duncan Craig
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Jamshid S Khorashad
- Centre for Haematology, Department of Medicine, Imperial College, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
- Molecular Pathology, North West London Pathology, Hammersmith Hospital, London, W12 0HS, UK
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| |
Collapse
|
27
|
Targeting Tumor Adaption to Chronic Hypoxia: Implications for Drug Resistance, and How It Can Be Overcome. Int J Mol Sci 2017; 18:ijms18091854. [PMID: 28841148 PMCID: PMC5618503 DOI: 10.3390/ijms18091854] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 12/30/2022] Open
Abstract
The rapid and uncontrolled proliferation of tumors limits the availability of oxygen and nutrients supplied from the tumor vasculature, thus exposing them to low oxygen environments. Thus, diminished oxygen availability, or hypoxia, is the most common microenvironment feature of nearly all solid tumors. All living cells have the ability to sense changes in oxygen tension and adapt to this stress to preserve survival. Likewise, cancer cells adapt to chronic hypoxic stress via several mechanisms, including promotion of angiogenic factor production, metabolic shift to consume less oxygen, and reduction of apoptotic potential. Adaptation of tumor cells to hypoxia is believed to be the main driver for selection of more invasive and therapy-resistant cancer phenotypes. In this review, we discuss molecular mechanisms by which tumor cells adapt to hypoxia, with a specific focus on hypoxia-inducible factor (HIF) transcription factor. We further discuss the current understandings on hypoxia-mediated drug resistance and strategies to overcome it.
Collapse
|