1
|
Cammarota A, Woodford R, Smyth EC. Targeting HER2 in Gastroesophageal Cancer: A New Appetite for an Old Plight. Drugs 2025; 85:361-383. [PMID: 39843758 DOI: 10.1007/s40265-024-02132-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 01/24/2025]
Abstract
The incidence of gastroesophageal cancers is rising, driven, in part, by an increasing burden of risk factors of obesity and gastroesophageal reflux. Despite efforts to address these risk factors, and a growing interest in methods of population screening, the bulk of these tumours are unresectable at diagnosis. In this setting, effective systemic treatments are paramount to improve survival and quality of life. Early and accurate identification of oncogenic drivers, such as human epidermal growth factor receptor 2 (HER2), present in 5-30% of gastroesophageal adenocarcinomas (GEAs), is integral to guide choice of therapies due to the clear predictive implications that arise from overexpression of this receptor. After trastuzumab, the first anti-HER2 agent with approved use in HER2-positive GEA, the addition of pembrolizumab to first-line trastuzumab-chemotherapy and trastuzumab deruxtecan in the refractory space have more recently changed practice. Yet, the response to these agents has been vastly different across patients with HER2-positive disease, underpinning the need for reliable biomarkers of response. Emergent data have suggested that levels of HER2 expression on tissue or liquid biopsies may predict response to first-generation HER2 therapies while HER2 heterogeneity, receptor changes, co-occurring molecular alterations and oncogenic genomic and metabolic reprogramming may be implicated in resistance. A robust knowledge of the mechanisms of resistance and response to HER2-directed therapies is necessary to inform novel strategies of HER2-targeting and guide choice combinations with other biomarker-directed therapies, to improve outcomes from a new generation of clinical trials in HER2-positive GEA. Understanding and close examination of previous failures in this space form an important part of this assessment, as does correlative biomarker and translational work pertaining to the role of HER2 and dynamic changes that result through treatment exposure. In this review, we aim to provide an overview of strategies for HER2 targeting, summarising both the successes and disappointments in this therapeutic landscape and discuss existing challenges and future perspectives on development in this highly morbid tumour type.
Collapse
Affiliation(s)
- Antonella Cammarota
- Sarah Cannon Research Institute UK, 93 Harley St, London, UK
- Department of Medical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele, Milan, Italy
| | - Rachel Woodford
- Sarah Cannon Research Institute UK, 93 Harley St, London, UK
- National Health and Medical Research Council Clinical Trials Centre (NHMRC CTC), University of Sydney, Parramatta Road, Camperdown, Australia
| | - Elizabeth C Smyth
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK.
| |
Collapse
|
2
|
Bano N, Kainat KM, Ansari MI, Pal A, Sarkar S, Sharma PK. Identification of chemoresistance targets in doxorubicin-resistant lung adenocarcinoma cells using LC-MS/MS-based proteomics. J Chemother 2024:1-15. [PMID: 39101797 DOI: 10.1080/1120009x.2024.2385267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/03/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024]
Abstract
Acquired chemoresistance remains a significant challenge in the clinics as most of the treated cancers eventually emerge as hard-to-treat phenotypes. Therefore, identifying chemoresistance targets is highly warranted to manage the disease better. In this study, we employed a label-free LC-MS/MS-based quantitative proteomics analysis to identify potential targets and signaling pathways underlying acquired chemoresistance in a sub-cell line (A549DR) derived from the parental lung adenocarcinoma cells (A549) treated with gradually increasing doses of doxorubicin (DOX). Our proteomics analysis identified 146 upregulated and 129 downregulated targets in A549DR cells. The KEGG pathway and Gene ontology (GO) analysis of differentially expressed upregulated and downregulated proteins showed that most abundant upregulated pathways were related to metabolic pathways, cellular senescence, cell cycle, and p53 signaling. Meanwhile, the downregulated pathways were related to spliceosome, nucleotide metabolism, DNA replication, nucleotide excision repair, and nuclear-cytoplasmic transport. Further, STRING analysis of upregulated biological processes showed a protein-protein interaction (PPI) between CDK1, AKT2, SRC, STAT1, HDAC1, FDXR, FDX1, NPC1, ALDH2, GPx1, CDK4, and B2M, proteins. The identified proteins in this study might be the potential therapeutic targets for mitigating DOX resistance.
Collapse
Affiliation(s)
- Nuzhat Bano
- Food Toxicology Group, Food, Drug & Chemical, Environment, and Systems Toxicology (FEST) Division, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - K M Kainat
- Food Toxicology Group, Food, Drug & Chemical, Environment, and Systems Toxicology (FEST) Division, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Mohammad Imran Ansari
- Food Toxicology Group, Food, Drug & Chemical, Environment, and Systems Toxicology (FEST) Division, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Anjali Pal
- Food Toxicology Group, Food, Drug & Chemical, Environment, and Systems Toxicology (FEST) Division, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sana Sarkar
- Systems Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology (FEST) Division, CSIR- Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Pradeep Kumar Sharma
- Food Toxicology Group, Food, Drug & Chemical, Environment, and Systems Toxicology (FEST) Division, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
3
|
Li Z, Zhao H, Hu H, Shang H, Ren Y, Qiu W, Su H, Lyu H, Chen X. Mechanisms of resistance to trastuzumab in HER2-positive gastric cancer. Chin J Cancer Res 2024; 36:306-321. [PMID: 38988489 PMCID: PMC11230884 DOI: 10.21147/j.issn.1000-9604.2024.03.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/30/2024] [Indexed: 07/12/2024] Open
Abstract
Gastric cancer is one of the most prevalent cancers worldwide, and human epidermal growth factor receptor 2 (HER2)-positive cases account for approximately 20% of the total cases. Currently, trastuzumab + chemotherapy is the recommended first-line treatment for patients with HER2-positive advanced gastric cancer, and the combination has exhibited definite efficacy in HER2-targeted therapy. However, the emergence of drug resistance during treatment considerably reduces its effectiveness; thus, it is imperative to investigate the potential mechanisms underlying resistance. In the present review article, we comprehensively introduce multiple mechanisms underlying resistance to trastuzumab in HER2-positive gastric cancer cases, aiming to provide insights for rectifying issues associated with resistance to trastuzumab and devising subsequent treatment strategies.
Collapse
Affiliation(s)
- Zhifei Li
- Department of Oncology, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou 450008, China
| | - Huan Zhao
- Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China
| | - Huihui Hu
- Department of Oncology, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou 450008, China
| | - Haili Shang
- Department of Oncology, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou 450008, China
| | - Yongjing Ren
- Department of Oncology, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou 450008, China
| | - Wenhui Qiu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Hao Su
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453000, China
| | - Huifang Lyu
- Department of Oncology, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Xiaobing Chen
- Department of Oncology, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou 450008, China
| |
Collapse
|
4
|
Li G, Ping M, Guo J, Wang J. Comprehensive analysis of CPNE1 predicts prognosis and drug resistance in gastric adenocarcinoma. Am J Transl Res 2024; 16:2233-2247. [PMID: 39006290 PMCID: PMC11236623 DOI: 10.62347/niyr2094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/20/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Recent studies have confirmed that Copines-1 (CPNE1) is associated with many malignancies. However, the role of CPNE1 in stomach adenocarcinoma (STAD) is currently unclear. METHODS TIMER2.0, TCGA, UALCAN databases were used to investigate the expression of CPNE1 in STAD and normal tissues. KM-plotter database was used to explore the relationship between CPNE1 expression and prognosis in STAD. Immunohistochemistry (IHC) was used to assess the protein levels of CPNE1 in both normal and cancer tissues, as well as to confirm the prognostic significance of CPNE1. In order to assess the viability of CPNE1 as a divider, the Recipient Operating Characteristics (ROC) curve was employed and the assessment based on the AUC score (below the curve). To investigate the potential function of CPNE1, correlation analysis and enrichment analysis were performed with the clusterProfiler package in R software. The CPNE1 binding protein network was constructed by STRING and GeneMANIA. The relationship between methylation and prognosis was explored by Methsurv database. The Genomics of Drug Sensitivity in Cancer (GDSC) was employed to predict drug responsiveness in STAD. Ultimately, CCK-8 assays and RT-qPCR were performed to confirm the correlation between CPNE1 expression and the IC50 of Axitinib in the AGS cell line. RESULT CPNE1 is highly expressed in various cancers, including STAD. High expression of CPNE1 indicated poor overall survival (OS) of STAD (P < 0.05). The ROC curve suggested that CPNE1 was a potential diagnostic biomarker (AUC = 0.925). The functions of CPNE1 were enriched in DNA-acting catalytic activity, sulfur transferase activity, Ran GTPase binding, DNA helicase activity, helicase activity and eukaryotic ribosome biosynthesis. Hyper-methylated CPNE1 predicts better prognosis in STAD (P < 0.05). Additionally, STAD patients with high-expression CPNE1 seemed to be more resistant to the chemotherapeutic agents, including A-770041, WH-4-023, AZD-2281, AG-014699, AP-24534, Axitinib, AZD6244, RDEA119, AZD8055, Temsirolimus, Pazopanib and Roscovitine. In vitro experiments demonstrated the involvement of CPNE1 in Axitinib chemoresistance. CONCLUSION CPNE1 could be a predictive biomarker and a potential target for biological therapy in STAD.
Collapse
Affiliation(s)
- Guangyao Li
- Department of Gastrointestinal Surgery, The Second People’s Hospital of WuhuWuhu 241000, Anhui, China
| | - Miaomiao Ping
- School of Basic Medical Sciences, Anhui Medical UniversityHefei 230032, Anhui, China
| | - Jizheng Guo
- School of Basic Medical Sciences, Anhui Medical UniversityHefei 230032, Anhui, China
| | - Jin Wang
- Department of General Surgery, The Traditional Chinese Medicine Hospital of WuhuWuhu 241000, Anhui, China
| |
Collapse
|
5
|
Scheck MK, Hofheinz RD, Lorenzen S. HER2-Positive Gastric Cancer and Antibody Treatment: State of the Art and Future Developments. Cancers (Basel) 2024; 16:1336. [PMID: 38611014 PMCID: PMC11010911 DOI: 10.3390/cancers16071336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Despite a decreasing incidence in Western countries, gastric cancer is among the most common cancer subtypes globally and is associated with one of the highest tumor-related mortality rates. Biomarkers play an increasing role in the treatment against gastric cancer. HER2 was one of the first biomarkers that found its way into clinical practice. Since the ToGA trial, trastuzumab has been part of first-line palliative chemotherapy in metastatic or unresectable gastric cancer. HER2-targeting agents, such as the tyrosine kinase inhibitor lapatinib, the antibody drug conjugate (ADC) trastuzumab-emtansine or dual HER2 inhibition (pertuzumab and trastuzumab), have been investigated in the second-line setting but led to negative study results. More recently, the ADC trastuzumab-deruxtecan was authorized after the failure of trastuzumab-based treatment. However, further improvements in HER2-directed therapy are required as resistance mechanisms and HER2 heterogeneity limit the existing treatment options. This review aims to give an overview of the current standard-of-care HER2-directed therapy in gastric cancer, as well as its challenges and future developments.
Collapse
Affiliation(s)
- Magdalena K. Scheck
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar der TU München, 81675 Munich, Germany;
| | - Ralf D. Hofheinz
- Mannheim Cancer Center, Universitätsklinikum Mannheim, 68167 Mannheim, Germany;
| | - Sylvie Lorenzen
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar der TU München, 81675 Munich, Germany;
| |
Collapse
|
6
|
Lin P, Cheng W, Qi X, Zhang P, Xiong J, Li J. Bioinformatics and Experimental Validation for Identifying Biomarkers Associated with AMG510 (Sotorasib) Resistance in KRAS G12C-Mutated Lung Adenocarcinoma. Int J Mol Sci 2024; 25:1555. [PMID: 38338834 PMCID: PMC10855101 DOI: 10.3390/ijms25031555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
The Kirsten rat sarcoma viral oncogene homolog (KRAS)G12C mutation is prevalent in lung adenocarcinoma (LUAD), driving tumor progression and indicating a poor prognosis. While the FDA-approved AMG510 (Sotorasib) initially demonstrated efficacy in treating KRASG12C-mutated LUAD, resistance emerged within months. Data from AMG510 treatment-resistant LUAD (GSE204753) and single-cell datasets (GSE149655) were analyzed. Gene set variation analysis (GSVA) and gene set enrichment analysis (GSEA) were used to explore enriched signaling pathways, nomogram models were constructed, and transcription factors predicting resistance biomarkers were predicted. CIBERSORT identified immune cell subpopulations, and their association with resistance biomarkers was assessed through single-cell analysis. AMG510-resistant LUAD cells (H358-AR) were constructed, and proliferative changes were evaluated using a CCK-8 assay. Key molecules for AMG510 resistance, including SLC2A1, TLE1, FAM83A, HMGA2, FBXO44, and MTRNR2L12, were recognized. These molecules impacted multiple signaling pathways and the tumor microenvironment and were co-regulated by various transcription factors. Single-cell analysis revealed a dampening effect on immune cell function, with associations with programmed cell death ligand 1 (PDL1) expression, cytokine factors, and failure factors. The findings indicate that these newly identified biomarkers are linked to the abnormal expression of PDL1 and have the potential to induce resistance through immunosuppression. These results highlight the need for further research and therapeutic intervention to address this issue effectively.
Collapse
Affiliation(s)
- Peng Lin
- Key Laboratory of Marine Drugs, Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (P.L.); (W.C.)
| | - Wei Cheng
- Key Laboratory of Marine Drugs, Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (P.L.); (W.C.)
| | - Xin Qi
- Key Laboratory of Marine Drugs, Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (P.L.); (W.C.)
| | - Pinglu Zhang
- Faculty of Information Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jianshe Xiong
- Faculty of Information Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jing Li
- Key Laboratory of Marine Drugs, Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (P.L.); (W.C.)
| |
Collapse
|
7
|
Liu Z, Jiang S, Hao B, Xie S, Liu Y, Huang Y, Xu H, Luo C, Huang M, Tan M, Xu JY. A proteomic landscape of pharmacologic perturbations for functional relevance. J Pharm Anal 2024; 14:128-139. [PMID: 38352953 PMCID: PMC10859532 DOI: 10.1016/j.jpha.2023.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/11/2023] [Accepted: 08/29/2023] [Indexed: 02/16/2024] Open
Abstract
Pharmacological perturbation studies based on protein-level signatures are fundamental for drug discovery. In the present study, we used a mass spectrometry (MS)-based proteomic platform to profile the whole proteome of the breast cancer MCF7 cell line under stress induced by 78 bioactive compounds. The integrated analysis of perturbed signal abundance revealed the connectivity between phenotypic behaviors and molecular features in cancer cells. Our data showed functional relevance in exploring the novel pharmacological activity of phenolic xanthohumol, as well as the noncanonical targets of clinically approved tamoxifen, lovastatin, and their derivatives. Furthermore, the rational design of synergistic inhibition using a combination of histone methyltransferase and topoisomerase was identified based on their complementary drug fingerprints. This study provides rich resources for the proteomic landscape of drug responses for precision therapeutic medicine.
Collapse
Affiliation(s)
- Zhiwei Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Shangwen Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Bingbing Hao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Shuyu Xie
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yingluo Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yuqi Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Heng Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Cheng Luo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Min Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, 528400, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, China
| | - Jun-Yu Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, 528400, China
| |
Collapse
|
8
|
Liu Z, Wang L, Wang Y, Wu S, Peng C, Wang Y, Huang M, Che L, Sun R, Zhao X, Du Z, Liu W. Quantitative proteomics reveals the neurotoxicity of trimethyltin chloride on mitochondria in the hippocampus of mice. Neurotoxicology 2023; 99:162-176. [PMID: 37838251 DOI: 10.1016/j.neuro.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/16/2023]
Abstract
Trimethyltin chloride (TMT) is a potent neurotoxin widely used as a constituent of polyvinyl chloride plastic in the industrial and agricultural fields. However, the underlying mechanisms by which TMT leads to neurotoxicity remain elusive. In the present study, we constructed a dose and time dependent neurotoxic mouse model of TMT exposure to explore the molecular mechanisms involved in TMT-induced neurological damage. Based on this model, the cognitive ability of TMT exposed mice was assessed by the Morris water maze test and a passive avoidance task. The ultrastructure of hippocampus was analyzed by the transmission electron microscope. Subsequently, proteomics integrated with bioinformatics and experimental verification were employed to reveal potential mechanisms of TMT-induced neurotoxicity. Gene ontology (GO) and pathway enrichment analysis were done by using Metascape and GeneCards database respectively. Our results demonstrated that TMT-exposed mice exhibited cognitive disorder, and mitochondrial respiratory chain abnormality of the hippocampus. Proteomics data showed that a total of 7303 proteins were identified in hippocampus of mice of which 224 ones displayed a 1.5-fold increase or decrease in TMT exposed mice compared with controls. Further analysis indicated that these proteins were mainly involved in tricarboxylic acid (TCA) cycle and respiratory electron transport, proteasome degradation, and multiple metabolic pathways as well as inflammatory signaling pathways. Some proteins, including succinate-CoA ligase subunit (Suclg1), NADH dehydrogenase subunit 5 (Nd5), NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 4-like 2 (Ndufa4l2) and cytochrome c oxidase assembly factor 7 (Coa7), which were closely related to mitochondrial respiratory electron transport, showed TMT dose and time dependent changes in the hippocampus of mice. Moreover, apoptotic molecules Bax and cleaved caspase-3 were up-regulated, while anti-apoptotic Bcl-2 was down-regulated compared with controls. In conclusion, our findings suggest that impairment of mitochondrial respiratory chain transport and promotion of apoptosis are the potential mechanisms of TMT induced hippocampus toxicity in mice.
Collapse
Affiliation(s)
- Zhenzhong Liu
- School of Public Health, School of Pharmacy, North Sichuan Medical College, Nanchong 637100, China.
| | - Li Wang
- School of Public Health, School of Pharmacy, North Sichuan Medical College, Nanchong 637100, China
| | - Yue Wang
- School of Public Health, School of Pharmacy, North Sichuan Medical College, Nanchong 637100, China
| | - Siya Wu
- School of Public Health, School of Pharmacy, North Sichuan Medical College, Nanchong 637100, China
| | - Caiting Peng
- School of Public Health, School of Pharmacy, North Sichuan Medical College, Nanchong 637100, China
| | - Yu Wang
- School of Public Health, School of Pharmacy, North Sichuan Medical College, Nanchong 637100, China
| | - Ming Huang
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China
| | - Li Che
- School of Public Health, School of Pharmacy, North Sichuan Medical College, Nanchong 637100, China
| | - Rongjing Sun
- School of Public Health, School of Pharmacy, North Sichuan Medical College, Nanchong 637100, China
| | - Xi Zhao
- School of Public Health, School of Pharmacy, North Sichuan Medical College, Nanchong 637100, China
| | - Zuo Du
- School of Public Health, School of Pharmacy, North Sichuan Medical College, Nanchong 637100, China
| | - Wenhu Liu
- School of Public Health, School of Pharmacy, North Sichuan Medical College, Nanchong 637100, China.
| |
Collapse
|
9
|
Hu CT, Pei SJ, Wang JL, Zu LD, Shen WW, Yuan L, Gao F, Jiang LR, Yau SST, Fu GH. Quantitative proteomics profiling reveals the inhibition of trastuzumab antitumor efficacy by phosphorylated RPS6 in gastric carcinoma. Cancer Chemother Pharmacol 2023; 92:341-355. [PMID: 37507485 DOI: 10.1007/s00280-023-04571-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND The anti-HER2 antibody trastuzumab is a standard treatment for gastric carcinoma with HER2 overexpression, but not all patients benefit from treatment with HER2-targeted therapies due to intrinsic and acquired resistance. Thus, more precise predictors for selecting patients to receive trastuzumab therapy are urgently needed. METHODS We applied mass spectrometry-based proteomic analysis to 38 HER2-positive gastric tumor biopsies from 19 patients pretreated with trastuzumab (responders n = 10; nonresponders, n = 9) to identify factors that may influence innate sensitivity or resistance to trastuzumab therapy and validated the results in tumor cells and patient samples. RESULTS Statistical analyses revealed significantly lower phosphorylated ribosomal S6 (p-RPS6) levels in responders than nonresponders, and this downregulation was associated with a durable response and better overall survival after anti-HER2 therapy. High p-RPS6 levels could trigger AKT/mTOR/RPS6 signaling and inhibit trastuzumab antitumor efficacy in nonresponders. We demonstrated that RPS6 phosphorylation inhibitors in combination with trastuzumab effectively suppressed HER2-positive GC cell survival through the inhibition of the AKT/mTOR/RPS6 axis. CONCLUSIONS Our findings provide for the first time a detailed proteomics profile of current protein alterations in patients before anti-HER2 therapy and present a novel and optimal predictor for the response to trastuzumab treatment. HER2-positive GC patients with low expression of p-RPS6 are more likely to benefit from trastuzumab therapy than those with high expression. However, those with high expression of p-RPS6 may benefit from trastuzumab in combination with RPS6 phosphorylation inhibitors.
Collapse
Affiliation(s)
- Chun-Ting Hu
- Department of Pathology, Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shao-Jun Pei
- School of Public Health, Peking University, Beijing, 100191, People's Republic of China
- Department of Mathematical Sciences, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Jing-Long Wang
- Department of Pathology, Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-Dong Zu
- Department of Pathology, Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Wei Shen
- Department of Pathology, Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Yuan
- Pathology Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Gao
- Pathology Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-Ren Jiang
- Pathology Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Stephen S-T Yau
- Yanqi Lake Beijing Institute of Mathematical Sciences and Applications (BIMSA), Huairou District, Beijing, 101400, People's Republic of China.
- Department of Mathematical Sciences, Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Guo-Hui Fu
- Department of Pathology, Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
10
|
Kim JS, Kim MY, Hong S. Synergistic Effects of Metformin and Trastuzumab on HER2 Positive Gastroesophageal Adenocarcinoma Cells In Vitro and In Vivo. Cancers (Basel) 2023; 15:4768. [PMID: 37835462 PMCID: PMC10571931 DOI: 10.3390/cancers15194768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
The incidence of HER2 amplification in advanced gastroesophageal adenocarcinoma (GC) reportedly ranges between 10% and 20%, depending on the population studied and the geographical region. Trastuzumab (Tmab) is the standard treatment for GCs with HER2 amplification. Metformin, a widely used antidiabetic drug, is an activator of AMP kinase that can affect the mTOR signaling pathway. The following GC cells were evaluated: HER2+ NCI-N87, YCC-19, YCC-38, OE19, OE33, and HER2- AGS. The effects of Tmab and metformin on these cell lines were assessed as single agents and in combination using cell viability assays, Western blotting, and xenograft models. Metformin induced phosphorylation of AMP kinase in all tested GC cells and dephosphorylation of mTOR in Tmab-sensitive GC cells. We observed that treatment with Tmab in combination with metformin induced a significant decrease in the number of colonies formed on soft agar by N87, YCC-19, YCC-38, and OE19 cells (88%, 95%, 73%, and 98%, respectively), in comparison to the number formed by control cells or cells in the single-treatment groups. No growth inhibition was detected in OE33 cells treated with Tmab alone. Combination with metformin resulted in decreased phosphorylation of HER2 and its downstream targets, AKT and ERK, in Tmab-sensitive HER2+ cells. Phospho-receptor tyrosine kinase (RTK) arrays were used to profile the phospho-proteome, which demonstrated a synergistic decrease in phosphorylation of EGFR, HER2, and HER3. Furthermore, the combination of Tmab and metformin exhibited enhanced antitumor effects in a xenograft model. Collectively, these data suggest that Tmab and metformin act synergistically in HER2+ GC cells. Since metformin is widely used and relatively non-toxic, its addition to the therapeutic regimen along with Tmab could enhance the clinical efficacy in patients with HER2+ GC.
Collapse
Affiliation(s)
- Jin-Soo Kim
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul 07061, Republic of Korea;
| | - Mi Young Kim
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul 07061, Republic of Korea;
| | - Sungyoul Hong
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea;
| |
Collapse
|
11
|
Kim G, Jang SK, Kim YJ, Jin HO, Bae S, Hong J, Park IC, Lee JH. Inhibition of Glutamine Uptake Resensitizes Paclitaxel Resistance in SKOV3-TR Ovarian Cancer Cell via mTORC1/S6K Signaling Pathway. Int J Mol Sci 2022; 23:ijms23158761. [PMID: 35955892 PMCID: PMC9369036 DOI: 10.3390/ijms23158761] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Ovarian cancer is a carcinoma that affects women and that has a high mortality rate. Overcoming paclitaxel resistance is important for clinical application. However, the effect of amino acid metabolism regulation on paclitaxel-resistant ovarian cancer is still unknown. In this study, the effect of an amino acid-deprived condition on paclitaxel resistance in paclitaxel-resistant SKOV3-TR cells was analyzed. We analyzed the cell viability of SKOV3-TR in culture conditions in which each of the 20 amino acids were deprived. As a result, the cell viability of the SKOV3-TR was significantly reduced in cultures deprived of arginine, glutamine, and lysine. Furthermore, we showed that the glutamine-deprived condition inhibited mTORC1/S6K signaling. The decreased cell viability and mTORC1/S6K signaling under glutamine-deprived conditions could be restored by glutamine and α-KG supplementation. Treatment with PF-4708671, a selective S6K inhibitor, and the selective glutamine transporter ASCT2 inhibitor V-9302 downregulated mTOR/S6K signaling and resensitized SKOV3-TR to paclitaxel. Immunoblotting showed the upregulation of Bcl-2 phosphorylation and a decrease in Mcl-1 expression in SKOV3-TR via the cotreatment of paclitaxel with PF-4708671 and V-9302. Collectively, this study demonstrates that the inhibition of glutamine uptake can resensitize SKOV3-TR to paclitaxel and represents a promising therapeutic target for overcoming paclitaxel resistance in ovarian cancer.
Collapse
Affiliation(s)
- Gyeongmi Kim
- Division of Fusion Radiology Research, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Korea
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Se-Kyeong Jang
- Division of Fusion Radiology Research, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Korea
- Department of Food and Microbial Technology, Seoul Women’s University, 621 Hwarangro, Nowon-gu, Seoul 01797, Korea
| | - Yu Jin Kim
- Division of Fusion Radiology Research, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Korea
- Department of Biological Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Hyeon-Ok Jin
- KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Korea
| | - Seunghee Bae
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Jungil Hong
- Department of Food and Microbial Technology, Seoul Women’s University, 621 Hwarangro, Nowon-gu, Seoul 01797, Korea
| | - In-Chul Park
- Division of Fusion Radiology Research, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Korea
- Correspondence: (I.-C.P.); (J.H.L.)
| | - Jae Ho Lee
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
- Correspondence: (I.-C.P.); (J.H.L.)
| |
Collapse
|
12
|
El-Kadiry AEH, Beaudoin S, Plouffe S, Rafei M. Accum™ Technology: A Novel Conjugable Primer for Onco-Immunotherapy. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123807. [PMID: 35744930 PMCID: PMC9227040 DOI: 10.3390/molecules27123807] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 11/20/2022]
Abstract
Compromised activity is a common impediment for biologics requiring endosome trafficking into target cells. In cancer cells, antibody-drug conjugates (ADCs) are trapped in endosomes or subsequently pumped extracellularly, leading to a reduction in intracellular accumulation. In subsets of dendritic cells (DCs), endosome-engulfed antigens face non-specific proteolysis and collateral damage to epitope immunogenicity before proteasomal processing and subsequent surface presentation. To bypass these shortcomings, we devised Accum™, a conjugable biotechnology harboring cholic acid (ChAc) and a nuclear localization signal (NLS) sequence for endosome escape and prompt nuclear targeting. Combined, these mechanisms culminate in enhanced intracellular accumulation and functionalization of coupled biologics. As proof-of-principle, we have biochemically characterized Accum, demonstrating its adaptability to ADCs or antigens in different cancer settings. Additionally, we have validated that endosome escape and nuclear routing are indispensable for effective intracellular accumulation and guaranteed target cell selectivity. Importantly, we have demonstrated that the unique mechanism of action of Accum translates into enhanced tumor cytotoxicity when coupled to ADCs, and durable therapeutic and prophylactic anti-cancer immunogenicity when coupled to tumor antigens. As more pre-clinical evidence accumulates, the adaptability, unique mechanism of action, and high therapeutic potency of Accum signal a promising transition into clinical investigations in the context of onco-immunotherapy.
Collapse
Affiliation(s)
- Abed El-Hakim El-Kadiry
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC H3T 1J4, Canada;
| | - Simon Beaudoin
- Defence Therapeutics Inc., Research and Development Branch, Vancouver, BC V6C 3L6, Canada; (S.B.); (S.P.)
| | - Sebastien Plouffe
- Defence Therapeutics Inc., Research and Development Branch, Vancouver, BC V6C 3L6, Canada; (S.B.); (S.P.)
| | - Moutih Rafei
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC H3T 1J4, Canada;
- Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Molecular Biology Program, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Correspondence: ; Tel.: +1-(514)-343-6931
| |
Collapse
|
13
|
Blangé D, Stroes CI, Derks S, Bijlsma MF, van Laarhoven HW. Resistance Mechanisms to HER2-Targeted Therapy in Gastroesophageal Adenocarcinoma: A Systematic Review. Cancer Treat Rev 2022; 108:102418. [DOI: 10.1016/j.ctrv.2022.102418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 12/16/2022]
|
14
|
Lee PY, Yeoh Y, Low TY. A recent update on small‐molecule kinase inhibitors for targeted cancer therapy and their therapeutic insights from mass spectrometry‐based proteomic analysis. FEBS J 2022. [PMID: 35313089 DOI: 10.1111/febs.16442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/21/2022] [Accepted: 03/18/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Pey Yee Lee
- UKM Medical Molecular Biology Institute (UMBI) Universiti Kebangsaan Malaysia Kuala Lumpur Malaysia
| | - Yeelon Yeoh
- UKM Medical Molecular Biology Institute (UMBI) Universiti Kebangsaan Malaysia Kuala Lumpur Malaysia
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI) Universiti Kebangsaan Malaysia Kuala Lumpur Malaysia
| |
Collapse
|
15
|
López-Cortés R, Vázquez-Estévez S, Fernández JÁ, Núñez C. Proteomics as a Complementary Technique to Characterize Bladder Cancer. Cancers (Basel) 2021; 13:cancers13215537. [PMID: 34771699 PMCID: PMC8582709 DOI: 10.3390/cancers13215537] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Although immunohistochemistry is a routine technique in clinics, and genomics has been rapidly incorporated, proteomics is a step behind. This general situation is also the norm in bladder cancer research. This review shows the contributions of proteomics to the molecular classification of bladder cancer, and to the study of histopathology due to tissue insults caused by tumors. Furthermore, the importance of proteomics for understanding the cellular and molecular changes as a consequence of the therapy of bladder cancer cannot be neglected. Abstract Bladder cancer (BC) is the most common tumor of the urinary tract and is conventionally classified as either non-muscle invasive or muscle invasive. In addition, histological variants exist, as organized by the WHO-2016 classification. However, innovations in next-generation sequencing have led to molecular classifications of BC. These innovations have also allowed for the tracing of major tumorigenic pathways and, therefore, are positioned as strong supporters of precision medicine. In parallel, immunohistochemistry is still the clinical reference to discriminate histological layers and to stage BC. Key contributions have been made to enlarge the panel of protein immunomarkers. Moreover, the analysis of proteins in liquid biopsy has also provided potential markers. Notwithstanding, their clinical adoption is still low, with very few approved tests. In this context, mass spectrometry-based proteomics has remained a step behind; hence, we aimed to develop them in the community. Herein, the authors introduce the epidemiology and the conventional classifications to review the molecular classification of BC, highlighting the contributions of proteomics. Then, the advances in mass spectrometry techniques focusing on maintaining the integrity of the biological structures are presented, a milestone for the emergence of histoproteomics. Within this field, the review then discusses selected proteins for the comprehension of the pathophysiological mechanisms of BC. Finally, because there is still insufficient knowledge, this review considers proteomics as an important source for the development of BC therapies.
Collapse
Affiliation(s)
- Rubén López-Cortés
- Research Unit, Hospital Universitario Lucus Augusti (HULA), Servizo Galego de Saúde (SERGAS), 27002 Lugo, Spain;
| | - Sergio Vázquez-Estévez
- Oncology Division, Hospital Universitario Lucus Augusti (HULA), Servizo Galego de Saúde (SERGAS), 27002 Lugo, Spain; (S.V.-E.); (J.Á.F.)
| | - Javier Álvarez Fernández
- Oncology Division, Hospital Universitario Lucus Augusti (HULA), Servizo Galego de Saúde (SERGAS), 27002 Lugo, Spain; (S.V.-E.); (J.Á.F.)
| | - Cristina Núñez
- Research Unit, Hospital Universitario Lucus Augusti (HULA), Servizo Galego de Saúde (SERGAS), 27002 Lugo, Spain;
- Correspondence:
| |
Collapse
|
16
|
Li T, Kuang T, Yang Z, Zhang Q, Zhang W, Fan Y. Co-treatment With Everolimus, an mTOR-Specific Antagonist, or Downregulation of ELK1 Enhances the Sensitivity of Pancreatic Cancer Cells to Genistein. Front Cell Dev Biol 2021; 9:633035. [PMID: 34540820 PMCID: PMC8448347 DOI: 10.3389/fcell.2021.633035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 08/06/2021] [Indexed: 12/24/2022] Open
Abstract
Genistein is a natural isoflavone with pharmacological or potentially anti-tumor properties. However, the resistance of cancer cells to genistein remains a major obstacle. This study focused on the mechanism implicated in the resistance of pancreatic cancer (PC) cells to genistein and the mechanism of action. First, key molecules and signaling pathways related to genistein resistance in PC cells were explored using bioinformatics tools. DEP domain containing MTOR interacting protein (DEPTOR), a typical inhibitor of the mammalian target of rapamycin (mTOR) signaling, was predicted to be poorly expressed in the genistein-resistant PC cells. Thereafter, genistein-resistant PC cells (Panc-1 and PaCa) were constructed. Altered expression of DEPTOR was introduced in cells, and everolimus (ELM), an mTOR-specific antagonist, was administrated in cells as well to examine their roles in genistein resistance. The cell apoptosis was examined in vitro and in vivo in mouse xenograft tumors. The upstream regulator of DEPTOR was predicted via bioinformatic tools. The bioinformatic analyses showed that the PI3K/AKT/mTOR signaling pathway was activated in the setting of DEPTOR downregulation in genistein-resistant PC cells. DEPTOR overexpression reduced the 50% inhibiting concentration (IC50) of genistein in PC cells and suppressed mTOR phosphorylation, and it increased caspase-3 activity, LDH release and apoptosis in PC cells. ELM treatment enhanced the sensitivity of PC cells to genistein in vitro and it strengthened the tumor-eliminating role of genistein in mice. ETS transcription factor ELK1 (ELK1), a transcription factor that negatively regulated DEPTOR transcription, was suppressed by genistein. Upregulation of ELK1 suppressed DEPTOR transcription and reduced the genistein sensitivity of cells, and it also blocked the genistein-sensitizing roles of ELM in PC cells. In conclusion, this study demonstrated that ELK1 reduces DEPTOR transcription, leading to mTOR phosphorylation and the drug resistance of PC cells.
Collapse
Affiliation(s)
- Tianyu Li
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tiantao Kuang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhaoshuo Yang
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiqi Zhang
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wen Zhang
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yue Fan
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Wang G, Zhan T, Li F, Shen J, Gao X, Xu L, Li Y, Zhang J. The prediction of survival in Gastric Cancer based on a Robust 13-Gene Signature. J Cancer 2021; 12:3344-3353. [PMID: 33976744 PMCID: PMC8100809 DOI: 10.7150/jca.49658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 03/27/2021] [Indexed: 12/13/2022] Open
Abstract
Gastric cancer represents a major public health problem. Owing to the great heterogeneity of GC, conventional clinical characteristics are limited in the accurate prediction of individual outcomes and survival. This study aimed to establish a robust gene signature to predict the prognosis of GC based on multiple datasets. Initially, we downloaded raw data from four independent datasets of The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), and performed univariate Cox proportional hazards regression analysis to identify prognostic genes associated with overall survival (OS) from each dataset. Thirteen common genes from four datasets were screened as candidate prognostic signatures. Then, a risk score model was developed based on this 13‑gene signature and validated by four independent datasets and the entire cohort. Patients with a high-risk score had poorer OS and recurrence-free survival (RFS). Multivariate regression and stratified analysis revealed that the 13-gene signature was not only an independent predictive factor but also associated with recurrence when adjusting for other clinical factors. Furthermore, in the high-risk group, gene set enrichment analysis (GSEA) showed that the mTOR signaling pathway and MAPK signaling pathway were significantly enriched. The present study provided a robust and reliable gene signature for prognostic prediction of both OS and RFS of patients with GC, which may be useful for delivering individualized management of patients.
Collapse
Affiliation(s)
- Guoguang Wang
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tian Zhan
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fan Li
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jian Shen
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiang Gao
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Xu
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuan Li
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jianping Zhang
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
18
|
Tang JX, Chen Q, Li Q, He YH, Xiao D. Exosomal mRNAs and lncRNAs involved in multiple myeloma resistance to bortezomib. Cell Biol Int 2021; 45:965-975. [PMID: 33372728 PMCID: PMC8248034 DOI: 10.1002/cbin.11540] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 12/13/2020] [Accepted: 12/25/2020] [Indexed: 12/16/2022]
Abstract
The bone marrow microenvironment plays an essential role in multiple myeloma (MM) progression. We aimed to explore the alterations of levels of long noncoding RNAs and messenger RNAs (mRNAs), derived from exosomes in peripheral blood, in resistance to bortezomib (Btz) of MM patients. Peripheral blood samples were collected from five Btz‐resistant and five Btz‐sensitive MM patients. Exosomes in patients' peripheral blood were enriched, and the profiles of long noncoding RNAs (lncRNAs) and mRNAs in exosomes were determined using deep sequencing. Bioinformatics analysis was performed to explore biological function. MTS was employed to determine the viability of Roswell Park Memorial Institute (RPMI) 8226 and LP‐1 cells incubated with exosomes derived from Btz‐resistant patients. Quantitative polymerase chain reaction (qPCR) was used to evaluate the levels of exosomal FFAR1, SP9, HIST1H2BG, and ITIH2. Incubation with Btz‐resistant patient‐derived exosomes significantly increased the viability of Btz‐treated RPMI 8226 and LP‐1 cells in a dose‐dependent manner. We identified 482 lncRNAs and 2099 mRNAs deregulated in exosomes of the Btz‐resistance group; and 78 mRNAs were enriched in DR‐related pathways, including mammalian target of rapamycin, platinum drug resistance, and the cAMP and phosphoinositide 3‐kinase–Akt signaling pathways. qPCR results verified the increases in FFAR1 and SP9 and decreases in HIST1H2BG and ITIH2 in Btz‐resistant patient‐derived exosomes. Moreover, exosomal FFAR1 and SP9 exhibited potential as independent prognostic indicators of survival of MM patients. Our study reveals significant dysregulation of exosomal RNA components in the Btz‐resistant group of MM patients as well as several mRNAs that may be used as biomarkers of prognosis of MM patients that are resistant to Btz.
Collapse
Affiliation(s)
- Ju-Xian Tang
- Department of Hematology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Qi Chen
- Department of Hematology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Qin Li
- Department of Rehabilitation, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yu-Han He
- Department of Rehabilitation, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Duan Xiao
- Department of Rehabilitation, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
19
|
Lacasse V, Beaudoin S, Jean S, Leyton JV. A Novel Proteomic Method Reveals NLS Tagging of T-DM1 Contravenes Classical Nuclear Transport in a Model of HER2-Positive Breast Cancer. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 19:99-119. [PMID: 33024794 PMCID: PMC7522293 DOI: 10.1016/j.omtm.2020.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 08/27/2020] [Indexed: 11/01/2022]
Abstract
The next breakthrough for protein therapeutics is effective intracellular delivery and accumulation within target cells. Nuclear localization signal (NLS)-tagged therapeutics have been hindered by the lack of efficient nuclear localization due to endosome entrapment. Although development of strategies for tagging therapeutics with technologies capable of increased membrane penetration has resulted in proportional increased potency, nonspecific membrane penetration limits target specificity and, hence, widespread clinical success. There is a long-standing idea that nuclear localization of NLS-tagged agents occurs exclusively via classical nuclear transport. In the present study, we modified the antibody-drug conjugate trastuzumab-emtansine (T-DM1) with a classical NLS linked to cholic acid (cell accumulator [Accum]) that enables modified antibodies to escape endosome entrapment and increase nuclear localization efficiency without abrogating receptor targeting. In parallel, we developed a proteomics-based method to evaluate nuclear transport. Accum-modified T-DM1 significantly enhanced cytotoxic efficacy in the human epidermal growth factor receptor 2 (HER2)-positive SKBR3 breast cancer system. We discovered that efficacy was dependent on the nonclassical importin-7. Our evaluation reveals that when multiple classical NLS tagging occurs, cationic charge build-up as opposed to sequence dominates and becomes a substrate for importin-7. This study results in an effective target cell-specific NLS therapeutic and a general approach to guide future NLS-based development initiatives.
Collapse
Affiliation(s)
- Vincent Lacasse
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Centre Hospitalier Universitaire de Sherbrooke (CHUS), Université de Sherbrooke (UdeS), Sherbrooke, QC J1H 5N4, Canada
| | - Simon Beaudoin
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Centre Hospitalier Universitaire de Sherbrooke (CHUS), Université de Sherbrooke (UdeS), Sherbrooke, QC J1H 5N4, Canada
| | - Steve Jean
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, CHUS, UdeS, Sherbrooke, QC J1H 5N4, Canada
| | - Jeffrey V Leyton
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Centre Hospitalier Universitaire de Sherbrooke (CHUS), Université de Sherbrooke (UdeS), Sherbrooke, QC J1H 5N4, Canada.,Sherbrooke Molecular Imaging Centre (CIMS), Centre de Recherche du CHUS, UdeS, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
20
|
Fattahi S, Amjadi-Moheb F, Tabaripour R, Ashrafi GH, Akhavan-Niaki H. PI3K/AKT/mTOR signaling in gastric cancer: Epigenetics and beyond. Life Sci 2020; 262:118513. [PMID: 33011222 DOI: 10.1016/j.lfs.2020.118513] [Citation(s) in RCA: 229] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
PI3K/AKT/mTOR pathway is one of the most important signaling pathways involved in normal cellular processes. Its aberrant activation modulates autophagy, epithelial-mesenchymal transition, apoptosis, chemoresistance, and metastasis in many human cancers. Emerging evidence demonstrates that some infections as well as epigenetic regulatory mechanisms can control PI3K/AKT/mTOR signaling pathway. In this review, we focused on the role of this pathway in gastric cancer development, prognosis, and metastasis, with an emphasis on epigenetic alterations including DNA methylation, histone modifications, and post-transcriptional modulations through non-coding RNAs fluctuations as well as H. pylori and Epstein-Barr virus infections. Finally, we reviewed different molecular targets and therapeutic agents in clinical trials as a potential strategy for gastric cancer treatment through the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Sadegh Fattahi
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; North Research Center, Pasteur Institute, Amol, Iran
| | - Fatemeh Amjadi-Moheb
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Reza Tabaripour
- Department of Cellular and Molecular Biology, Islamic Azad University Babol-Branch, Iran
| | - Gholam Hossein Ashrafi
- Kingston University London, Cancer theme, School of Life Science, Pharmacy and Chemistry, SEC Faculty, Kingston upon Thames, KT12EE, London, UK
| | - Haleh Akhavan-Niaki
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
21
|
Younas N, Zafar S, Shafiq M, Noor A, Siegert A, Arora AS, Galkin A, Zafar A, Schmitz M, Stadelmann C, Andreoletti O, Ferrer I, Zerr I. SFPQ and Tau: critical factors contributing to rapid progression of Alzheimer's disease. Acta Neuropathol 2020; 140:317-339. [PMID: 32577828 PMCID: PMC7423812 DOI: 10.1007/s00401-020-02178-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 12/12/2022]
Abstract
Dysfunctional RNA-binding proteins (RBPs) have been implicated in several neurodegenerative disorders. Recently, this paradigm of RBPs has been extended to pathophysiology of Alzheimer’s disease (AD). Here, we identified disease subtype specific variations in the RNA-binding proteome (RBPome) of sporadic AD (spAD), rapidly progressive AD (rpAD), and sporadic Creutzfeldt Jakob disease (sCJD), as well as control cases using RNA pull-down assay in combination with proteomics. We show that one of these identified proteins, splicing factor proline and glutamine rich (SFPQ), is downregulated in the post-mortem brains of rapidly progressive AD patients, sCJD patients and 3xTg mice brain at terminal stage of the disease. In contrast, the expression of SFPQ was elevated at early stage of the disease in the 3xTg mice, and in vitro after oxidative stress stimuli. Strikingly, in rpAD patients’ brains SFPQ showed a significant dislocation from the nucleus and cytoplasmic colocalization with TIA-1. Furthermore, in rpAD brain lesions, SFPQ and p-tau showed extranuclear colocalization. Of note, association between SFPQ and tau-oligomers in rpAD brains suggests a possible role of SFPQ in oligomerization and subsequent misfolding of tau protein. In line with the findings from the human brain, our in vitro study showed that SFPQ is recruited into TIA-1-positive stress granules (SGs) after oxidative stress induction, and colocalizes with tau/p-tau in these granules, providing a possible mechanism of SFPQ dislocation through pathological SGs. Furthermore, the expression of human tau in vitro induced significant downregulation of SFPQ, suggesting a causal role of tau in the downregulation of SFPQ. The findings from the current study indicate that the dysregulation and dislocation of SFPQ, the subsequent DNA-related anomalies and aberrant dynamics of SGs in association with pathological tau represents a critical pathway which contributes to rapid progression of AD.
Collapse
Affiliation(s)
- Neelam Younas
- Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Saima Zafar
- Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany.
- Biomedical Engineering and Sciences Department, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Islamabad, Pakistan.
| | - Mohsin Shafiq
- Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Aneeqa Noor
- Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Anna Siegert
- Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Amandeep Singh Arora
- Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany
- Institute for Behavioral Medicine Research, The Ohio State University, 460 Medical Center Dr, Columbus, OH, 43210, USA
| | - Alexey Galkin
- St. Petersburg Branch, Vavilov Institute of General Genetics, St. Petersburg, Russia
| | - Ayesha Zafar
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- College of Medicine Center for Pharmacogenomics, The Ohio State University, 460 W 12th Avenue, Columbus, OH, 1004 BRT, USA
| | - Mathias Schmitz
- Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | | | - Olivier Andreoletti
- UMR INRA ENVT 1225- Interactions Hôte Agent Pathogène-École Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Isidre Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain
- Bellvitge University Hospital-IDIBELL, Barcelona, Spain
- CIBERNED, Barcelona, Spain
- Hospitalet de Llobregat, Barcelona, Spain
| | - Inga Zerr
- Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany.
| |
Collapse
|
22
|
Investigation of cancer drug resistance mechanisms by phosphoproteomics. Pharmacol Res 2020; 160:105091. [PMID: 32712320 DOI: 10.1016/j.phrs.2020.105091] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 12/23/2022]
Abstract
Cancer cell mutations can be identified by genomic and transcriptomic techniques. However, they are not sufficient to understand the full complexity of cancer heterogeneity. Analyses of proteins expressed in cancers and their modification profiles show how these mutations could be translated at the functional level. Protein phosphorylation is a major post-translational modification critical for regulating several cellular functions. The covalent addition of phosphate groups to serine, threonine, and tyrosine is catalyzed by protein kinases. Over the past years, kinases were strongly associated with cancer, thus inhibition of protein kinases emanated as novel cancer treatment. However, cancers frequently develop drug resistance. Therefore, a better understanding of drug effects on tumors is urgently needed. In this perspective, phosphoproteomics arose as advanced tool to monitor cancer therapies and to discover novel drugs. This review highlights the role of phosphoproteomics in predicting sensitivity or resistance of cancers towards tyrosine kinase inhibitors and cytotoxic drugs. It also shows the importance of phosphoproteomics in identifying biomarkers that could be applied in clinical diagnostics to predict responses to drugs.
Collapse
|
23
|
Budayeva HG, Kirkpatrick DS. Monitoring protein communities and their responses to therapeutics. Nat Rev Drug Discov 2020; 19:414-426. [PMID: 32139903 DOI: 10.1038/s41573-020-0063-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2020] [Indexed: 12/19/2022]
Abstract
Most therapeutics are designed to alter the activities of proteins. From metabolic enzymes to cell surface receptors, connecting the function of a protein to a cellular phenotype, to the activity of a drug and to a clinical outcome represents key mechanistic milestones during drug development. Yet, even for therapeutics with exquisite specificity, the sequence of events following target engagement can be complex. Interconnected communities of structural, metabolic and signalling proteins modulate diverse downstream effects that manifest as interindividual differences in efficacy, adverse effects and resistance to therapy. Recent advances in mass spectrometry proteomics have made it possible to decipher these complex relationships and to understand how factors such as genotype, cell type, local environment and external perturbations influence them. In this Review, we explore how proteomic technologies are expanding our understanding of protein communities and their responses to large- and small-molecule therapeutics.
Collapse
Affiliation(s)
- Hanna G Budayeva
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, CA, USA
| | - Donald S Kirkpatrick
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, CA, USA.
| |
Collapse
|
24
|
LIU WH, YUAN JB, CHANG JX. Label-free Quantitative Proteomics for Investigation of Signaling Pathways of GATA6 Regulating Trastuzumab Resistance in Gastric Cancer Cells. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1016/s1872-2040(19)61215-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
25
|
Liu W, Wang Q, Chang J. Global metabolomic profiling of trastuzumab resistant gastric cancer cells reveals major metabolic pathways and metabolic signatures based on UHPLC-Q exactive-MS/MS. RSC Adv 2019; 9:41192-41208. [PMID: 35540060 PMCID: PMC9076425 DOI: 10.1039/c9ra06607a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/26/2019] [Indexed: 12/15/2022] Open
Abstract
Resistance mechanism exploration has become an urgent need owing to the widespread trastuzumab resistance in gastric cancer. In this study, UHPLC-Q exactive MS/MS was carried out to characterize the metabolic profiles of human gastric cancer cell lines NCI N87, MKN45 (trastuzumab-sensitive) and NCI N87/R, MKN45/R (trastuzumab-resistant), respectively. Metabolic signatures and different metabolites were identified using multivariate in combination with univariate analysis. Integrated pathway enrichment analysis was executed using MetaboAnalyst and KEGG metabolic libraries to analyze the altered metabolic pathways in trastuzumab resistant cells. A total of 79 and 75 different metabolites were positively identified by utilizing authentic standards in NCI N87/R and MKN45/R cells, respectively. Furthermore, enrichment analysis demonstrated that seven metabolic pathways in NCI N87/R cells and five in MKN45/R cells were significantly changed. These pathways are involved in amino acid, nucleotide, carbohydrate, cofactor and vitamin metabolism, of which alanine, aspartate and glutamate metabolism displayed the highest pathway impact and lower P value both in NCI N87/R and MKN45/R cells. Moreover, we constructed a metabolomics-proteomics network between substantially altered metabolites and target genes which revealed citrate being regulated by citrate synthase and ACLY, while proline regulation was due to EPRS, PYCRL and PYCR1/2, respectively. Overall, our findings disclose prominent alterations of metabolic signatures in NCI N87/R and MKN45/R cells when compared with the parent cells which are crucial for understanding of underlying mechanisms of resistance and for developing strategies to overcome trastuzumab resistance.
Collapse
Affiliation(s)
- Wenhu Liu
- School of Basic Medical Sciences, North Sichuan Medical College Nanchong 637100 China
- School of Pharmacy, North Sichuan Medical College Nanchong 637100 China
| | - Qiang Wang
- Department of Laboratory Medicine, Affiliated Hospital of North Sichuan Medical College, Faculty of Laboratory Medicine, Center for Translational Medicine, North Sichuan Medical College Nanchong 637000 China
| | - Jinxia Chang
- School of Basic Medical Sciences, North Sichuan Medical College Nanchong 637100 China
| |
Collapse
|
26
|
Wang X, Shen S, Rasam SS, Qu J. MS1 ion current-based quantitative proteomics: A promising solution for reliable analysis of large biological cohorts. MASS SPECTROMETRY REVIEWS 2019; 38:461-482. [PMID: 30920002 PMCID: PMC6849792 DOI: 10.1002/mas.21595] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/28/2019] [Indexed: 05/04/2023]
Abstract
The rapidly-advancing field of pharmaceutical and clinical research calls for systematic, molecular-level characterization of complex biological systems. To this end, quantitative proteomics represents a powerful tool but an optimal solution for reliable large-cohort proteomics analysis, as frequently involved in pharmaceutical/clinical investigations, is urgently needed. Large-cohort analysis remains challenging owing to the deteriorating quantitative quality and snowballing missing data and false-positive discovery of altered proteins when sample size increases. MS1 ion current-based methods, which have become an important class of label-free quantification techniques during the past decade, show considerable potential to achieve reproducible protein measurements in large cohorts with high quantitative accuracy/precision. Nonetheless, in order to fully unleash this potential, several critical prerequisites should be met. Here we provide an overview of the rationale of MS1-based strategies and then important considerations for experimental and data processing techniques, with the emphasis on (i) efficient and reproducible sample preparation and LC separation; (ii) sensitive, selective and high-resolution MS detection; iii)accurate chromatographic alignment; (iv) sensitive and selective generation of quantitative features; and (v) optimal post-feature-generation data quality control. Prominent technical developments in these aspects are discussed. Finally, we reviewed applications of MS1-based strategy in disease mechanism studies, biomarker discovery, and pharmaceutical investigations.
Collapse
Affiliation(s)
- Xue Wang
- Department of Cell Stress BiologyRoswell Park Cancer InstituteBuffaloNew York
| | - Shichen Shen
- Department of Pharmaceutical SciencesUniversity at BuffaloState University of New YorkNew YorkNew York
| | - Sailee Suryakant Rasam
- Department of Biochemistry, University at BuffaloState University of New YorkNew YorkNew York
| | - Jun Qu
- Department of Cell Stress BiologyRoswell Park Cancer InstituteBuffaloNew York
- Department of Pharmaceutical SciencesUniversity at BuffaloState University of New YorkNew YorkNew York
- Department of Biochemistry, University at BuffaloState University of New YorkNew YorkNew York
| |
Collapse
|
27
|
Liu Z, Wang Y, Yao Y, Fang Z, Miao QR, Ye M. Quantitative proteomic and phosphoproteomic studies reveal novel 5-fluorouracil resistant targets in hepatocellular carcinoma. J Proteomics 2019; 208:103501. [PMID: 31454556 DOI: 10.1016/j.jprot.2019.103501] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/12/2019] [Accepted: 08/21/2019] [Indexed: 02/07/2023]
Abstract
The development of chemoresistance remains the major obstacles to successful chemotherapy of hepatocellular carcinoma. The molecular mechanisms of drug resistance are complex. Identifying the key markers is crucial for development of therapeutic strategies to overcome resistance. In this study, we employed a cell-line model consisting of the 5-fluorouracil resistant Bel/5-Fu cell line and its parental Bel cell line. Using stable isotope dimethyl labeling combined with high-resolution mass spectrometry, in total, 8272 unique proteins and 22,095 phosphorylation sites with high localization confidence were identified. Our data indicated that the GnRH signaling pathway was involved in acquiring drug resistance, which has not been well elucidated. The western blotting results confirmed that the expression levels of PLCβ3 and PLCβ3 pS1105 in Bel/5-Fu cells were increased as compared to Bel cells. Furthermore, the protein levels of SRC and PKCδ, which could phosphorylate PLCβ3 at ser1105, were higher in Bel/5-Fu cells than in Bel cells. The knockdown of SRC, PKCδ and PLCβ3 increased the susceptibility of Bel/5-Fu cells to 5-Fu. Besides, the increased transcription levels of PLCβ3, PKCδ and SRC were significantly associated with decreased overall survival. Together, our deep proteomic and phosphoproteomic data reveal novel therapeutic targets for attenuating 5-Fu resistance in anti-cancer therapy. SIGNIFICANCE: It was reported that many hepatocellular carcinoma patients are resistance to 5-Fu. Although some studies related to drug resistance have been reported, the underlying mechanisms were not well elucidated. Unlike many single molecular studies, we focused on the global proteome and phosphoproteome analysis of Bel and Bel5-/Fu cell line using stable isotope dimethyl labeling to identify the previously unrecognized signaling pathway for causing 5-Fu resistance. Our results showed that the phosphorylation levels of PLCβ3 pS1105 and the protein levels of PLCβ3, PKCδ and SRC, which are major components of GnRH signaling pathway were higher in Bel/5-Fu cells than in Bel cells. Furthermore, knockdown of PLCβ3, PKCδ and SRC increased the susceptibility of Bel/5-Fu cells to 5-Fu. Overall, this is the first comprehensive proteomic and phosphoproteomic studies on 5-Fu resistant cell line Bel/5-Fu to identify the potential targets of attenuating chemoresistance in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Zhen Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yating Yao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Fang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing R Miao
- Divisions of Pediatric Surgery and Pediatric Pathology, Departments of Surgery and Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, United States of America; New York University Winthrop Hospital, Mineola, NY 11501, United States of America.
| | - Mingliang Ye
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
28
|
Murugan AK. mTOR: Role in cancer, metastasis and drug resistance. Semin Cancer Biol 2019; 59:92-111. [PMID: 31408724 DOI: 10.1016/j.semcancer.2019.07.003] [Citation(s) in RCA: 310] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 06/14/2019] [Accepted: 07/03/2019] [Indexed: 02/09/2023]
Abstract
Mammalian target of rapamycin (mTOR) is a serine/threonine kinase that gets inputs from the amino acids, nutrients, growth factor, and environmental cues to regulate varieties of fundamental cellular processes which include protein synthesis, growth, metabolism, aging, regeneration, autophagy, etc. The mTOR is frequently deregulated in human cancer and activating somatic mutations of mTOR were recently identified in several types of human cancer and hence mTOR is therapeutically targeted. mTOR inhibitors were commonly used as immunosuppressors and currently, it is approved for the treatment of human malignancies. This review briefly focuses on the structure and biological functions of mTOR. It extensively discusses the genetic deregulation of mTOR including amplifications and somatic mutations, mTOR-mediated cell growth promoting signaling, therapeutic targeting of mTOR and the mechanisms of resistance, the role of mTOR in precision medicine and other recent advances in further understanding the role of mTOR in cancer.
Collapse
Affiliation(s)
- Avaniyapuram Kannan Murugan
- Department of Molecular Oncology, King Faisal Specialist Hospital & Research Centre, PO Box 3354, Research Center (MBC 03), Riyadh, 11211, Saudi Arabia.
| |
Collapse
|
29
|
Kuo CT, Chen CL, Li CC, Huang GS, Ma WY, Hsu WF, Lin CH, Lu YS, Wo AM. Immunofluorescence can assess the efficacy of mTOR pathway therapeutic agent Everolimus in breast cancer models. Sci Rep 2019; 9:10898. [PMID: 31358767 PMCID: PMC6662705 DOI: 10.1038/s41598-019-45319-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 05/14/2019] [Indexed: 12/11/2022] Open
Abstract
When breast cancer patients start to exhibit resistance to hormonal therapy or chemotherapy, the mTOR inhibitor everolimus can be considered as an alternative therapeutic agent. Everolimus can deregulate the PI3K/AKT/mTOR pathway and affect a range of cellular functions. In some patients, the agent does not exhibit the desired efficacy and, even worse, not without the associated side effects. This study assessed the use of immunofluorescence (IF) as a modality to fill this unmet need of predicting the efficacy of everolimus prior to administration. Cell viability and MTT assays based on IF intensities of pho-4EBP1 Thr37/46 and pho-S6K1 Ser424 on breast cancer cells (Hs578T, MCF7, BT474, MDA-MB-231) and patient-derived cell culture from metastatic sites (ABC-82T and ABC-16TX1) were interrogated. Results show that independent pho-4EBP1 Thr37/46 and pho-S6K1 Ser424 IF expressions can classify data into different groups: everolimus sensitive and resistant. The combined IF baseline intensity of these proteins is predictive of the efficacy of everolimus, and their intensities change dynamically when cells are resistant to everolimus. Furthermore, mTOR resistance is not only consequence of the AKT/mTOR pathway but also through the LKB1 or MAPK/ERK pathway. The LKB1 and pho-GSK3β may also be potential predictive markers for everolimus.
Collapse
Affiliation(s)
- Chun-Ting Kuo
- Institute of Applied Mechanics, National Taiwan University, Taipei, 106, Taiwan
| | - Chen-Lin Chen
- Institute of Applied Mechanics, National Taiwan University, Taipei, 106, Taiwan
| | - Chih-Chi Li
- Institute of Applied Mechanics, National Taiwan University, Taipei, 106, Taiwan
| | - Guan-Syuan Huang
- Institute of Applied Mechanics, National Taiwan University, Taipei, 106, Taiwan
| | - Wei-Yuan Ma
- Institute of Applied Mechanics, National Taiwan University, Taipei, 106, Taiwan
| | - Wei-Fan Hsu
- Institute of Applied Mechanics, National Taiwan University, Taipei, 106, Taiwan
| | - Ching-Hung Lin
- Department of Oncology, National Taiwan University Hospital, Taipei, 100, Taiwan
| | - Yen-Shen Lu
- Department of Oncology, National Taiwan University Hospital, Taipei, 100, Taiwan.
| | - Andrew M Wo
- Institute of Applied Mechanics, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
30
|
Panis C, Corrêa S, Binato R, Abdelhay E. The Role of Proteomics in Cancer Research. ONCOGENOMICS 2019:31-55. [DOI: 10.1016/b978-0-12-811785-9.00003-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
31
|
Label-Free Quantitative Proteomics Combined with Biological Validation Reveals Activation of Wnt/β-Catenin Pathway Contributing to Trastuzumab Resistance in Gastric Cancer. Int J Mol Sci 2018; 19:ijms19071981. [PMID: 29986466 PMCID: PMC6073113 DOI: 10.3390/ijms19071981] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 06/30/2018] [Accepted: 07/04/2018] [Indexed: 12/21/2022] Open
Abstract
Resistance to trastuzumab, which specifically target HER2-positive breast and gastric cancer, can develop ultimately in cancer patients. However, the underlying mechanisms of resistance in gastric cancer have not been fully elucidated. Here, we established trastuzumab-resistant MKN45 and NCI N87 gastric cancer sublines from their parental cells. The resistant cells exhibited characteristics of epithelial-mesenchymal transition (EMT) and acquired higher migratory and invasive capacities. To exploit the activated pathways and develop new strategies to overcome trastuzumab resistance, we investigated MKN45 and MKN45/R cells via label-free quantitative proteomics, and found pathways that were altered significantly in MKN45/R cells, with the Wnt/β-catenin pathway being the most significant. We further confirmed the activation of this pathway by detecting its key molecules in MKN45/R and NCI N87/R cells via Western blot, in which Wnt3A, FZD6, and CTNNB1 increased, whereas GSK-3β decreased, manifesting the activation of the Wnt/β-catenin pathway. Correspondingly, inhibition of Wnt/β-catenin pathway by ICG-001, a specific Wnt/β-catenin inhibitor, preferentially reduced proliferation and invasion of trastuzumab-resistant cells and reversed EMT. Concurringly, CTNNB1 knockdown in stable cell lines potently sensitized cells to trastuzumab and induced more apoptosis. Taken together, our study demonstrates that the Wnt/β-catenin pathway mediates trastuzumab resistance, and the combination of Wnt/β-catenin inhibitors with trastuzumab may be an effective treatment option.
Collapse
|
32
|
Ande A, Vaidya TR, Tran BN, Vicchiarelli M, Brown AN, Ait-Oudhia S. Utility of a Novel Three-Dimensional and Dynamic (3DD) Cell Culture System for PK/PD Studies: Evaluation of a Triple Combination Therapy at Overcoming Anti-HER2 Treatment Resistance in Breast Cancer. Front Pharmacol 2018; 9:403. [PMID: 29765318 PMCID: PMC5938355 DOI: 10.3389/fphar.2018.00403] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/06/2018] [Indexed: 01/08/2023] Open
Abstract
Background: Emergence of Human epidermal growth factor receptor 2 (HER2) therapy resistance in HER2-positive (HER2+) breast cancer (BC) poses a major clinical challenge. Mechanisms of resistance include the over-activation of the PI3K/mTOR and Src pathways. This work aims to investigate a novel combination therapy that employs paclitaxel (PAC), a mitotic inhibitor, with everolimus (EVE), an mTOR inhibitor, and dasatinib (DAS), an Src kinase inhibitor, as a modality to overcome resistance. Methods: Static (two dimensional, 2D) and three-dimensional dynamic (3DD) cell culture studies were conducted using JIMT-1 cells, a HER2+ BC cell line refractory to HER2 therapies. Cell viability and caspase-3 expression were examined after JIMT-1 cell exposure to agents as monotherapy or in combination using a 2D setting. A pharmacokinetic/pharmacodynamic (PK/PD) combination study with PAC+DAS+EVE was conducted over 3 weeks in a 3DD setting. PAC was administered into the system via a 3 h infusion followed by the addition of a continuous infusion of EVE+DAS 24 h post-PAC dosing. Cell counts and caspase-3 expression were quantified every 2 days. A semi-mechanistic PK/PD model was developed using the 2D data and scaled up to capture the 3DD data. The final model integrated active caspase-3 as a biomarker to bridge between drug exposures and cancer cell dynamics. Model fittings were performed using Monolix software. Results: The triple combination significantly induced caspase-3 activity in the 2D cell culture setting. In the 3DD cell culture setting, sequential dosing of PAC then EVE+DAS showed a 5-fold increase in caspase-3 activity and 8.5-fold decrease in the total cell number compared to the control. The semi-mechanistic PK/PD models fit the data well, capturing the time-course profiles of drug concentrations, caspase-3 expression, and cell counts in the 2D and 3DD settings. Conclusion: A novel, sequential triple combination therapeutic regimen was successfully evaluated in both 2D and 3DD in vitro cell culture systems. The efficacy of this combination at inhibiting the cellular proliferation and re-growth of HER2/mTOR resistant cell line, JIMT-1, is demonstrated. A biomarker-linked PK/PD model successfully captured all time-course data. The latter can be used as a modeling platform for a direct translation from 3DD in vitro settings to the clinic.
Collapse
Affiliation(s)
- Anusha Ande
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL, United States
| | - Tanaya R Vaidya
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL, United States
| | - Bao N Tran
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL, United States
| | - Michael Vicchiarelli
- Institute for Therapeutic Innovation, Department of Medicine, College of Medicine, University of Florida, Orlando, FL, United States
| | - Ashley N Brown
- Institute for Therapeutic Innovation, Department of Medicine, College of Medicine, University of Florida, Orlando, FL, United States
| | - Sihem Ait-Oudhia
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL, United States
| |
Collapse
|
33
|
Saha JM, Liu H, Hu PW, Nikolai BC, Wu H, Miao H, Rice AP. Proteomic Profiling of a Primary CD4 + T Cell Model of HIV-1 Latency Identifies Proteins Whose Differential Expression Correlates with Reactivation of Latent HIV-1. AIDS Res Hum Retroviruses 2018; 34:103-110. [PMID: 29084447 DOI: 10.1089/aid.2017.0077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The latent HIV-1 reservoir of memory CD4+ T cells that persists during combination antiviral therapy prevents a cure of infection. Insight into mechanisms of latency and viral reactivation are essential for the rational design of strategies to reduce the latent reservoir. In this study, we quantified the levels of >2,600 proteins in the CCL19 primary CD4+ T cell model of HIV-1 latency. We profiled proteins under conditions that promote latent infection and after cells were treated with phorbol 12-myristate 13-acetate (PMA) + ionomycin, which is known to efficiently induce reactivation of latent HIV-1. In an analysis of cells from two healthy blood donors, we identified 61 proteins that were upregulated ≥2-fold, and 36 proteins that were downregulated ≥2-fold under conditions in which latent viruses were reactivated. These differentially expressed proteins are, therefore, candidates for cellular factors that regulate latency or viral reactivation. Two unexpected findings were obtained from the proteomic data: (1) the interactions among the majority of upregulated proteins are largely undetermined in published protein-protein interaction networks and (2) downregulated proteins are strongly associated with Gene Ontology terms related to mitochondrial protein synthesis. This proteomic data set provides a useful resource for future mechanistic studies of HIV-1 latency.
Collapse
Affiliation(s)
- Jamaluddin Md Saha
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Hongbing Liu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Pei-Wen Hu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Bryan C. Nikolai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Hulin Wu
- Department of Biostatistics, University of Texas School of Public Health, Houston, Texas
| | - Hongyu Miao
- Department of Biostatistics, University of Texas School of Public Health, Houston, Texas
| | - Andrew P. Rice
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|