1
|
Wang S, He X, Bao N, Chen M, Ding X, Zhang M, Zhao L, Wang S, Jiang G. Potentials of miR-9-5p in promoting epileptic seizure and improving survival of glioma patients. ACTA EPILEPTOLOGICA 2022. [DOI: 10.1186/s42494-022-00097-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Abstract
Background
Epilepsy affects over 70 million people worldwide; however, the underlying mechanisms remain unclear. MicroRNAs (miRNAs) have essential functions in epilepsy. miRNA-9, a brain-specific/enriched miRNA, plays a role in various nervous system diseases and tumors, but whether miRNA-9 is involved in epilepsy and glioma-associated epilepsy remains unknown. Therefore, we aimed to explore the potential role of miR-9-5p in seizures and its effect on the survival of glioma patients, in order to provide new targets for the treatment of epilepsy and glioma.
Methods
The YM500v2 database was used to validate the expression of hsa-miR-9-5p in tissues. Moreover, qRT-PCR was performed to investigate the expression of miR-9-5p in temporal lobe epilepsy patients and rats with lithium-pilocarpine-induced seizures. Recombinant adeno-associated virus containing miR-9-5p was constructed to overexpress miR-9-5p in vivo. The effects of miR-9-5p on the behavior and electroencephalographic activities of the lithium-pilocarpine rat model of epilepsy were tested. Bioinformatics analysis was used to predict the targets of miR-9-5p and explore its potential role in epilepsy and glioma-associated epilepsy.
Results
The expression of miR-9-5p increased at 6 h and 7 days after lithium-pilocarpine-induced seizures in rats. Overexpression of miR-9-5p significantly shortened the latency of seizures and increased seizure intensity at 10 min and 20 min after administration of pilocarpine (P < 0.05). Predicted targets of miR-9-5p were abundant and enriched in the brain, and affected various pathways related to epilepsy and tumor. Survival analysis revealed that overexpression of miR-9-5p significantly improved the survival of patients from with low-grade gliomas and glioblastomas. The involvement of miR-9-5p in the glioma-associated epileptic seizures and the improvement of glioma survival may be related to multiple pathways, including the Rho GTPases and hub genes included SH3PXD2B, ARF6, and ANK2.
Conclusions
miR-9-5p may play a key role in promoting epileptic seizures and improving glioma survival, probably through multiple pathways, including GTPases of the Rho family and hub genes including SH3PXD2B, ARF6 and ANK2. Understanding the roles of miR-9-5p in epilepsy and glioma and the underlying mechanisms may provide a theoretical basis for the diagnosis and treatment of patients with epilepsy and glioma.
Collapse
|
2
|
Zhang W, Ye F, Xiong J, He F, Yang L, Yin F, Peng J, Wang X. Silencing of miR-132-3p protects against neuronal injury following status epilepticus by inhibiting IL-1β-induced reactive astrocyte (A1) polarization. FASEB J 2022; 36:e22554. [PMID: 36111973 DOI: 10.1096/fj.202200110rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 08/28/2022] [Accepted: 09/06/2022] [Indexed: 02/05/2023]
Abstract
Mesial temporal lobe epilepsy (MTLE) is one of the most common refractory epilepsies and is usually accompanied by a range of brain pathological changes, such as neuronal injury and astrocytosis. Naïve astrocytes are readily converted to cytotoxic reactive astrocytes (A1) in response to inflammatory stimulation, suppressing the polarization of A1 protects against neuronal death in early central nervous system injury. Our previous study found that pro-inflammatory cytokines and miR-132-3p (hereinafter referred to as "miR-132") expression were upregulated, but how miR-132 affected reactive astrocyte polarization and neuronal damage during epilepsy is not fully understood. Here, we aimed to explore the effect and mechanism of miR-132 on A1 polarization. Our results confirmed that A1 markers were significantly elevated in the hippocampus of MTLE rats and IL-1β-treated primary astrocytes. In vivo, knockdown of miR-132 by lateral ventricular injection reduced A1 astrocytes, neuronal loss, mossy fiber sprouting, and remitted the severity of status epilepticus and the recurrence of spontaneous recurrent seizures. In vitro, the neuronal cell viability and axon length were reduced by additional treatment with A1 astrocyte conditioned media (ACM), and downregulation of astrocyte miR-132 rescued the inhibition of cell activity by A1 ACM, while the length of axons was further inhibited. The regulation of miR-132 on A1 astrocytes may be related to its target gene expression. Our results show that interfering with astrocyte polarization may be a breakthrough in the treatment of refractory epilepsy, which may extend to the research of other astrocyte polarization-mediated brain injuries.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Pediatrics, Xiangya Hospital of Central South University, Changsha, China
| | - Fanghua Ye
- Department of Pediatrics, Xiangya Hospital of Central South University, Changsha, China
| | - Juan Xiong
- Department of Pediatrics, Xiangya Hospital of Central South University, Changsha, China
| | - Fang He
- Department of Pediatrics, Xiangya Hospital of Central South University, Changsha, China
| | - Li Yang
- Department of Pediatrics, Xiangya Hospital of Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Pediatrics, Changsha, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital of Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Pediatrics, Changsha, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital of Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Pediatrics, Changsha, China
| | - Xiaole Wang
- Department of Pediatrics, Xiangya Hospital of Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Pediatrics, Changsha, China
| |
Collapse
|
3
|
Dong W, Gao W, Yan X, Sun Y, Xu T. microRNA-132 as a negative regulator in NF-κB signaling pathway via targeting IL-1β in miiuy croaker. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 122:104113. [PMID: 33979576 DOI: 10.1016/j.dci.2021.104113] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
The innate immune system is the first line of defense against the invasion of pathogens. It can make a rapid immune response to the invading pathogenic microorganisms, thereby eliminating the invading pathogens and protecting the body from harm. microRNAs are a family of small non-coding ribonucleic acid molecules, which are important and multifunctional regulator of immune response. In this study, we studied the role of miR-132 as a key regulatory factor of IL-1β-mediated inflammation. The seed region of miR-132 can regulate gene expression by binding to the 3'UTR of IL-1β, and inhibit the expression of IL-1β at the post-transcriptional level. More importantly, miR-132 inhibits LPS-induced NF-κB signaling pathway by targeting IL-1β, thereby preventing excessive inflammatory response from causing autoimmune diseases. These results will help to better understand the complex regulatory mechanisms of teleost fishes.
Collapse
Affiliation(s)
- Wenjing Dong
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Wenya Gao
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xiaolong Yan
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yuena Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, China.
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
4
|
Tian Y, Wang L, Zhang Y, Li L, Fei Y, Zhang X, Lin G. Association between miR-212-3p and SOX11, and the effects of miR-212-3p on cell proliferation and migration in mantle cell lymphoma. Oncol Lett 2021; 22:709. [PMID: 34457064 PMCID: PMC8358606 DOI: 10.3892/ol.2021.12970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 05/21/2021] [Indexed: 01/01/2023] Open
Abstract
To the best of our knowledge, the effect of miR-212-3p on sex-determining region Y-box 11 (SOX11) expression has not been previously investigated and how this effect affects cell proliferation and migration in lymphoma remains unclear. The present study aimed to assess the association between microRNA-212-3p (miR-212-3p) and SOX11, and the effects of miR-212-3p on cell proliferation and migration in mantle cell lymphoma. Cancer tissue and corresponding paracancerous tissue samples were collected from 65 patients with mantle cell lymphoma. The mRNA expression levels of miR-212-3p and SOX11 were analyzed using quantitative PCR, and SOX11 protein expression was determined using western blotting. Following transfection, the miR-212-3p mimic group exhibited a significantly lower SOX11 mRNA and protein expression than the miR-NC group. After 48–72 h of transfection, cell proliferation in the miR-212-3p mimic group was significantly lower than that in the miR-NC group. Furthermore, the miR-212-3p mimic group exhibited significantly lower cell invasion and significantly higher apoptosis than the miR-NC group. The current results suggested that miR-212-3p inhibited lymphoma cell proliferation and migration, and promoted their apoptosis by specifically regulating SOX11. Therefore, miR-212-3p may serve as a novel therapeutic target and marker for lymphoma.
Collapse
Affiliation(s)
- Yuyang Tian
- Department of Hematology, Hainan Cancer Hospital, Haikou, Hainan 571000, P.R. China
| | - Li Wang
- Department of Hematology, Huai'an Hospital Affiliated to Xuzhou Medical College and Huai'an Second People's Hospital, Huai'an, Jiangsu 223002, P.R. China
| | - Yanming Zhang
- Department of Hematology, Huai'an Hospital Affiliated to Xuzhou Medical College and Huai'an Second People's Hospital, Huai'an, Jiangsu 223002, P.R. China
| | - Lianqiao Li
- Department of Hematology, Hainan Cancer Hospital, Haikou, Hainan 571000, P.R. China
| | - Yingying Fei
- Department of Radiotherapy, Huai'an Hospital Affiliated to Xuzhou Medical College and Huai'an Second People's Hospital, Huai'an, Jiangsu 223002, P.R. China
| | - Xingxia Zhang
- Department of Hematology, Huai'an Hospital Affiliated to Xuzhou Medical College and Huai'an Second People's Hospital, Huai'an, Jiangsu 223002, P.R. China
| | - Guoqiang Lin
- Department of Hematology, Huai'an Hospital Affiliated to Xuzhou Medical College and Huai'an Second People's Hospital, Huai'an, Jiangsu 223002, P.R. China
| |
Collapse
|
5
|
Wang L, Jiang T, Huang X, Zhou S. The protective role of the miR-25-mediated notch signaling pathway in the memory capacity and brain tissue of mice with central nervous system infections. Am J Transl Res 2021; 13:4835-4843. [PMID: 34150065 PMCID: PMC8205715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE The study aimed to explore the role of miR-25 and the notch signaling pathway in the memory capacity and brain tissue of mice with central nervous system (CNS) infections. METHODS A bioinformatics website and the dual-luciferase reporter assay were used to analyze the targeting relationship between miR-25 and Notch1. The mice were randomized into 7 groups (n=10 per group), including the normal group, the model group (lipopolysaccharide at a dose of 500 μg/kg for the model establishment), the NC group, the miR-25 mimic group, the miR-25 inhibitor group, the DAPT group, and the miR-25 inhibitor + DAPT group. qRT-PCR and western blot were used to measure the miR-25, Notch1, and Hes5 expression levels in the hippocampal CA1 region of the mice's brains, along with the cyclo-oxygenase 2 (COX-2) and inducible nitric oxide synthase (iNOS) levels in the mice's hippocampi. RESULTS Compared with the normal mice, the model mice had up-regulated miR-25, COX-2, and iNOS expressions and down-regulated Notch1 and Hes5 expressions, lower superoxide dismutase (SOD) levels in the hippocampi, and higher malondialdehyde (MDA) levels. Compared with the model group, the miR-25 mimic and DAPT groups had down-regulated Notch1 and Hes5 expressions, lower learning and memory capacities and SOD levels, higher MDA levels, and up-regulated COX-2 and iNOS expressions. CONCLUSION Down-regulating miR-25 may improve the memory capacity in mice with CNS infections by activating the Notch signaling pathway.
Collapse
Affiliation(s)
- Lizhou Wang
- Department of Interventional Radiology, The Affiliated Hospital of Guizhou Medical University Guiyang, Guizhou Province, China
| | - Tianpeng Jiang
- Department of Interventional Radiology, The Affiliated Hospital of Guizhou Medical University Guiyang, Guizhou Province, China
| | - Xueqing Huang
- Department of Interventional Radiology, The Affiliated Hospital of Guizhou Medical University Guiyang, Guizhou Province, China
| | - Shi Zhou
- Department of Interventional Radiology, The Affiliated Hospital of Guizhou Medical University Guiyang, Guizhou Province, China
| |
Collapse
|
6
|
Yilmaz UC, Bagca BG, Karaca E, Durmaz A, Durmaz B, Aykut A, Kayalar H, Avci CB, Susluer SY, Pariltay E, Gunduz C, Cogulu O. Propolis Extract Regulate microRNA Expression in Glioblastoma and Brain Cancer Stem Cells. Anticancer Agents Med Chem 2021; 22:378-389. [PMID: 33949939 DOI: 10.2174/1871520621666210504082528] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/28/2021] [Accepted: 03/08/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Grade IV gliomas are classified as glioblastoma (GBM), which is the most malignant brain cancer type. Various genetic and epigenetic mechanisms play a role in the initiation and progression of GBM. MicroRNAs (miRNAs) are small, non-coding RNA molecules that are the main epigenetic regulatory RNA class. They play variable roles in both physiological and pathological conditions, including GBM pathogenesis, by regulating expression levels of the target genes. Brain cancer stem cells (BCSCs) are subpopulations of brain cancer mass that are responsible for poor prognosis, including therapy resistance and relapse. Epigenetic regulation mediated by miRNAs is also a critical component of BCSC self-renewal and differentiation properties. Propolis is a resinous substance that is collected by honey bees from various plant sources. The flavonoids content of propolis varies, depending on the region collected andthe extraction method. Although the effects of propolis that have been collected from different sources on the miRNA expression levels in the glioblastoma cells have been shown, the effects on the BCSCs are not known yet. OBJECTIVE The aim of this study is to evaluate the effects of Aydın, a city in western Turkey, propolis, on miRNA expression levels of BCSCs and GBM cells. METHODS Aydin propolis was dissolved in 60% ethanol, and after evaporation, distilled water was added to prepare the propolis stock solution. The flavonoids content of the Aydin propolis was determined by MS Q-TOF analysis. Commercially obtained U87MG, GBM cell line, and BCSCs were used as in vitro brain cancer models. The cytotoxic and apoptotic effects of Aydın propolis were determined via WST-1 assay and Annexin V test, respectively. The miRNA expression profile was investigated via the real-time qRT-PCR method, and fold changes were calculated by using the 2-∆∆Ct method compared to untreated control cells. The miRNA-mRNA-pathway interactions, including significantly altered miRNAs, were determined using different bioinformatics tools and databases. RESULTS Quercetin 3-methyl ether was determined as the major component of the Aydin propolis. Aydin propolis did not show significant cytotoxic and apoptotic effects on both GBM and BCSCs up to 2mg/ml concentration. Aydin propolis treatment decreased the expression of nine and five miRNAs in the U87MG 2.13 to 5.65 folds and BCSCs 2.02 to 12.29 folds, respectively. Moreover, 10 miRNAs 2.22 to 10.56 folds were upregulated in propolis treated GBM cells compared to the control group, significantly (p<0.05). In the study, the potential roles of two new miRNAs, whose regulations in glioma were not previously defined, were identified. One of these miR-30d-5p, a novel potential oncomiR in GBM was 2.46 folds downregulated in Aydin propolis treated GBM cells. The other one is miR-335-5p which is a potential tumor suppressor miR in GBM, was 5.66 folds upregulated in Aydin propolis treated GBM cells. FOXO pathway and its upstream and downstream regulators and critically neuronal developmental regulators NOTCH and WNT pathways were determined as the most deregulated pathways in Aydin propolis treated cells. CONCLUSION The determination of the anti-cancer effect of Aydın propolis on the miRNA expression of GBM, especially on cancer stem cells, may contribute to the elucidation of brain cancer genetics by supporting further analyses.
Collapse
Affiliation(s)
- Ugur C Yilmaz
- Ege University, Faculty of Medicine, Department of Pediatrics, Izmir, Turkey
| | - Bakiye G Bagca
- Ege University, Faculty of Medicine, Department of Medical Biology, Izmir, Turkey
| | - Emin Karaca
- Ege University, Faculty of Medicine, Department of Medical Genetics, Izmir, Turkey
| | - Asude Durmaz
- Ege University, Faculty of Medicine, Department of Medical Genetics, Izmir, Turkey
| | - Burak Durmaz
- Ege University, Faculty of Medicine, Department of Medical Genetics, Izmir, Turkey
| | - Ayca Aykut
- Ege University, Faculty of Medicine, Department of Medical Genetics, Izmir, Turkey
| | - Husniye Kayalar
- Ege University, Faculty of Pharmacy, Department of Pharmacognosy, Izmir, Turkey
| | - Cigir B Avci
- Ege University, Faculty of Medicine, Department of Medical Biology, Izmir, Turkey
| | - Sunde Y Susluer
- Ege University, Faculty of Medicine, Department of Medical Biology, Izmir, Turkey
| | - Erhan Pariltay
- Ege University, Faculty of Medicine, Department of Medical Genetics, Izmir, Turkey
| | - Cumhur Gunduz
- Ege University, Faculty of Medicine, Department of Medical Biology, Izmir, Turkey
| | - Ozgur Cogulu
- Ege University, Faculty of Medicine, Department of Pediatrics, Izmir, Turkey
| |
Collapse
|
7
|
Wang N, Xu Y, Guo Q, Zhu C, Zhao W, Qian W, Zheng M. Effects of miR-132-3p on progress and epithelial mesenchymal transition of non-small cell lung cancer via regulating KLF7. J Thorac Dis 2021; 13:2426-2436. [PMID: 34012590 PMCID: PMC8107552 DOI: 10.21037/jtd-21-353] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background MicroRNAs (miRNAs) often appear as oncogenes or tumor suppressor genes. The aim of this research was to examine miR-132-3p and Kruppel-like factor 7 (KLF7) effects in the development of non-small cell lung cancer (NSCLC). Methods We used quantitative reverse transcription polymerase chain reaction (qRT-PCR) to determine miR-132-3p expression in tissue specimens and 6 cells (A549, H1650, H292, H1299, H1944, BEAS-2b). Luciferase report forecasted the targeting relationship between miR-132-3p and KLF7. The expression of KLF7 and interstitial protein was determined by western blot. Proliferation test and Transwell assay were adopted for examining cell development. The Cell Counting Kit-8 (CCK-8) colorimetric method was used to observe the effects of miR-132-3p and KLF7 on the proliferation, metastasis, and invasion of NSCLC tumor cells. In order to determine whether the metastasis of NSCLC tumor cells was epithelial-mesenchymal transition (EMT)-mediated, supplementary experiments with E-cadherin and vimentin were performed. Results An increased expression of miR-132-3p was detected in NSCLC. Its mimic promoted the proliferation of tumor cells. As an immediate site of miR-132-3p, KLF7 was reversely adjusted via miR-132-3p and restrained the development of tumor cells in NSCLC, the effects of which were attenuated via KLF7 over-expression. Besides, the presence of EMT-related diversions was confirmed in NSCLC. Conclusions By targeting KLF7, miR-132-3p was capable of promoting the proceeding of NSCLC tumor cells. We discovered miR-132-3p/KLF7 route may exhibit curative target for NSCLC.
Collapse
Affiliation(s)
- Ning Wang
- Thoracic Surgery Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ye Xu
- Thoracic Surgery Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingkui Guo
- Thoracic Surgery Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Zhu
- Thoracic Surgery Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen Zhao
- Thoracic Surgery Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenliang Qian
- Thoracic Surgery Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Zheng
- Thoracic Surgery Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Liu JH, Cao L, Zhang CH, Li C, Zhang ZH, Wu Q. Dihydroquercetin attenuates lipopolysaccharide-induced acute lung injury through modulating FOXO3-mediated NF-κB signaling via miR-132-3p. Pulm Pharmacol Ther 2020; 64:101934. [PMID: 32805387 DOI: 10.1016/j.pupt.2020.101934] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/15/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Dihydroquercetin (DHQ) is a potent flavonoid which has been demonstrated to have multiple biological activities including anti-inflammation activity, antioxidant activity as well as anti-cancer activity etc. Recently, many studies have focused on the antioxidant activity of DHQ. However, the use of the anti-inflammation activity of DHQ in acute lung injury (ALI) has not been reported. METHODS Cell viability was examined by CCK-8 assay. The relative expression of miR-132-3p, FOXO3 were detected by qPCR. The levels of TNF-α, IL-6 and IL-1β were detected using enzyme-linked immunosorbent assay. The amount of apoptosis cells was detected by flow cytometry. The protein levels of Bcl-2, Bax, p-p65 and p-IκBα were measured by western blot. RESULTS We found that DHQ-induced the expression of miR-132-3p in LPS-induced ALI. Overexpression of miR-132-3p resulted in the inhibition of FOXO3 expression and then suppressed FOXO3-activated NF-κB pathway, attenuating LPS-induced inflammatory response and apoptosis. CONCLUSION We demonstrated FOXO3 to be a target of miR-132-3p, and DHQ could induce the expression of miR-132-3p, relieving LPS-induced ALI via miR-132-3p/FOXO3/NF-κB axis, providing a promising therapeutic target for ALI.
Collapse
Affiliation(s)
- Jian-Hua Liu
- Department of Respiratory and Critical Care Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin, 300350, PR China; Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, PR China
| | - Liang Cao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, PR China
| | - Chang-Hong Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, PR China
| | - Chen Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, PR China
| | - Zhi-Hua Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, PR China
| | - Qi Wu
- Department of Respiratory and Critical Care Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin, 300350, PR China.
| |
Collapse
|
9
|
Zhu M, Dang Y, Yang Z, Liu Y, Zhang L, Xu Y, Zhou W, Ji G. Comprehensive RNA Sequencing in Adenoma-Cancer Transition Identified Predictive Biomarkers and Therapeutic Targets of Human CRC. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:25-33. [PMID: 32145677 PMCID: PMC7057163 DOI: 10.1016/j.omtn.2020.01.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 11/13/2019] [Accepted: 01/23/2020] [Indexed: 12/12/2022]
Abstract
Specific molecular biomarkers for predicting the transition from colorectal adenoma to cancer have been identified, however, circular RNA (circRNA)-related signatures remain to be clarified. We carried out high-throughput RNA sequencing to determine the expression profiles of circRNAs, microRNAs (miRNAs), and mRNAs in human colorectal cancer (CRC), adenoma, and adjacent normal tissues. We identified 84 circRNAs, 41 miRNAs, and 398 mRNAs that were commonly differentially expressed in CRC and adenoma tissues compared with normal tissues. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and protein-protein interaction (PPI) analyses identified numerous cancer-related hub genes that might serve as potential therapeutic targets in CRC. Competing endogenous RNA (ceRNA) networks, including three circRNAs, three miRNAs, and 28 mRNAs were constructed, suggesting their potential role in cancer progression. Representative differentially expressed RNAs were validated by the Cancer Genome Atlas (TCGA) database and real-time PCR experiments. Receiver operating characteristic (ROC) curve analysis identified three circRNAs (hsa_circ_0049487, hsa_circ_0066875, and hsa_circ_0007444) as possible novel biomarkers predicting the transition from colonic adenoma to cancer. Overall, our findings may provide novel perspectives to clarify the mechanisms of the transition from premalignant adenoma to cancer and identify specific circRNA-related signatures with possible applications for the early diagnosis of and as potential therapeutic targets in CRC.
Collapse
Affiliation(s)
- Mingzhe Zhu
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yanqi Dang
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Zhenhua Yang
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Digestive Endoscopy Department, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yang Liu
- Department of General Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Li Zhang
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yangxian Xu
- Department of General Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Wenjun Zhou
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| |
Collapse
|
10
|
Qi Y, Qian R, Jia L, Fei X, Zhang D, Zhang Y, Jiang S, Fu X. Overexpressed microRNA-494 represses RIPK1 to attenuate hippocampal neuron injury in epilepsy rats by inactivating the NF-κB signaling pathway. Cell Cycle 2020; 19:1298-1313. [PMID: 32308116 DOI: 10.1080/15384101.2020.1749472] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE The effects of microRNAs (miRNAs) have been identified in epilepsy (Ep) in recent years, our research was focused on the functions of miR-494 in Ep and its inner mechanisms. METHODS The Ep modeled rats induced by lithium chloride-pilocarpine were treated with agomir-miR-494 or RIPK1-siRNA. The pathology of rat hippocampal tissues was observed. Expression of miR-494, receptor-interacting protein kinase 1 (RIPK1) and nuclear factor-kappaB (NF-κB) p65 was assessed by RT-qPCR and Western blot analysis. The hippocampal neurons of epileptic rats were successfully modeled, which were transfected with miR-494 mimics or RIPK1-siRNA to determine neurons' proliferation ability and cell apoptosis. The target relation between miR-494 and RIPK1 was measured by bioinformatics website and dual luciferase gene reporter assay. RESULTS The expression of miR-494 was reduced, while the expression of RIPK1 and NF-κB p65 was amplified in hippocampus of Ep rats. Elevated miR-494 repressed the expression of RIPK1 to ameliorate the hippocampal neuron injury, accelerate neuronal proliferation, and restrain neuronal apoptosis via inactivating the NF-κB signaling pathway, causing a deceleration of Ep development. Furthermore, amplified RIPK1 was able to reverse the amelioration of neuronal injury in Ep rats which was contributed by upregulated miR-494. CONCLUSION We found in this study that elevated miR-494 repressed RIPK1, causing an inactivation of the NF-κB signaling pathway and acceleration of cell proliferation, and suppression of apoptosis of hippocampal neurons in Ep rats, thereby attenuating the neuron injury and Ep development. Our research may provide novel targets for the therapy of Ep.
Collapse
Affiliation(s)
- Yinbao Qi
- Department of Nuerosurgery, Shandong University , Jinan, Shandong Province, P. R. China.,Department of Neurosurgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China , Hefei, Anhui Province, P. R. China.,Department of Neurosurgery, Anhui Provincial Institute of Stereotactic Neurosurgery , Hefei, Anhui Province, P. R. China
| | - Ruobing Qian
- Department of Neurosurgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China , Hefei, Anhui Province, P. R. China.,Department of Neurosurgery, Anhui Provincial Institute of Stereotactic Neurosurgery , Hefei, Anhui Province, P. R. China
| | - Li Jia
- Department of Neurosurgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China , Hefei, Anhui Province, P. R. China.,Department of Neurosurgery, Anhui Provincial Institute of Stereotactic Neurosurgery , Hefei, Anhui Province, P. R. China
| | - Xiaorui Fei
- Department of Neurosurgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China , Hefei, Anhui Province, P. R. China.,Department of Neurosurgery, Anhui Provincial Institute of Stereotactic Neurosurgery , Hefei, Anhui Province, P. R. China
| | - Dong Zhang
- Department of Neurosurgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China , Hefei, Anhui Province, P. R. China.,Department of Neurosurgery, Anhui Provincial Institute of Stereotactic Neurosurgery , Hefei, Anhui Province, P. R. China
| | - Yiming Zhang
- Department of Neurosurgery, Anhui Provincial Hospital Affiliated to Anhui Medical University , Hefei, Anhui Province, P. R. China
| | - Sen Jiang
- Department of Neurosurgery, Anhui Provincial Hospital Affiliated to Anhui Medical University , Hefei, Anhui Province, P. R. China
| | - Xianming Fu
- Department of Nuerosurgery, Shandong University , Jinan, Shandong Province, P. R. China.,Department of Neurosurgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China , Hefei, Anhui Province, P. R. China.,Department of Neurosurgery, Anhui Provincial Institute of Stereotactic Neurosurgery , Hefei, Anhui Province, P. R. China
| |
Collapse
|
11
|
Shrestha T, Takahashi T, Li C, Matsumoto M, Maruyama H. Nicotine-induced upregulation of miR-132-5p enhances cell survival in PC12 cells by targeting the anti-apoptotic protein Bcl-2. Neurol Res 2020; 42:405-414. [DOI: 10.1080/01616412.2020.1735817] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Tejashwi Shrestha
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Tetsuya Takahashi
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Chengyu Li
- Department of Internal Medicine, The Second Hospital of Jilin University, Jilin Changchun, People's Republic of China
| | - Masayasu Matsumoto
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- Sakai City Medical Center, Sakai City Hospital, Osaka, Japan
| | - Hirofumi Maruyama
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| |
Collapse
|
12
|
Zhao T, Chen W, Zhang X, Yi H, Zhao F. HIV-induced cancer--all paths leading to Rome. Microb Pathog 2019; 139:103804. [PMID: 31639468 DOI: 10.1016/j.micpath.2019.103804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 07/31/2019] [Accepted: 10/14/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND Although several viruses have been proved to induce host specific microRNAs (miRNAs, miRs), the expression of functional miRNAs induced by Human Immunodeficiency Virus 1 (HIV-1) infection is still unknown. The variation of the expression of HIV-1 inducing miRNAs both in vitro and in vivo (in all types of infected patient groups) implies that these specific miRNAs have potential roles in the development of diseases. However, few researches have noticed the roles of these serum miRNAs. In this study, we attempted to establish a macrocontrol regulation system and simulate the influence of HIV-1 inducing miRNAs during the development of cancer. METHODS The miRbase, FunRich software, miRtarbase, STRING, TargetScanhuman, Cytoscape plugin ClueGO/Cluepedia/STRING, DAVID Bioinformatics Resources and GEO database were comprehensively employed in this bioinformatics study. RESULTS The miRNAs in the serum of AIDS patients and its target genes have different expression levels in serum, an array of which are associated with cancer and metabolism signaling pathways. Moreover, the emerging role of miRNAs in HIV-1 infection is also involved in human cancer, using TCGA data integrative analysis. CONCLUSIONS Therefore, we infer that serum miRNAs in HIV-1 infection may play important roles in HIV-induced cancer and could be used as a potential biomarker for HIV-cancers detection.
Collapse
Affiliation(s)
- Tie Zhao
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Collaborative Innovation Center for New Molecular Drug Research, University of South China, Hengyang, 421001, PR China
| | - Wen Chen
- Department of Diagnostics, Medical College, University of South China, Hengyang, 421001, China
| | - Xiaohong Zhang
- Department of Histology and Embryology, Medical College, University of South China, Hengyang, 421001, PR China
| | - Huanhuan Yi
- School of Languages and Literature, University of South China,Hengyang, 421001, China
| | - Feijun Zhao
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Collaborative Innovation Center for New Molecular Drug Research, University of South China, Hengyang, 421001, PR China.
| |
Collapse
|
13
|
Zeng JH, Lu W, Liang L, Chen G, Lan HH, Liang XY, Zhu X. Prognosis of clear cell renal cell carcinoma (ccRCC) based on a six-lncRNA-based risk score: an investigation based on RNA-sequencing data. J Transl Med 2019; 17:281. [PMID: 31443717 PMCID: PMC6708203 DOI: 10.1186/s12967-019-2032-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 08/18/2019] [Indexed: 02/07/2023] Open
Abstract
Background The scientific understanding of long non-coding RNAs (lncRNAs) has improved in recent decades. Nevertheless, there has been little research into the role that lncRNAs play in clear cell renal cell carcinoma (ccRCC). More lncRNAs are assumed to influence the progression of ccRCC via their own molecular mechanisms. Methods This study investigated the prognostic significance of differentially expressed lncRNAs by mining high-throughput lncRNA-sequencing data from The Cancer Genome Atlas (TCGA) containing 13,198 lncRNAs from 539 patients. Differentially expressed lncRNAs were assessed using the R packages edgeR and DESeq. The prognostic significance of lncRNAs was measured using univariate Cox proportional hazards regression. ccRCC patients were then categorized into high- and low-score cohorts based on the cumulative distribution curve inflection point the of risk score, which was generated by the multivariate Cox regression model. Samples from the TCGA dataset were divided into training and validation subsets to verify the prognostic risk model. Bioinformatics methods, gene set enrichment analysis, and protein–protein interaction networks, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes analyses were subsequently used. Results It was found that the risk score based on 6 novel lncRNAs (CTA-384D8.35, CTD-2263F21.1, LINC01510, RP11-352G9.1, RP11-395B7.2, RP11-426C22.4) exhibited superior prognostic value for ccRCC. Moreover, we categorized the cases into two groups (high-risk and low-risk), and also examined related pathways and genetic differences between them. Kaplan–Meier curves indicated that the median survival time of patients in the high-risk group was 73.5 months, much shorter than that of the low-risk group (112.6 months; P < 0.05). Furthermore, the risk score predicted the 5-year survival of all 539 ccRCC patients (AUC at 5 years, 0.683; concordance index [C-index], 0.853; 95% CI 0.817–0.889). The training set and validation set also showed similar performance (AUC at 5 years, 0.649 and 0.681, respectively; C-index, 0.822 and 0.891; 95% CI 0.774–0.870 and 0.844–0.938). Conclusions The results of this study can be applied to analyzing various prognostic factors, leading to new possibilities for clinical diagnosis and prognosis of ccRCC.
Collapse
Affiliation(s)
- Jiang-Hui Zeng
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangxi Medical University/Nanning Second People's Hospital, 13 Dancun Road, Nanning, 530031, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Wei Lu
- Department of Pathology, The Third Affiliated Hospital of Guangxi Medical University/Nanning Second People's Hospital, 13 Dancun Road, Nanning, 530031, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Liang Liang
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, 166 Daxuedong Road, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Hui-Hua Lan
- Department of Clinical Laboratory, The People's Hospital of Guangxi Zhuang Autonomous Region, 6 Taoyuan Road, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiu-Yun Liang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangxi Medical University/Nanning Second People's Hospital, 13 Dancun Road, Nanning, 530031, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xu Zhu
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangxi Medical University/Nanning Second People's Hospital, 13 Dancun Road, Nanning, 530031, Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|
14
|
Cai J, Yu Y, Xu Y, Liu H, Shou J, You L, Jiang H, Han X, Xie B, Han W. Exploring the role of Mir204/211 in HNSCC by the combination of bioinformatic analysis of ceRNA and transcription factor regulation. Oral Oncol 2019; 96:153-160. [PMID: 31422208 DOI: 10.1016/j.oraloncology.2019.07.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVES This study aimed to reveal the regulatory roles of microRNAs in head and neck squamous cell carcinoma (HNSCC) through comprehensive ceRNA, miRNA-transcription factor (TF)-hub gene network and survival analysis. MATERIALS AND METHODS Expression analysis was performed using the 'edgeR' package based on The Cancer Genome Atlas database. The ceRNA network was screened by intersecting prediction results from miRcode, miRTarBase, miRDB and TargetScan. GSE30784, GSE59102 and GSE107591 from the Gene Expression Omnibus repository were chosen for cross-validation. Hub genes were identified using a protein-protein interaction network constructed by Search Tool for the Retrieval of Interacting Genes. The Transcriptional Regulatory Relationships Unraveled by Sentence-based Text mining (TTRUST) was utilized to map the miRNA-TF-Hub gene network. Patient overall survival was analyzed using the 'survival' package in R. Structural and functional analysis of miR-204/211 was based on miRbase and RNAstructure. RESULTS A ceRNA network of 178 lncRNAs, 19 miRNAs and 55 mRNAs was generated, and a TF regulatory network with 11 miRNAs, 11 TFs and 18 hub genes was constructed from the 52 hub genes identified through the protein-protein interaction (PPI) network. Survival analysis demonstrated that the dysregulated expression of 11 lncRNAs and 14 mRNAs was highly related to overall survival. Furthermore, miR-204 and miR-211 were significantly involved in the network with identical mature structures, indicating them as key miRNAs in HNSCC. CONCLUSION This study reveals the comprehensive molecular regulatory networks centralized by miRNAs in HNSCC and uncovers the crucial role of miR-204 and miR-211, which may become potential diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Jingyi Cai
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Department of Stomatology, Zhejiang University, School of Medicine, Yuhangtang Rd, No.866, Hangzhou 310058, Zhejiang Province, China
| | - Yeke Yu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Department of Stomatology, Zhejiang University, School of Medicine, Yuhangtang Rd, No.866, Hangzhou 310058, Zhejiang Province, China
| | - Yuzi Xu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Department of Stomatology, Zhejiang University, School of Medicine, Yuhangtang Rd, No.866, Hangzhou 310058, Zhejiang Province, China
| | - Hao Liu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiawei Shou
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liangkun You
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hanliang Jiang
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - XuFeng Han
- Department of Internal Medicine, Yuyao Traditional Chinese Medicine Hospital, Yuyao, Zhejiang, China
| | - Binbin Xie
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
15
|
Cava C, Manna I, Gambardella A, Bertoli G, Castiglioni I. Potential Role of miRNAs as Theranostic Biomarkers of Epilepsy. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 13:275-290. [PMID: 30321815 PMCID: PMC6197620 DOI: 10.1016/j.omtn.2018.09.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 09/11/2018] [Accepted: 09/11/2018] [Indexed: 12/18/2022]
Abstract
Epilepsy includes a group of disorders of the brain characterized by an enduring predisposition to generate epileptic seizures. Although familial epilepsy has a genetic component and heritability, the etiology of the majority of non-familial epilepsies has no known associated genetic mutations. In epilepsy, recent epigenetic profiles have highlighted a possible role of microRNAs in its pathophysiology. In particular, molecular profiling identifies a significant number of microRNAs (miRNAs) altered in epileptic hippocampus of both animal models and human tissues. In this review, analyzing molecular profiles of different animal models of epilepsy, we identified a group of 20 miRNAs commonly altered in different epilepsy-animal models. As emerging evidences highlighted the poor overlap between signatures of animal model tissues and human samples, we focused our analysis on miRNAs, circulating in human biofluids, with a principal role in epilepsy hallmarks, and we identified a group of 8 diagnostic circulating miRNAs. We discussed the functional role of these 8 miRNAs in the epilepsy hallmarks. A few of them have also been proposed as therapeutic molecules for epilepsy treatment, revealing a great potential for miRNAs as theranostic molecules in epilepsy.
Collapse
Affiliation(s)
- Claudia Cava
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Milan, Italy
| | - Ida Manna
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Section of Germaneto, 88100 Catanzaro, Italy
| | - Antonio Gambardella
- Institute of Neurology, Department of Medical and Surgical Sciences, University "Magna Graecia," Germaneto, 88100 Catanzaro, Italy.
| | - Gloria Bertoli
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Milan, Italy.
| | - Isabella Castiglioni
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Milan, Italy
| |
Collapse
|
16
|
Ji Y, Wang D, Liu Y, Ma X, Lu H, Zhang B. Retracted
: MicroRNA‐132 attenuates LPS‐induced inflammatory injury by targeting TRAF6 in neuronal cell line HT‐22. J Cell Biochem 2018; 119:5528-5537. [DOI: 10.1002/jcb.26720] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/24/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Yang‐Fei Ji
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Dan Wang
- Department of CardiologyZhengzhou Central HospitalZhengzhouChina
| | - Yan‐Ru Liu
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xing‐Rong Ma
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Hong Lu
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Bo‐Ai Zhang
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
17
|
Cui ZJ, Liu YM, Zhu Q, Xia J, Zhang HY. Exploring the pathogenesis of canine epilepsy using a systems genetics method and implications for anti-epilepsy drug discovery. Oncotarget 2018; 9:13181-13192. [PMID: 29568349 PMCID: PMC5862570 DOI: 10.18632/oncotarget.23719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/10/2017] [Indexed: 11/25/2022] Open
Abstract
Epilepsy is a common neurological disorder in domestic dogs. However, its complex mechanism involves multiple genetic and environmental factors that make it challenging to identify the real pathogenic factors contributing to epilepsy, particularly for idiopathic epilepsy. Conventional genome-wide association studies (GWASs) can detect various genes associated with epilepsy, although they primarily detect the effects of single-site mutations in epilepsy while ignoring their interactions. In this study, we used a systems genetics method combining both GWAS and gene interactions and obtained 26 significantly mutated subnetworks. Among these subnetworks, seven genes were reported to be involved in neurological disorders. Combined with gene ontology enrichment analysis, we focused on 4 subnetworks that included traditional GWAS-neglected genes. Moreover, we performed a drug enrichment analysis for each subnetwork and identified significantly enriched candidate anti-epilepsy drugs using a hypergeometric test. We discovered 22 potential drug combinations that induced possible synergistic effects for epilepsy treatment, and one of these drug combinations has been confirmed in the Drug Combination database (DCDB) to have beneficial anti-epileptic effects. The method proposed in this study provides deep insight into the pathogenesis of canine epilepsy and implications for anti-epilepsy drug discovery.
Collapse
Affiliation(s)
- Ze-Jia Cui
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Hubei, Wuhan, China
| | - Ye-Mao Liu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Hubei, Wuhan, China
| | - Qiang Zhu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Hubei, Wuhan, China
| | - Jingbo Xia
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Hubei, Wuhan, China
| | - Hong-Yu Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Hubei, Wuhan, China
| |
Collapse
|