1
|
Lin W, Huang Z, Zhang X, Zheng D, Yang Y, Shi M, Yang D, Chu T, Ma W. Tanshinlactone triggers methuosis in breast cancer cells via NRF2 activation. Front Pharmacol 2025; 15:1534217. [PMID: 39906392 PMCID: PMC11790599 DOI: 10.3389/fphar.2024.1534217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 12/31/2024] [Indexed: 02/06/2025] Open
Abstract
Background Tanshinlactone is a compound derived from the herb Salvia miltiorrhiza. Breast cancer is the most prevalent malignancy among women globally. While significant strides have been made in breast cancer management, these interventions are often impeded by substantial adverse effects that undermine patients' quality of life and confront limitations due to the eventual development of multi-drug resistance. Catastrophic macropinocytosis, also called methuosis, as a nonapoptotic cell death associated with cytoplasmic vacuolization, has gained increasing attention, largely because of its potential importance in cancer therapy. Methods The effect of tanshinlactone on the growth of human cancer cells was evaluated using sulforhodamine B and colony formation assay. Fluorescent dyes are used to label macropinosomes and lysosomes. Phase contrast, confocal and transmission electron microscopy were employed to observe cell morphological changes. RT-PCR, western blot, lentiviral-mediated gene overexpression, and pharmacological inhibitor assays were comprehensively designed to regulate the identified signaling pathways and confirm the mechanism of tanshinlactone. Human breast cancer cell lines-derived xenograft tumor explants assay was used to evaluate the compound's efficacy and to assess the induction of methuosis via NRF2 activation by tanshinlactone. Results Tanshinlactone selectively inhibits the growth of ER+ and HER2+/EGFR + breast cancer cells while showing limited cytotoxicity against other cancer types and normal cells. The selective anti-breast cancer activity is associated with the induction of methuosis, characterized by cytoplasmic vacuolization due to dysfunctional macropinocytosis. This process is mediated by the activation of the transcription factor NRF2, leading to the formation of macropinosomes that fail to fuse with lysosomes or recycle to the plasma membrane, resulting in cell death. The in vitro induction of methuosis via NRF2 activation was replicated in a murine xenograft explants model. Additionally, tanshinlactone demonstrated effectiveness against lapatinib-resistant breast cancer cells, suggesting its potential as a therapeutic agent for overcoming drug resistance in cancer treatment. Conclusion Tanshinlactone as a novel therapeutic agent, is capable of selectively inhibiting ER+ and HER2+/EGFR + breast tumors through a unique mechanism of inducing catastrophic macropinocytosis. This regimen holds promise for targeted therapy with minimized side effects and offers a new therapeutic avenue for breast patients with drug-resistant diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Wenzhe Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| |
Collapse
|
2
|
Chen Z, Xie H, Liu J, Zhao J, Huang R, Xiang Y, Wu H, Tian D, Bian E, Xiong Z. Roles of TRPM channels in glioma. Cancer Biol Ther 2024; 25:2338955. [PMID: 38680092 PMCID: PMC11062369 DOI: 10.1080/15384047.2024.2338955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 04/01/2024] [Indexed: 05/01/2024] Open
Abstract
Gliomas are the most common type of primary brain tumor. Despite advances in treatment, it remains one of the most aggressive and deadly tumor of the central nervous system (CNS). Gliomas are characterized by high malignancy, heterogeneity, invasiveness, and high resistance to radiotherapy and chemotherapy. It is urgent to find potential new molecular targets for glioma. The TRPM channels consist of TRPM1-TPRM8 and play a role in many cellular functions, including proliferation, migration, invasion, angiogenesis, etc. More and more studies have shown that TRPM channels can be used as new therapeutic targets for glioma. In this review, we first introduce the structure, activation patterns, and physiological functions of TRPM channels. Additionally, the pathological mechanism of glioma mediated by TRPM2, 3, 7, and 8 and the related signaling pathways are described. Finally, we discuss the therapeutic potential of targeting TRPM for glioma.
Collapse
Affiliation(s)
- Zhigang Chen
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders, The First Affiliated Hospital (Yijishan Hospital), Wannan Medical College, Wuhu, P. R. China
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Han Xie
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Jun Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - JiaJia Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Ruixiang Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Yufei Xiang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Haoyuan Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Dasheng Tian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Erbao Bian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhang Xiong
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders, The First Affiliated Hospital (Yijishan Hospital), Wannan Medical College, Wuhu, P. R. China
| |
Collapse
|
3
|
Rajasekharan SK, Ravichandran V, Boya BR, Jayachandran A, Lee J. Repurposing methuosis-inducing anticancer drugs for anthelmintic therapy. PLoS Pathog 2024; 20:e1012475. [PMID: 39235992 PMCID: PMC11376546 DOI: 10.1371/journal.ppat.1012475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024] Open
Abstract
Drug-resistant parasitic nematodes pose a grave threat to plants, animals, and humans. An innovative paradigm for treating parasitic nematodes is emphasized in this opinion. This approach relies on repurposing methuosis (a death characterized by accumulation of large vacuoles) inducing anticancer drugs as anthelmintics. We review drugs/chemicals that have shown to kill nematodes or cancerous cells by inducing multiple vacuoles that eventually coalesce and rupture. This perspective additionally offers a succinct summary on Structure-Activity Relationship (SAR) of methuosis-inducing small molecules. This strategy holds promise for the development of broad-spectrum anthelmintics, shedding light on shared molecular mechanisms between cancer and nematodes in response to these inducers, thereby potentially transforming both therapeutic domains.
Collapse
Affiliation(s)
- Satish Kumar Rajasekharan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, Tamil Nadu, India
| | - Vinothkannan Ravichandran
- Centre for Drug Discovery and Development (CD3), Amity Institute of Biotechnology, Amity University Maharashtra, Bhatan, Panvel, Mumbai, Maharashtra, India
| | - Bharath Reddy Boya
- School of Chemical Engineering, Yeungnum University, Gyeongsan, Republic of Korea
| | - Anirudh Jayachandran
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, Tamil Nadu, India
| | - Jintae Lee
- School of Chemical Engineering, Yeungnum University, Gyeongsan, Republic of Korea
| |
Collapse
|
4
|
Nafe R, Hattingen E. Forms of Non-Apoptotic Cell Death and Their Role in Gliomas-Presentation of the Current State of Knowledge. Biomedicines 2024; 12:1546. [PMID: 39062119 PMCID: PMC11274595 DOI: 10.3390/biomedicines12071546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
In addition to necrosis and apoptosis, the two forms of cell death that have been known for many decades, other non-apoptotic forms of cell death have been discovered, many of which also play a role in tumors. Starting with the description of autophagy more than 60 years ago, newer forms of cell death have become important for the biology of tumors, such as ferroptosis, pyroptosis, necroptosis, and paraptosis. In this review, all non-apoptotic and oncologically relevant forms of programmed cell death are presented, starting with their first descriptions, their molecular characteristics, and their role and their interactions in cell physiology and pathophysiology. Based on these descriptions, the current state of knowledge about their alterations and their role in gliomas will be presented. In addition, current efforts to therapeutically influence the molecular components of these forms of cell death will be discussed. Although research into their exact role in gliomas is still at a rather early stage, our review clarifies that all these non-apoptotic forms of cell death show significant alterations in gliomas and that important insight into understanding them has already been gained.
Collapse
Affiliation(s)
- Reinhold Nafe
- Department of Neuroradiology, Clinics of Johann Wolfgang Goethe-University, Schleusenweg 2-16, D-60528 Frankfurt am Main, Germany;
| | | |
Collapse
|
5
|
Chen Y, Liu S, Wei Y, Wei H, Yuan X, Xiong B, Tang M, Yang T, Yang Z, Ye H, Yang J, Chen L. Discovery of Potent and Selective Phosphatidylinositol 3-Phosphate 5-Kinase (PIKfyve) Inhibitors as Methuosis Inducers. J Med Chem 2024; 67:165-179. [PMID: 38117948 DOI: 10.1021/acs.jmedchem.3c01039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Cytoplasmic vacuolation-associated cell death, known as methuosis, offers a promising nonapoptotic approach for cancer treatment. In this study, we outline the synthesis and evaluation of potent methuosis-inducing compounds. These compounds selectively induce cell death, characterized by extensive cytoplasmic vacuolation in HeLa and MDA-MB-231 cells. Notably, compound L22 exhibited a remarkable interaction with PIKfyve kinase, boasting a Kd value of 0.47 nM, surpassing the positive controls D-13 and MOMIPP in potency. Furthermore, it is important to highlight that cell death induced by compound L22 is unequivocally attributed to methuosis as it differs from apoptosis, necrosis, or autophagy. Importantly, when administered orally, L22 effectively inhibited tumor growth in a HeLa xenograft model without any apparent signs of toxicity. These results underscore the potential of L22 as a valuable tool for in-depth investigations into the mechanisms of methuosis and as a promising lead compound to guide structural optimization.
Collapse
Affiliation(s)
- Yong Chen
- Innovation Center of Nursing Research and Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Shuai Liu
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yuhan Wei
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Haoche Wei
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xue Yuan
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Baojian Xiong
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Minghai Tang
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Tao Yang
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Zhuang Yang
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Haoyu Ye
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jianhong Yang
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Lijuan Chen
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
- Chengdu Zenitar Biomedical Technology Co., Ltd., Chengdu 610041, China
| |
Collapse
|
6
|
Köles L, Ribiczey P, Szebeni A, Kádár K, Zelles T, Zsembery Á. The Role of TRPM7 in Oncogenesis. Int J Mol Sci 2024; 25:719. [PMID: 38255793 PMCID: PMC10815510 DOI: 10.3390/ijms25020719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
This review summarizes the current understanding of the role of transient receptor potential melastatin-subfamily member 7 (TRPM7) channels in the pathophysiology of neoplastic diseases. The TRPM family represents the largest and most diverse group in the TRP superfamily. Its subtypes are expressed in virtually all human organs playing a central role in (patho)physiological events. The TRPM7 protein (along with TRPM2 and TRPM6) is unique in that it has kinase activity in addition to the channel function. Numerous studies demonstrate the role of TRPM7 chanzyme in tumorigenesis and in other tumor hallmarks such as proliferation, migration, invasion and metastasis. Here we provide an up-to-date overview about the possible role of TRMP7 in a broad range of malignancies such as tumors of the nervous system, head and neck cancers, malignant neoplasms of the upper gastrointestinal tract, colorectal carcinoma, lung cancer, neoplasms of the urinary system, breast cancer, malignant tumors of the female reproductive organs, prostate cancer and other neoplastic pathologies. Experimental data show that the increased expression and/or function of TRPM7 are observed in most malignant tumor types. Thus, TRPM7 chanzyme may be a promising target in tumor therapy.
Collapse
Affiliation(s)
- László Köles
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (L.K.); (A.S.); (K.K.); (T.Z.)
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
| | - Polett Ribiczey
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (L.K.); (A.S.); (K.K.); (T.Z.)
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
| | - Andrea Szebeni
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (L.K.); (A.S.); (K.K.); (T.Z.)
| | - Kristóf Kádár
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (L.K.); (A.S.); (K.K.); (T.Z.)
| | - Tibor Zelles
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (L.K.); (A.S.); (K.K.); (T.Z.)
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, H-1083, Budapest, Hungary
| | - Ákos Zsembery
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (L.K.); (A.S.); (K.K.); (T.Z.)
| |
Collapse
|
7
|
Ye T, Shan P, Zhang H. Progress in the discovery and development of small molecule methuosis inducers. RSC Med Chem 2023; 14:1400-1409. [PMID: 37593581 PMCID: PMC10429883 DOI: 10.1039/d3md00155e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/24/2023] [Indexed: 08/19/2023] Open
Abstract
Current cancer chemotherapies rely mainly on the induction of apoptosis of tumor cells, while drug resistance arising from conventional chemicals has always been a big challenge. In recent years, more and more new types of cell deaths including methuosis have been extensively investigated and recognized as potential alternative targets for future cancer treatment. Methuosis is usually caused by excessive accumulation of macropinosomes owing to ectopic activation of macropinocytosis, which can be triggered by external stimuli such as chemical agents. Increasing reports demonstrate that many small molecule compounds could specifically induce methuosis in tumor cells while showing little or no effect on normal cells. This finding raises the possibility of targeting tumor cell methuosis as an effective strategy for the prevention of cancer. Based on fast-growing studies lately, we herein provide a comprehensive overview on the overall research progress of small molecule methuosis inducers. Promisingly, previous efforts and experiences will facilitate the development of next-generation anticancer therapies.
Collapse
Affiliation(s)
- Tao Ye
- School of Biological Science and Technology, University of Jinan Jinan 250022 China
| | - Peipei Shan
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University Qingdao Shandong 266031 P.R. China
| | - Hua Zhang
- School of Biological Science and Technology, University of Jinan Jinan 250022 China
| |
Collapse
|
8
|
Krishnan RP, Ramani P, Pandiar D. Methuosis - A promising lead for the treatment of oral squamous cell carcinoma. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2023; 124:101333. [PMID: 36402427 DOI: 10.1016/j.jormas.2022.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Affiliation(s)
- Reshma Poothakulath Krishnan
- Senior Lecturer, Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Chennai, Tamil Nadu, India
| | - Pratibha Ramani
- Professor and HOD, Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Chennai, Tamil Nadu, India.
| | - Deepak Pandiar
- Associate Professor, Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Chennai, Tamil Nadu, India
| |
Collapse
|
9
|
Al-Bari AA. Inhibition of autolysosomes by repurposing drugs as a promising therapeutic strategy for the treatment of cancers. ALL LIFE 2022; 15:568-601. [DOI: 10.1080/26895293.2022.2078894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/02/2022] [Indexed: 10/18/2022] Open
Affiliation(s)
- Abdul Alim Al-Bari
- Department of Pharmacy, Faculty of Science, University of Rajshahi, Rajshahi, Bangladesh
| |
Collapse
|
10
|
Liu H, Dilger JP, Lin J. A pan-cancer-bioinformatic-based literature review of TRPM7 in cancers. Pharmacol Ther 2022; 240:108302. [PMID: 36332746 DOI: 10.1016/j.pharmthera.2022.108302] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022]
Abstract
TRPM7, a divalent cation-selective channel with kinase domains, has been widely reported to potentially affect cancers. In this study, we conducted multiple bioinformatic analyses based on open databases and reviewed articles that provided evidence for the effects of TRPM7 on cancers. The purposes of this paper are 1) to provide a pan-cancer overview of TRPM7 in cancers; 2) to summarize evidence of TRPM7 effects on cancers; 3) to identify potential future studies of TRPM7 in cancer. Bioinformatics analysis revealed that no cancer-related TRPM7 mutation was found. TRPM7 is aberrantly expressed in most cancer types but the cancer-noncancer expression pattern varies across cancer types. TRPM7 was not associated with survival, TMB, or cancer stemness in most cancer types. TRPM7 affected drug sensitivity and tumor immunity in some cancer types. The in vitro evidence, preclinical in vivo evidence, and clinical evidence for TRPM7 effects on cancers as well as TRPM7 kinase substrate and TRPM7-targeting drugs associated with cancers were summarized to facilitate comparison. We matched the bioinformatics evidence to literature evidence, thereby unveiling potential avenues for future investigation of TRPM7 in cancers. We believe that this paper will help orient research toward important and relevant aspects of the role of TRPM7 in cancers.
Collapse
Affiliation(s)
- Hengrui Liu
- Department of Anesthesiology, Health Science Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - James P Dilger
- Department of Anesthesiology, Health Science Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jun Lin
- Department of Anesthesiology, Health Science Center, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
11
|
Li Q, Lei X, Liu H, Feng S, Cai C, Hu Y, Cao Y, Chen J. Transient receptor potential melastatin 7 aggravates necrotizing enterocolitis by promoting an inflammatory response in children. Transl Pediatr 2022; 11:2030-2039. [PMID: 36643673 PMCID: PMC9834944 DOI: 10.21037/tp-22-633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/16/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND As a rare disease in children, necrotizing enterocolitis (NEC) leads to high morbidity and mortality. However, its pathophysiology is largely unclear. Transient receptor potential melastatin 7 (TRPM7) is a membrane protein, which plays key roles in the inflammatory response. This study sought to examine the promoting effect of TRPM7 on NEC in children and explore the therapeutic effect of a TRPM7 inhibitor NS8593. METHODS First, we detected TRPM7 and NLR family pyrin domain containing 3 (NLRP3) expression and the state of inflammation in children with NEC through quantitative real-time polymerase chain reaction (RT-PCR), Western blot, and enzyme-linked immunosorbent assays. Next, Human intestinal epithelial cell lines were induced to NEC by lipopolysaccharides (LPSs). The level of cytokines and reactive oxygen species (ROS) were tested by RT-PCR and flow cytometry. The TRPM7 mediated calcium flux were determined by fluorescence. In addition, we used the TRPM7 inhibitor NS8593 to treat the in vivo rat model. The mRNA and protein expression were determined by real-time PCR and Elisa analysis, respectively. RESULTS TRPM7 and NLRP3 expression was more increased in the samples from children with NEC compared to the control samples. Additionally, the elevated secretion of interleukin-1β, interleukin-6, and tumor necrosis factor alpha was also detected in the serum of children with NEC. These results showed that TRPM7 had a promoting effect on NEC development, possibly via the activation of NLRP3. To test our hypothesis, the TRPM7 inhibitor NS8593 was used to treat the LPS-stimulated IEC-6 cells. We found that the TRPM7 inhibitor NS8593 inhibited LPS-induced cytokine production and exhibited an anti-inflammatory effect by alleviating TRPM7-mediated NLRP3 inflammasome activation. Through in-vivo experiments, we found that TRPM7 was involved in the occurrence of NEC, and its inhibitor NS8593 played a certain therapeutic role in the rat model. CONCLUSIONS Our study revealed TRPM7 inhibitors attenuated LPS-induced ROS and reduced the release of pro-inflammatory cytokines. It also exhibited protective effects on the NEC model.
Collapse
Affiliation(s)
- Qingxiang Li
- Department of Neonatology, Guizhou Children's Hospital, Zunyi, China.,Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xianming Lei
- Department of Neonatology, Guizhou Children's Hospital, Zunyi, China.,Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hong Liu
- Department of Neonatology, Guizhou Children's Hospital, Zunyi, China.,Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shanshan Feng
- Department of Neonatology, Guizhou Children's Hospital, Zunyi, China.,Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Chunrong Cai
- Department of Neonatology, Guizhou Children's Hospital, Zunyi, China.,Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yingping Hu
- Department of Neonatology, Guizhou Children's Hospital, Zunyi, China.,Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yuntao Cao
- Department of Neonatology, Guizhou Children's Hospital, Zunyi, China.,Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Juan Chen
- Department of Neonatology, Guizhou Children's Hospital, Zunyi, China.,Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
12
|
Zhong T, Zhang W, Guo H, Pan X, Chen X, He Q, Yang B, Ding L. The regulatory and modulatory roles of TRP family channels in malignant tumors and relevant therapeutic strategies. Acta Pharm Sin B 2022; 12:1761-1780. [PMID: 35847486 PMCID: PMC9279634 DOI: 10.1016/j.apsb.2021.11.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/11/2021] [Accepted: 10/19/2021] [Indexed: 02/08/2023] Open
Abstract
Transient receptor potential (TRP) channels are one primary type of calcium (Ca2+) permeable channels, and those relevant transmembrane and intracellular TRP channels were previously thought to be mainly associated with the regulation of cardiovascular and neuronal systems. Nowadays, however, accumulating evidence shows that those TRP channels are also responsible for tumorigenesis and progression, inducing tumor invasion and metastasis. However, the overall underlying mechanisms and possible signaling transduction pathways that TRP channels in malignant tumors might still remain elusive. Therefore, in this review, we focus on the linkage between TRP channels and the significant characteristics of tumors such as multi-drug resistance (MDR), metastasis, apoptosis, proliferation, immune surveillance evasion, and the alterations of relevant tumor micro-environment. Moreover, we also have discussed the expression of relevant TRP channels in various forms of cancer and the relevant inhibitors' efficacy. The chemo-sensitivity of the anti-cancer drugs of various acting mechanisms and the potential clinical applications are also presented. Furthermore, it would be enlightening to provide possible novel therapeutic approaches to counteract malignant tumors regarding the intervention of calcium channels of this type.
Collapse
Key Words
- 4α-PDD, 4α-phorbol-12,13-didecanoate
- ABCB, ATP-binding cassette B1
- AKT, protein kinase B
- ALA, alpha lipoic acid
- AMPK, AMP-activated protein kinase
- APB, aminoethoxydiphenyl borate
- ATP, adenosine triphosphate
- CBD, cannabidiol
- CRAC, Ca2+ release-activated Ca2+ channel
- CaR, calcium-sensing receptor
- CaSR, calcium sensing receptor
- Cancer progression
- DAG, diacylglycerol
- DBTRG, Denver Brain Tumor Research Group
- ECFC, endothelial colony-forming cells
- ECM, enhanced extracellular matrix
- EGF, epidermal growth factor
- EMT, epithelial–mesenchymal transition
- ER, endoplasmic reticulum
- ERK, extracellular signal-regulated kinase
- ETS, erythroblastosis virus E26 oncogene homolog
- FAK, focal adhesion kinase
- GADD, growth arrest and DNA damage-inducible gene
- GC, gastric cancer
- GPCR, G-protein coupled receptor
- GSC, glioma stem-like cells
- GSK, glycogen synthase kinase
- HCC, hepatocellular carcinoma
- HIF, hypoxia-induced factor
- HSC, hematopoietic stem cells
- IP3R, inositol triphosphate receptor
- Intracellular mechanism
- KO, knockout
- LOX, lipoxygenase
- LPS, lipopolysaccharide
- LRP, lipoprotein receptor-related protein
- MAPK, mitogen-activated protein kinase
- MLKL, mixed lineage kinase domain-like protein
- MMP, matrix metalloproteinases
- NEDD4, neural precursor cell expressed, developmentally down-regulated 4
- NFAT, nuclear factor of activated T-cells
- NLRP3, NLR family pyrin domain containing 3
- NO, nitro oxide
- NSCLC, non-small cell lung cancer
- Nrf2, nuclear factor erythroid 2-related factor 2
- P-gp, P-glycoprotein
- PCa, prostate cancer
- PDAC, pancreatic ductal adenocarcinoma
- PHD, prolyl hydroxylases
- PI3K, phosphoinositide 3-kinase
- PKC, protein kinase C
- PKD, polycystic kidney disease
- PLC, phospholipase C
- Programmed cancer cell death
- RNS/ROS, reactive nitrogen species/reactive oxygen species
- RTX, resiniferatoxin
- SMAD, Caenorhabditis elegans protein (Sma) and mothers against decapentaplegic (Mad)
- SOCE, store operated calcium entry
- SOR, soricimed
- STIM1, stromal interaction molecules 1
- TEC, tumor endothelial cells
- TGF, transforming growth factor-β
- TNF-α, tumor necrosis factor-α
- TRP channels
- TRPA/C/M/ML/N/P/V, transient receptor potential ankyrin/canonical/melastatin/mucolipon/NOMPC/polycystin/vanilloid
- Targeted tumor therapy
- Tumor microenvironment
- Tumor-associated immunocytes
- UPR, unfolded protein response
- VEGF, vascular endothelial growth factor
- VIP, vasoactive intestinal peptide
- VPAC, vasoactive intestinal peptide receptor subtype
- mTOR, mammalian target of rapamycin
- pFRG/RTN, parafacial respiratory group/retrotrapezoid nucleus
Collapse
|
13
|
Xu T, Xu M, Zhu W, Chen CZ, Zhang Q, Zheng W, Huang R. Efficient Identification of Anti-SARS-CoV-2 Compounds Using Chemical Structure- and Biological Activity-Based Modeling. J Med Chem 2022; 65:4590-4599. [PMID: 35275639 PMCID: PMC8936051 DOI: 10.1021/acs.jmedchem.1c01372] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Indexed: 12/12/2022]
Abstract
Identification of anti-SARS-CoV-2 compounds through traditional high-throughput screening (HTS) assays is limited by high costs and low hit rates. To address these challenges, we developed machine learning models to identify compounds acting via inhibition of the entry of SARS-CoV-2 into human host cells or the SARS-CoV-2 3-chymotrypsin-like (3CL) protease. The optimal classification models achieved good performance with area under the receiver operating characteristic curve (AUC-ROC) values of >0.78. Experimental validation showed that the best performing models increased the assay hit rate by 2.1-fold for viral entry inhibitors and 10.4-fold for 3CL protease inhibitors compared to those of the original drug repurposing screens. Twenty-two compounds showed potent (<5 μM) antiviral activities in a SARS-CoV-2 live virus assay. In conclusion, machine learning models can be developed and used as a complementary approach to HTS to expand compound screening capacities and improve the speed and efficiency of anti-SARS-CoV-2 drug discovery.
Collapse
Affiliation(s)
- Tuan Xu
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, Maryland 20850, United States
| | - Miao Xu
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, Maryland 20850, United States
| | - Wei Zhu
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, Maryland 20850, United States
| | - Catherine Z Chen
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, Maryland 20850, United States
| | - Qi Zhang
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, Maryland 20850, United States
| | - Wei Zheng
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, Maryland 20850, United States
| | - Ruili Huang
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, Maryland 20850, United States
| |
Collapse
|
14
|
Panda S, Chatterjee O, Roy L, Chatterjee S. Targeting Ca 2+ signaling: A new arsenal against cancer. Drug Discov Today 2021; 27:923-934. [PMID: 34793973 DOI: 10.1016/j.drudis.2021.11.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/24/2021] [Accepted: 11/11/2021] [Indexed: 02/06/2023]
Abstract
The drug resistance of cancer cells is a major concern in medical oncology, resulting in the failure of chemotherapy. Ca2+ plays a pivotal role in inducing multidrug resistance in cancer cells. Calcium signaling is a critical regulator of many cancer hallmarks, such as angiogenesis, invasiveness, and migration. In this review, we describe the involvement of Ca2+ signaling and associated proteins in cancer progression and in the development of multidrug resistance in cancer cells. We also highlight the possibilities and challenges of targeting the Ca2+ channels, transporters, and pumps involved in Ca2+ signaling in cancer cells through structure-based drug design. This work will open a new therapeutic window to be used against cancer in upcoming years.
Collapse
Affiliation(s)
- Suman Panda
- Department of Biophysics, Bose Institute, P-1/12 CIT Road, Scheme VIIM, Kankurgachi, Kolkata 700054, India
| | - Oishika Chatterjee
- Department of Biophysics, Bose Institute, P-1/12 CIT Road, Scheme VIIM, Kankurgachi, Kolkata 700054, India
| | - Laboni Roy
- Department of Biophysics, Bose Institute, P-1/12 CIT Road, Scheme VIIM, Kankurgachi, Kolkata 700054, India
| | - Subhrangsu Chatterjee
- Department of Biophysics, Bose Institute, P-1/12 CIT Road, Scheme VIIM, Kankurgachi, Kolkata 700054, India.
| |
Collapse
|
15
|
Kwak D, Hammarström LGJ, Haraldsson M, Ernfors P. Glioblastoma cytotoxicity conferred through dual disruption of endolysosomal homeostasis by Vacquinol-1. Neurooncol Adv 2021; 3:vdab152. [PMID: 34765974 PMCID: PMC8577523 DOI: 10.1093/noajnl/vdab152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background Increased membrane trafficking is observed in numerous cancer types, including glioblastoma. Targeting the oncogenic driven acquired alterations in membrane trafficking by synthetic cationic amphiphilic small molecules has recently been shown to induce death of glioblastoma cells, although the molecular targets are unknown. Methods The mechanism of action of the cationic amphiphilic drug Vacquinol-1 (Vacq1)-induced cytotoxicity was investigated using cell biology, biochemistry, functional experiments, chemical biology, unbiased antibody-based post-translation modification profiling, and mass spectrometry-based chemical proteomic analysis on patient-derived glioblastoma cells. Results Vacq1 induced two types of abnormal endolysosomal vesicles, enlarged vacuoles and acidic vesicle organelles (AVOs). Mechanistically, enlarged vacuoles were formed by the impairment of lysosome reformation through the direct interaction and inhibition of calmodulin (CaM) by Vacq1, while AVO formation was induced by Vacq1 accumulation and acidification in the endosomal compartments through its activation of the v-ATPase. As a consequence of v-ATPase activation, cellular ATP consumption markedly increased, causing cellular energy shortage and cytotoxicity. This effect of Vacq1 was exacerbated by its inhibitory effects on calmodulin, causing lysosomal depletion and a failure of acidic vesicle organelle clearance. Conclusion Our study identifies the targets of Vacq1 and the mechanisms underlying its selective cytotoxicity in glioblastoma cells. The dual function of Vacq1 sets in motion a glioblastoma-specific vicious cycle of ATP consumption resulting in cellular energy crisis and cell death.
Collapse
Affiliation(s)
- Dongoh Kwak
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Lars G J Hammarström
- Chemical Biology Consortium Sweden (CBCS), Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Martin Haraldsson
- Chemical Biology Consortium Sweden (CBCS), Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Patrik Ernfors
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
16
|
Wieland J, Frey S, Rupp U, Essbauer S, Groß R, Münch J, Walther P. Zika virus replication in glioblastoma cells: electron microscopic tomography shows 3D arrangement of endoplasmic reticulum, replication organelles, and viral ribonucleoproteins. Histochem Cell Biol 2021; 156:527-538. [PMID: 34514517 PMCID: PMC8435300 DOI: 10.1007/s00418-021-02028-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2021] [Indexed: 11/24/2022]
Abstract
Structural changes of two patient-derived glioblastoma cell lines after Zika virus infection were investigated using scanning transmission electron tomography on high-pressure-frozen, freeze-substituted samples. In Zika-virus-infected cells, Golgi structures were barely visible under an electron microscope, and viral factories appeared. The cytosol outside of the viral factories resembled the cytosol of uninfected cells. The viral factories contained largely deranged endoplasmic reticulum (ER), filled with many so-called replication organelles consisting of a luminal vesicle surrounded by the ER membrane. Viral capsids were observed in the vicinity of the replication organelles (cell line #12537 GB) or in ER cisternae at large distance from the replication organelles (cell line #15747 GB). Near the replication organelles, we observed many about 100-nm-long filaments that may represent viral ribonucleoprotein complexes (RNPs), which consist of the RNA genome and N protein oligomers. In addition, we compared Zika-virus-infected cells with cells infected with a phlebovirus (sandfly fever Turkey virus). Zika virions are formed in the ER, whereas phlebovirus virions are assembled in the Golgi apparatus. Our findings will help to understand the replication cycle in the virus factories and the building of the replication organelles in glioblastoma cells.
Collapse
Affiliation(s)
- Johannes Wieland
- Central Facility for Electron Microscopy, Ulm University, 89081, Ulm, Germany
| | - Stefan Frey
- Bundeswehr Research Institute for Protective Technologies and CBRN Protection, 29633, Munster, Germany
| | - Ulrich Rupp
- Central Facility for Electron Microscopy, Ulm University, 89081, Ulm, Germany
| | - Sandra Essbauer
- Bundeswehr Institute of Microbiology, 80937, Munich, Germany
| | - Rüdiger Groß
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, 89081, Ulm, Germany.
| |
Collapse
|
17
|
Ritter M, Bresgen N, Kerschbaum HH. From Pinocytosis to Methuosis-Fluid Consumption as a Risk Factor for Cell Death. Front Cell Dev Biol 2021; 9:651982. [PMID: 34249909 PMCID: PMC8261248 DOI: 10.3389/fcell.2021.651982] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
The volumes of a cell [cell volume (CV)] and its organelles are adjusted by osmoregulatory processes. During pinocytosis, extracellular fluid volume equivalent to its CV is incorporated within an hour and membrane area equivalent to the cell's surface within 30 min. Since neither fluid uptake nor membrane consumption leads to swelling or shrinkage, cells must be equipped with potent volume regulatory mechanisms. Normally, cells respond to outwardly or inwardly directed osmotic gradients by a volume decrease and increase, respectively, i.e., they shrink or swell but then try to recover their CV. However, when a cell death (CD) pathway is triggered, CV persistently decreases in isotonic conditions in apoptosis and it increases in necrosis. One type of CD associated with cell swelling is due to a dysfunctional pinocytosis. Methuosis, a non-apoptotic CD phenotype, occurs when cells accumulate too much fluid by macropinocytosis. In contrast to functional pinocytosis, in methuosis, macropinosomes neither recycle nor fuse with lysosomes but with each other to form giant vacuoles, which finally cause rupture of the plasma membrane (PM). Understanding methuosis longs for the understanding of the ionic mechanisms of cell volume regulation (CVR) and vesicular volume regulation (VVR). In nascent macropinosomes, ion channels and transporters are derived from the PM. Along trafficking from the PM to the perinuclear area, the equipment of channels and transporters of the vesicle membrane changes by retrieval, addition, and recycling from and back to the PM, causing profound changes in vesicular ion concentrations, acidification, and-most importantly-shrinkage of the macropinosome, which is indispensable for its proper targeting and cargo processing. In this review, we discuss ion and water transport mechanisms with respect to CVR and VVR and with special emphasis on pinocytosis and methuosis. We describe various aspects of the complex mutual interplay between extracellular and intracellular ions and ion gradients, the PM and vesicular membrane, phosphoinositides, monomeric G proteins and their targets, as well as the submembranous cytoskeleton. Our aim is to highlight important cellular mechanisms, components, and processes that may lead to methuotic CD upon their derangement.
Collapse
Affiliation(s)
- Markus Ritter
- Center for Physiology, Pathophysiology and Biophysics, Institute for Physiology and Pathophysiology, Paracelsus Medical University, Salzburg, Austria
- Institute for Physiology and Pathophysiology, Paracelsus Medical University, Nuremberg, Germany
- Gastein Research Institute, Paracelsus Medical University, Salzburg, Austria
- Ludwig Boltzmann Institute for Arthritis und Rehabilitation, Salzburg, Austria
- Kathmandu University School of Medical Sciences, Dhulikhel, Nepal
| | - Nikolaus Bresgen
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | | |
Collapse
|
18
|
Song S, Zhang Y, Ding T, Ji N, Zhao H. The Dual Role of Macropinocytosis in Cancers: Promoting Growth and Inducing Methuosis to Participate in Anticancer Therapies as Targets. Front Oncol 2021; 10:570108. [PMID: 33542897 PMCID: PMC7851083 DOI: 10.3389/fonc.2020.570108] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 12/01/2020] [Indexed: 02/05/2023] Open
Abstract
Macropinocytosis is an important mechanism of internalizing extracellular materials and dissolved molecules in eukaryotic cells. Macropinocytosis has a dual effect on cancer cells. On the one hand, cells expressing RAS genes (such as K-RAS, H-RAS) under the stress of nutrient deficiency can spontaneously produce constitutive macropinocytosis to promote the growth of cancer cells by internalization of extracellular nutrients (like proteins), receptors, and extracellular vesicles(EVs). On the other hand, abnormal expression of RAS genes and drug treatment (such as MOMIPP) can induce a novel cell death associated with hyperactivated macropinocytosis: methuosis. Based on the dual effect, there is immense potential for designing anticancer therapies that target macropinocytosis in cancer cells. In view of the fact that there has been little review of the dual effect of macropinocytosis in cancer cells, herein, we systematically review the general process of macropinocytosis, its specific manifestation in cancer cells, and its application in cancer treatment, including anticancer drug delivery and destruction of macropinocytosis. This review aims to serve as a reference for studying macropinocytosis in cancers and designing macropinocytosis-targeting anticancer drugs in the future.
Collapse
Affiliation(s)
- Shaojuan Song
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tingting Ding
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ning Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hang Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Wan J, Guo AA, King P, Guo S, Saafir T, Jiang Y, Liu M. TRPM7 Induces Tumorigenesis and Stemness Through Notch Activation in Glioma. Front Pharmacol 2020; 11:590723. [PMID: 33381038 PMCID: PMC7768084 DOI: 10.3389/fphar.2020.590723] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 10/19/2020] [Indexed: 01/29/2023] Open
Abstract
We have reported that transient receptor potential melastatin-related 7 (TRPM7) regulates glioma stem cells (GSC) growth and proliferation through Notch, STAT3-ALDH1, and CD133 signaling pathways. In this study, we determined the major contributor(s) to TRPM7 mediated glioma stemness by further deciphering each individual Notch signaling. We first determined whether TRPM7 is an oncotarget in glioblastoma multiforme (GBM) using the Oncomine database. Next, we determined whether TRPM7 silencing by siRNA TRPM7 (siTRPM7) induces cell growth arrest or apoptosis to reduce glioma cell proliferation using cell cycle analysis and annexin V staining assay. We then examined the correlations between the expression of TRPM7 and Notch signaling activity as well as the expression of GSC markers CD133 and ALDH1 in GBM by downregulating TRPM7 through siTRPM7 or upregulating TRPM7 through overexpression of human TRPM7 (M7-wt). To distinguish the different function of channel and kinase domain of TRPM7, we further determined how the α-kinase-dead mutants of TRPM7 (α-kinase domain deleted/M7-DK and K1648R point mutation/M7-KR) affect Notch activities and CD133 and ALDH1 expression. Lastly, we determined the changes in TRPM7-mediated regulation of glioma cell growth/proliferation, cell cycle, and apoptosis by targeting Notch1. The Oncomine data revealed a significant increase in TRPM7 mRNA expression in anaplastic astrocytoma, diffuse astrocytoma, and GBM patients compared to that in normal brain tissues. TRPM7 silencing reduced glioma cell growth by inhibiting cell entry into S and G2/M phases and promoting cell apoptosis. TRPM7 expression in GBM cells was found to be positively correlated with Notch1 signaling activity and CD133 and ALDH1 expression; briefly, downregulation of TRPM7 by siTRPM7 decreased Notch1 signaling whereas upregulation of TRPM7 increased Notch1 signaling. Interestingly, kinase-inactive mutants (M7-DK and M7-KR) resulted in reduced activation of Notch1 signaling and decreased expression of CD133 and ALDH1 compared to that of wtTRPM7. Finally, targeting Notch1 effectively suppressed TRPM7-induced growth and proliferation of glioma cells through cell G1/S arrest and apoptotic induction. TRPM7 is responsible for sustained Notch1 signaling activation, enhanced expression of GSC markers CD133 and ALDH1, and regulation of glioma stemness, which contributes to malignant glioma cell growth and invasion.
Collapse
Affiliation(s)
- Jingwei Wan
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States,Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Alyssa Aihui Guo
- University of South Carolina SOM Greenville, Greenville, SC, United States
| | - Pendelton King
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Shanchun Guo
- Department of Chemistry, Xavier University, New Orleans, LA, United States
| | - Talib Saafir
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, United States
| | - Yugang Jiang
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Mingli Liu
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States,*Correspondence: Mingli Liu,
| |
Collapse
|
20
|
Santoni G, Morelli MB, Marinelli O, Nabissi M, Santoni M, Amantini C. Calcium Signaling and the Regulation of Chemosensitivity in Cancer Cells: Role of the Transient Receptor Potential Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:505-517. [PMID: 31646523 DOI: 10.1007/978-3-030-12457-1_20] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer cells acquire the ability to modify the calcium signaling network by altering the expression and functions of cation channels, pumps or transporters. Calcium signaling pathways are involved in proliferation, angiogenesis, invasion, immune evasion, disruption of cell death pathways, ECM remodelling, epithelial-mesenchymal transition (EMT) and drug resistance. Among cation channels, a pivotal role is played by the Transient Receptor Potential non-selective cation-permeable receptors localized in plasma membrane, endoplasmic reticulum, mitochondria and lysosomes. Several findings indicate that the dysregulation in calcium signaling induced by TRP channels is responsible for cancer growth, metastasis and chemoresistance. Drug resistance represents a major limitation in the application of current therapeutic regimens and several efforts are spent to overcome it. Here we describe the ability of Transient Receptor Potential Channels to modify, by altering the intracellular calcium influx, the cancer cell sensitivity to chemotherapeutic drugs.
Collapse
Affiliation(s)
- Giorgio Santoni
- School of Pharmacy, Immunopathology and Molecular Medicine Laboratory, University of Camerino, Camerino, Italy
| | - Maria Beatrice Morelli
- School of Pharmacy, Immunopathology and Molecular Medicine Laboratory, University of Camerino, Camerino, Italy.,School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Oliviero Marinelli
- School of Pharmacy, Immunopathology and Molecular Medicine Laboratory, University of Camerino, Camerino, Italy.,School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Massimo Nabissi
- School of Pharmacy, Immunopathology and Molecular Medicine Laboratory, University of Camerino, Camerino, Italy
| | - Matteo Santoni
- Clinic and Oncology Unit, Macerata Hospital, Macerata, Italy
| | - Consuelo Amantini
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy.
| |
Collapse
|
21
|
Wan J, Guo AA, Chowdhury I, Guo S, Hibbert J, Wang G, Liu M. TRPM7 Induces Mechanistic Target of Rap1b Through the Downregulation of miR-28-5p in Glioma Proliferation and Invasion. Front Oncol 2019; 9:1413. [PMID: 31921670 PMCID: PMC6928690 DOI: 10.3389/fonc.2019.01413] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/28/2019] [Indexed: 01/29/2023] Open
Abstract
Objectives: Our previous findings demonstrate that channel-kinase transient receptor potential (TRP) ion channel subfamily M, member 7 (TRPM7) is critical in regulating human glioma cell migration and invasion. Since microRNAs (miRNAs) participate in complex regulatory networks that may affect almost every cellular and molecular process during glioma formation and progression, we explored the role of miRNAs in human glioma progression by comparing miRNA expression profiles due to differentially expressed TRPM7. Methods: First, we performed miRNA microarray analysis to determine TRPM7's miRNA targets upon TRPM7 silencing in A172 cells and validated the miRNA microarray data using A172, U87MG, U373MG, and SNB19 cell lines by stem-loop RT-qPCRs. We next determined whether TRPM7 regulates glioma cell proliferation and migration/invasion through different functional domains by overexpressing wild-type human TRPM7 (wtTRPM7), two mutants with TRPM7's α-kinase domain deleted (Δkinase-DK), or a point mutation in the ATP binding site of the α-kinase domain (K1648R-KR). In addition, we determined the roles of miR-28-5p in glioma cell proliferation and invasion by overexpressing or under expressing miR-28-5p in vitro. Lastly, we determined whether a Ras-related small GTP-binding protein (Rap1b) is a target of miR-28-5p in glioma tumorigenesis. Results: The miRNA microarray data revealed a list of 16 downregulated and 10 upregulated miRNAs whose transcripts are significantly changed by TRPM7 knock-down. Cell invasion was significantly reduced in two TRPM7 mutants with inactive kinase domain, Δkinase, and K1648R transfected glioma cells. miR-28-5p overexpression suppressed glioma cells' proliferation and invasion, and miR-28-5p under expression led to a significant increase in glioma cell proliferation and migration/invasion compared to that of the controls. miR-28-5p suppressed glioma cell proliferation and migration by targeting Rap1b. Co-transfection of siRap1b with miR28-5p inhibitor reduced the glioma cell proliferation and invasion, caused by the latter. Conclusions: These results indicate that TRPM7's channel activity is required for glioma cell growth while the kinase domain is required for cell migration/invasion. TRPM7 regulates miR-28-5p expression, which suppresses cell proliferation and invasion in glioma cells by targeting Rap1b signaling.
Collapse
Affiliation(s)
- Jingwei Wan
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States,Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Alyssa Aihui Guo
- Department of Obstetrics and Gynecology, Morehouse School of Medicine, Atlanta, GA, United States,University of South Carolina SOM Greenville, Greenville, SC, United States
| | - Indrajit Chowdhury
- Department of Obstetrics and Gynecology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Shanchun Guo
- Department of Chemistry, Xavier University, New Orleans, LA, United States
| | - Jacqueline Hibbert
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Guangdi Wang
- Department of Chemistry, Xavier University, New Orleans, LA, United States
| | - Mingli Liu
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States,*Correspondence: Mingli Liu
| |
Collapse
|
22
|
Transient Receptor Potential Cation Channels in Cancer Therapy. Med Sci (Basel) 2019; 7:medsci7120108. [PMID: 31801263 PMCID: PMC6950741 DOI: 10.3390/medsci7120108] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/08/2019] [Accepted: 11/26/2019] [Indexed: 02/06/2023] Open
Abstract
In mammals, the transient receptor potential (TRP) channels family consists of six different families, namely TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPML (mucolipin), TRPP (polycystin), and TRPA (ankyrin), that are strictly connected with cancer cell proliferation, differentiation, cell death, angiogenesis, migration, and invasion. Changes in TRP channels' expression and function have been found to regulate cell proliferation and resistance or sensitivity of cancer cells to apoptotic-induced cell death, resulting in cancer-promoting effects or resistance to chemotherapy treatments. This review summarizes the data reported so far on the effect of targeting TRP channels in different types of cancer by using multiple TRP-specific agonists, antagonists alone, or in combination with classic chemotherapeutic agents, microRNA specifically targeting the TRP channels, and so forth, and the in vitro and in vivo feasibility evaluated in experimental models and in cancer patients. Considerable efforts have been made to fight cancer cells, and therapies targeting TRP channels seem to be the most promising strategy. However, more in-depth investigations are required to completely understand the role of TRP channels in cancer in order to design new, more specific, and valuable pharmacological tools.
Collapse
|
23
|
Combined mTORC1/mTORC2 inhibition blocks growth and induces catastrophic macropinocytosis in cancer cells. Proc Natl Acad Sci U S A 2019; 116:24583-24592. [PMID: 31732667 DOI: 10.1073/pnas.1911393116] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) pathway, which plays a critical role in regulating cellular growth and metabolism, is aberrantly regulated in the pathogenesis of a variety of neoplasms. Here we demonstrate that dual mTORC1/mTORC2 inhibitors OSI-027 and PP242 cause catastrophic macropinocytosis in rhabdomyosarcoma (RMS) cells and cancers of the skin, breast, lung, and cervix, whereas the effects are much less pronounced in immortalized human keratinocytes. Using RMS as a model, we characterize in detail the mechanism of macropinocytosis induction. Macropinosomes are distinct from endocytic vesicles and autophagosomes in that they are single-membrane bound vacuoles formed by projection, ruffling, and contraction of plasma membranes. They are positive for EEA-1 and LAMP-1 and contain watery fluid but not organelles. The vacuoles then merge and rupture, killing the cells. We confirmed the inhibition of mTORC1/mTORC2 as the underpinning mechanism for macropinocytosis. Exposure to rapamycin, an mTORC1 inhibitor, or mTORC2 knockdown alone had little or reduced effect relative to the combination. We further demonstrate that macropinocytosis depends on MKK4 activated by elevated reactive oxygen species. In a murine xenograft model, OSI-027 reduced RMS tumor growth. Molecular characterization of the residual tumors was consistent with the induction of macropinocytosis. Furthermore, relative to the control xenograft tumors, the residual tumors manifested reduced expression of cell proliferation markers and proteins that drive the epithelial mesenchymal transition. These data indicate a role of mTORC2 in regulating tumor growth by macropinocytosis and suggest that dual inhibitors could help block refractory or recurrent RMS and perhaps other neoplasms and other cancer as well.
Collapse
|
24
|
Bioassay for Endothelial Damage Mediators Retrieved by Hemoadsorption. Sci Rep 2019; 9:14522. [PMID: 31601835 PMCID: PMC6787199 DOI: 10.1038/s41598-019-50517-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022] Open
Abstract
Hemoadsorption devices are used to treat septic shock by adsorbing inflammatory cytokines and as yet incompletely defined danger and pathogen associated molecular patterns. In an ideal case, hemoadsorption results in immediate recovery of microvascular endothelial cells’ (mEC) function and rapid recovery from catecholamine-dependency and septic shock. We here tested a single device, which consists of polystyrene-divinylbenzene core particles of 450 μm diameter with a high affinity for hydrophobic compounds. The current study aimed at the proof of concept that endothelial-specific damage mediators are adsorbed and can be recovered from hemoadsorption devices. Because of excellent clinical experience, we tested protein fractions released from a hemoadsorber in a novel endothelial bioassay. Video-based, long-term imaging of mEC proliferation and cell death were evaluated and combined with apoptosis and ATP measurements. Out of a total of 39 fractions recovered from column fractionation, we identified 3 fractions that caused i) inhibition of mEC proliferation, ii) increased cell death and iii) induction of apoptosis in mEC. When adding these 3 fractions to mEC, their ATP contents were reduced. These fractions contained proteins of approximately 15 kDa, and high amounts of nucleic acid, which was at least in part oxidized. The efficacy for endothelial cell damage prevention by hemoadsorption can be addressed by a novel endothelial bioassay and long-term video observation procedures. Protein fractionation of the hemoadsorption devices used is feasible to study and define endothelial damage ligands on a molecular level. The results suggest a significant effect by circulating nucleic acids – bound to an as yet undefined protein, which may constitute a major danger-associated molecular pattern (DAMP) in the exacerbation of inflammation when patients experience septic shock. Hemoadsorption devices may thus limit endothelial damage, through the binding of nucleic acid-bearing aggregates and thus contribute to improved endothelial barrier function.
Collapse
|
25
|
CK2 inhibition with silmitasertib promotes methuosis-like cell death associated to catastrophic massive vacuolization of colorectal cancer cells. Cell Death Dis 2019; 10:73. [PMID: 30683840 PMCID: PMC6347595 DOI: 10.1038/s41419-019-1306-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 11/20/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022]
Abstract
Protein kinase CK2 is a highly conserved and constitutively active Ser/Thr-kinase that phosphorylates a large number of substrates, resulting in increased cell proliferation and survival. A known target of CK2 is Akt, a player in the PI3K/Akt/mTORC1 signaling pathway, which is aberrantly activated in 32% of colorectal cancer (CRC) patients. On the other hand, mTORC1 plays an important role in the regulation of protein synthesis, cell growth, and autophagy. Some studies suggest that CK2 regulates mTORC1 in several cancers. The most recently developed CK2 inhibitor, silmitasertib (formerly CX-4945), has been tested in phase I/II trials for cholangiocarcinoma and multiple myeloma. This drug has been shown to induce autophagy and enhance apoptosis in pancreatic cancer cells and to promote apoptosis in non-small cell lung cancer cells. Nevertheless, it has not been tested in studies for CRC patients. We show in this work that inhibition of CK2 with silmitasertib decreases in vitro tumorigenesis of CRC cells in response to G2/M arrest, which correlates with mTORC1 inhibition and formation of large cytoplasmic vacuoles. Notably, molecular markers indicate that these vacuoles derive from massive macropinocytosis. Altogether, these findings suggest that an aberrantly elevated expression/activity of CK2 may play a key role in CRC, promoting cell viability and proliferation in untreated cells, however, its inhibition with silmitasertib promotes methuosis-like cell death associated to massive catastrophic vacuolization, accounting for decreased tumorigenicity at later times. These characteristics of silmitasertib support a potential therapeutic use in CRC patients and probably other CK2-dependent cancers.
Collapse
|
26
|
Thuringer D, Chanteloup G, Winckler P, Garrido C. The vesicular transfer of CLIC1 from glioblastoma to microvascular endothelial cells requires TRPM7. Oncotarget 2018; 9:33302-33311. [PMID: 30279961 PMCID: PMC6161795 DOI: 10.18632/oncotarget.26048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/16/2018] [Indexed: 01/01/2023] Open
Abstract
Chloride intracellular channel 1 (CLIC1) is highly expressed and secreted by human glioblastoma cells and cell lines such as U87, initiating cell migration and tumor growth. Here, we examined whether CLIC1 could be transferred to human primary microvascular endothelial cells (HMEC). We previously reported that the oncogenic microRNA, miR-5096, increased the release of extracellular vesicles (EVs) by which it increased its own transfer from U87 to surrounding cells. Thus, we also examined its effect on the CLIC1 transfer. In homotypic cultures, miR-5096 did not increase the expression of CLIC1 in U87 nor in HMEC. However, the endothelial CLIC1 level increased after exposure to EVs released by U87, and even more by miR-5096-loaded U87. The EVs-transferred CLIC1 was active in HMEC, promoting endothelial sprouting in matrigel. Cell exposure to EVs induced cytosolic Ca2+ spikes which were dependent on the transient receptor potential melastatin member 7 (TRPM7). TRPM7 silencing prevented Ca2+ spikes and the subsequent CLIC1 delivery into HMEC. Our data suggest that the vesicular transfer of CLIC1 between cells requires TRMP7 expression in recipient endothelial cells. How the vesicular transfer of CLIC1 is modulated in cancer therapy is a future challenge.
Collapse
Affiliation(s)
- Dominique Thuringer
- INSERM U1231, Laboratory of Excellence Ligue Nationale contre le Cancer, 21000 Dijon, France.,Université de Bourgogne Franche Comté, 21000 Dijon, France
| | - Gaetan Chanteloup
- INSERM U1231, Laboratory of Excellence Ligue Nationale contre le Cancer, 21000 Dijon, France.,Université de Bourgogne Franche Comté, 21000 Dijon, France
| | - Pascale Winckler
- AgroSup Dijon, PAM UMR, DImaCell Imaging Facility, Université de Bourgogne Franche Comté, 21000 Dijon, France
| | - Carmen Garrido
- INSERM U1231, Laboratory of Excellence Ligue Nationale contre le Cancer, 21000 Dijon, France.,Université de Bourgogne Franche Comté, 21000 Dijon, France.,Centre Georges François Leclerc (CGFL), 21000 Dijon, France
| |
Collapse
|
27
|
Huang W, Sun X, Li Y, He Z, Li L, Deng Z, Huang X, Han S, Zhang T, Zhong J, Wang Z, Xu Q, Zhang J, Deng X. Discovery and Identification of Small Molecules as Methuosis Inducers with in Vivo Antitumor Activities. J Med Chem 2018; 61:5424-5434. [PMID: 29878764 DOI: 10.1021/acs.jmedchem.8b00753] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Methuosis is a novel nonapoptotic mode of cell death characterized by vacuole accumulation in the cytoplasm. In this article, we describe a series of azaindole-based compounds that cause vacuolization in MDA-MB-231 cells. The most potent vacuole inducer, compound 13 (compound 13), displayed differential cytotoxicities against a broad panel of cancer cell lines, such as MDA-MB-231, A375, HCT116, and MCF-7, but it did not inhibit the growth of the nontumorigenic epithelial cell line MCF-10A. A mechanism study confirmed that the cell death was caused by inducing methuosis. Furthermore, compound 13 exhibited substantial pharmacological efficacy in the suppression of tumor growth in a xenograft mouse model of MDA-MB-231 cells without apparent side effects, which makes this compound the first example of a methuosis inducer with potent in vivo efficacy. These results demonstrate that methuosis inducers might serve as novel therapeutics for the treatment of cancer.
Collapse
Affiliation(s)
- Wei Huang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences , Xiamen University , Xiamen , Fujian 361102 , China.,State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products , Xiamen University , Xiamen , Fujian 361102 , China
| | - Xihuan Sun
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences , Xiamen University , Xiamen , Fujian 361102 , China.,State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products , Xiamen University , Xiamen , Fujian 361102 , China
| | - Yunzhan Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences , Xiamen University , Xiamen , Fujian 361102 , China.,State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products , Xiamen University , Xiamen , Fujian 361102 , China
| | - Zhixiang He
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences , Xiamen University , Xiamen , Fujian 361102 , China.,State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products , Xiamen University , Xiamen , Fujian 361102 , China
| | - Li Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences , Xiamen University , Xiamen , Fujian 361102 , China.,State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products , Xiamen University , Xiamen , Fujian 361102 , China
| | - Zhou Deng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences , Xiamen University , Xiamen , Fujian 361102 , China.,State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products , Xiamen University , Xiamen , Fujian 361102 , China
| | - Xiaoxing Huang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences , Xiamen University , Xiamen , Fujian 361102 , China.,State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products , Xiamen University , Xiamen , Fujian 361102 , China
| | - Shang Han
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences , Xiamen University , Xiamen , Fujian 361102 , China.,State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products , Xiamen University , Xiamen , Fujian 361102 , China
| | - Ting Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences , Xiamen University , Xiamen , Fujian 361102 , China.,State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products , Xiamen University , Xiamen , Fujian 361102 , China
| | - Jiaji Zhong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences , Xiamen University , Xiamen , Fujian 361102 , China.,State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products , Xiamen University , Xiamen , Fujian 361102 , China.,Medical College of Xiamen University , Xiamen , Fujian 361102 , China
| | - Zheng Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences , Xiamen University , Xiamen , Fujian 361102 , China.,State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products , Xiamen University , Xiamen , Fujian 361102 , China
| | - Qingyan Xu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences , Xiamen University , Xiamen , Fujian 361102 , China.,State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products , Xiamen University , Xiamen , Fujian 361102 , China
| | - Jianming Zhang
- Cutaneous Biology Research Center, Massachusetts General Hospital , Harvard Medical School , Boston , Massachusetts 02129 , United States
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences , Xiamen University , Xiamen , Fujian 361102 , China.,State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products , Xiamen University , Xiamen , Fujian 361102 , China
| |
Collapse
|
28
|
Kleemann M, Schneider H, Unger K, Sander P, Schneider EM, Fischer-Posovszky P, Handrick R, Otte K. MiR-744-5p inducing cell death by directly targeting HNRNPC and NFIX in ovarian cancer cells. Sci Rep 2018; 8:9020. [PMID: 29899543 PMCID: PMC5998049 DOI: 10.1038/s41598-018-27438-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 06/04/2018] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) play an important role in the regulation of gene expression. The binding to target messenger RNAs (mRNAs) results in mRNA cleavage or inhibition of the translational machinery leading to decreased protein levels. Various signalling pathways, including apoptosis are modulated by miRNAs. Here, we investigated the role of miR-744-5p in apoptosis signalling in ovarian cancer cell lines. MiR-744-5p expression was reduced in the cancer cell lines independent of the host gene MAP2K4. Overexpression of miR-744-5p activated the intrinsic apoptotic pathway in SKOV3, OVCAR3 and Cisplatin resistant (A2780-cis) and non-resistant A2780 cells leading to cell death. Notably, miR-744-5p overexpression together with Carboplatin treatment led to at least additive pro-apoptotic effects. Investigation of the apoptotic signalling pathways mediated by miR-744-5p revealed that its elevated expression directly downregulated mRNA and protein expression of nuclear factor I X (NFIX) and heterogeneous nuclear ribonucleoprotein C (HNRNPC). HNRNPC caused diminished miR-21 expression and AKT phosphorylation, while NFIX decreased Bcl2 levels, leading to the detected pro-apoptotic effects. Finally, Kaplan-Meier-Plots showed a prolonged median disease-free survival in ovarian serous cystadenocarcinoma patients with high miR-744 expression.
Collapse
Affiliation(s)
- Michael Kleemann
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Hubertus-Liebrecht-Str. 35, 88400, Biberach, Germany. .,University of Ulm, Faculty of Medicine, Albert-Einstein-Allee 11, 89079, Ulm, Germany.
| | - Helga Schneider
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Hubertus-Liebrecht-Str. 35, 88400, Biberach, Germany
| | - Kristian Unger
- Research Unit Radiation Cytogenetics, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Philip Sander
- University Medical Center Ulm, Division of Experimental Anesthesiology, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - E Marion Schneider
- University Medical Center Ulm, Division of Experimental Anesthesiology, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Pamela Fischer-Posovszky
- University Medical Center Ulm, Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Eythstr. 24, 89075, Ulm, Germany
| | - René Handrick
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Hubertus-Liebrecht-Str. 35, 88400, Biberach, Germany
| | - Kerstin Otte
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Hubertus-Liebrecht-Str. 35, 88400, Biberach, Germany
| |
Collapse
|
29
|
Sun SL, Li X, Su N, Chen S, Gao X, Zhang G, Piao H. Vacquinol‑1 induces apoptosis in hepatocellular carcinoma cell. Mol Med Rep 2018; 18:557-563. [PMID: 29749500 DOI: 10.3892/mmr.2018.8957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 04/20/2018] [Indexed: 11/06/2022] Open
Abstract
Vacquinol‑1 (Vacq), a quinolone derivative, has recently been reported to display potent antitumor effects in glioblastomas by inducing cellular massive vacuolization and cell death. However, whether Vacq induces cytotoxicities in other types of cancers, and the potential underlying mechanism, remain to be investigated. In the present study, it was revealed that Vacq suppressed cell growth and colony formation in the hepatocellular carcinoma (HCC) cell lines BEL7402 and Huh7. In addition, treatment with Vacq increased the number of early and late apoptotic cells as assessed by flow cytometry with fluorescein isothiocyanate‑conjugated Annexin V and propidium iodide double staining. Notably, the effect by Vacq in the tested cells could be inhibited by pretreatment with a broad specificity caspase inhibitor Z‑VAD‑FMK, suggesting that Vacq may induce apoptosis in HCC cells. Morphologically, exposure to Vacq resulted in nuclear fragmentation and the apoptotic body formation in HCC cells. Furthermore, Vacq treatment increased the cleavage of caspase‑3, caspase‑9 and poly(adenosine diphosphate‑ribose) polymerase‑1. Mechanistic analysis revealed that Vacq upregulated the expressions of pro‑apoptotic proteins [B‑cell lymphoma 2 (bcl‑2)‑associated X protein (Bax) and Bcl‑2‑like protein 11] and downregulated the pro‑survival protein, Bcl‑2, expression in HCC cells. Furthermore, Vacq induced Bax translocation. Of note, Vacq displayed inhibitory effects on patient‑derived HCC cells in two‑dimensional (2D) and three-dimensional (3D) cultures. Taken together, the data suggested that Vacq induced intrinsic apoptosis and may be utilized as an effective reagent for HCC treatment.
Collapse
Affiliation(s)
- Shu-Lan Sun
- Central Laboratory, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Xiaoxi Li
- Central Laboratory, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Nan Su
- Central Laboratory, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Shi Chen
- Central Laboratory, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Xiaoxin Gao
- Central Laboratory, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Guirong Zhang
- Central Laboratory, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Haozhe Piao
- Central Laboratory, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| |
Collapse
|
30
|
Ahlstedt J, Förnvik K, Zolfaghari S, Kwak D, Hammarström LGJ, Ernfors P, Salford LG, Redebrandt HN. Evaluating vacquinol-1 in rats carrying glioblastoma models RG2 and NS1. Oncotarget 2018; 9:8391-8399. [PMID: 29492202 PMCID: PMC5823554 DOI: 10.18632/oncotarget.23842] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/28/2017] [Indexed: 01/21/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common malignant primary brain tumor, and available experimental and routine therapies result in limited survival benefits. A vulnerability of GBM cells to catastrophic vacuolization and cell death, a process termed methuosis, induced by Vacquinol-1 (VQ-1) has been described earlier. In the present study, we investigate the efficacy of VQ-1 treatment in two syngeneic rat GBM models, RG2 and NS1. VQ-1 treatment affected growth of both RG2 and NS1 cells in vitro. Intracranially, significant reduction in RG2 tumor size was observed, although no effect was seen on overall survival. No survival advantage or effect on tumor size was seen in animals carrying the NS1 models compared to untreated controls. Furthermore, immunological staining of FOXP3, CD4 and CD8 showed no marked difference in immune cell infiltrate in tumor environment following treatment. Taken together, a survival advantage of VQ-1 treatment alone could not be demonstrated here, even though some effect upon tumor size was seen. Staining for immune cell markers did not indicate that VQ-1 either reduced or increased host anti-tumor immune response.
Collapse
Affiliation(s)
- Jonatan Ahlstedt
- Rausing Laboratory, Division of Neurosurgery, Department of Clinical Sciences Lund, Lund University, Lund, Sweden, Lund University, Sweden
| | - Karolina Förnvik
- Rausing Laboratory, Division of Neurosurgery, Department of Clinical Sciences Lund, Lund University, Lund, Sweden, Lund University, Sweden
| | - Shaian Zolfaghari
- Rausing Laboratory, Division of Neurosurgery, Department of Clinical Sciences Lund, Lund University, Lund, Sweden, Lund University, Sweden
| | - Dongoh Kwak
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, Stockholm, Sweden
| | - Lars G J Hammarström
- Chemical Biology Consortium Sweden, Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Division of Molecular Translational Medicine and Chemical Biology, Karolinska Institutet, Stockholm, Sweden
| | - Patrik Ernfors
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, Stockholm, Sweden
| | - Leif G Salford
- Rausing Laboratory, Division of Neurosurgery, Department of Clinical Sciences Lund, Lund University, Lund, Sweden, Lund University, Sweden
| | - Henrietta Nittby Redebrandt
- Rausing Laboratory, Division of Neurosurgery, Department of Clinical Sciences Lund, Lund University, Lund, Sweden, Lund University, Sweden
| |
Collapse
|
31
|
朱 俊, 涂 维, 曾 超, 毛 珩, 杜 庆, 蔡 红. [Mechanism of Platycarya strobilacea Sieb. et Zucc extract-induced methuosis in human nasopharyngeal carcinoma CNE1 and CNE2 cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2017; 37:827-832. [PMID: 28669961 PMCID: PMC6744143 DOI: 10.3969/j.issn.1673-4254.2017.06.20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To study the effect of Platycarya strobilacea Sieb. et Zucc (PSZ) extract on methuosis of human nasopharyngeal carcinoma CNE1 and CNE2 cells and explore the underlying mechanism. METHODS CNE1 and CNE2 cells were treated with 1 mg/mL PSZ extract and the expressions of Rac1 mRNA and Rac1 protein were detected using RT-qPCR and Western blotting, respectively. Results CNE1 and CNE2 cells showed obvious morphological changes typical of methuosis following treatment with PSZ extract characterized by cell merging, accumulation of large cytoplasmic vacuoles, and membrane rupture without obvious changes in the nuclei. PSZ treatment resulted in up-regulated Rac1 mRNA and Rac1 protein expressions in the cells. Application of EHT 1864 obviously blocked the effect of PSZ extract in inducing methuosis in CNE1 and CNE2 cells. CONCLUSION PSZ extract can induce methuosis in CNE1 and CNE2 cells by inducing the overexpression of Rac1.
Collapse
Affiliation(s)
- 俊谕 朱
- 南方医科大学,广东 广州 510515Southern Medical University, Guangzhou 510515, China
- 南方医科大学珠江医院,广东 广州 510282Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - 维 涂
- 南方医科大学,广东 广州 510515Southern Medical University, Guangzhou 510515, China
- 南方医科大学中西结合医院,广东 广州 510315Traditional Chinese Medicine-Integrated Cancer Center of Southern Medical University, Guangzhou 510315, China
| | - 超 曾
- 南方医科大学,广东 广州 510515Southern Medical University, Guangzhou 510515, China
- 南方医科大学中西结合医院,广东 广州 510315Traditional Chinese Medicine-Integrated Cancer Center of Southern Medical University, Guangzhou 510315, China
| | - 珩旭 毛
- 南方医科大学,广东 广州 510515Southern Medical University, Guangzhou 510515, China
- 南方医科大学珠江医院,广东 广州 510282Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - 庆锋 杜
- 南方医科大学,广东 广州 510515Southern Medical University, Guangzhou 510515, China
| | - 红兵 蔡
- 南方医科大学,广东 广州 510515Southern Medical University, Guangzhou 510515, China
- 南方医科大学中西结合医院,广东 广州 510315Traditional Chinese Medicine-Integrated Cancer Center of Southern Medical University, Guangzhou 510315, China
| |
Collapse
|