1
|
Sun G, Zhao C, Han J, Wu S, Chen Y, Yao J, Li L. Regulatory mechanisms of steroid hormone receptors on gene transcription through chromatin interaction and enhancer reprogramming. Cell Oncol (Dordr) 2024; 47:2073-2090. [PMID: 39543064 DOI: 10.1007/s13402-024-01011-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2024] [Indexed: 11/17/2024] Open
Abstract
Regulation of steroid hormone receptors (SHRs) on transcriptional reprogramming is crucial for breast cancer progression. SHRs, including estrogen receptor (ER), androgen receptor (AR), progesterone receptor (PR), and glucocorticoid receptor (GR) play key roles in remodeling the transcriptome of breast cancer cells. However, the molecular mechanisms by which SHRs regulate chromatin landscape in enhancer regions and transcription factor interactions remain largely unknown. In this review, we summarized the regulatory effects of 3 types of SHRs (AR, PR, and GR) on gene transcription through chromatin interactions and enhancer reprogramming. Specifically, AR and PR exhibit bi-directional regulatory effects (both inhibitory and promoting) on ER-mediated gene transcription, while GR modulates the transcription of pro-proliferation genes in ER-positive breast cancer cells. In addition, we have presented four enhancer reprogramming mechanisms (transcription factor cooperation, pioneer factor binding, dynamic assisted loading, and tethering) and the multiple enhancer-promoter contact models. Based on these mechanisms and models, this review proposes that the combination of multiple therapy strategies such as agonists/antagonists of SHRs plus endocrine therapy and the adoption of the latest sequencing technologies are expected to improve the efficacy of ER positive breast cancer treatment.
Collapse
Affiliation(s)
- Ge Sun
- Gene Regulation and Diseases Lab, College of Life Science and Technology, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Chunguang Zhao
- Department of Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, Hunan Province, 410008, China
| | - Jing Han
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P.R. China
| | - Shaoya Wu
- Gene Regulation and Diseases Lab, College of Life Science and Technology, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yan Chen
- Gene Regulation and Diseases Lab, College of Life Science and Technology, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Jing Yao
- Cancer Center, Institute of Radiation Oncology, Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China.
| | - Li Li
- Gene Regulation and Diseases Lab, College of Life Science and Technology, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
2
|
Blakely B, Shin S, Jin K. Overview of the therapeutic strategies for ER positive breast cancer. Biochem Pharmacol 2023; 212:115552. [PMID: 37068524 PMCID: PMC10394654 DOI: 10.1016/j.bcp.2023.115552] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/30/2023] [Accepted: 04/10/2023] [Indexed: 04/19/2023]
Abstract
Estrogen Receptor is the driving transcription factor in about 75% of all breast cancers, which is the target of endocrine therapies, but drug resistance is a common clinical problem. ESR1 point mutations at the ligand binding domain are frequently identified in metastatic tumor and ctDNA (Circulating tumor DNA) derived from ER positive breast cancer patients with endocrine therapies. Although endocrine therapy and CDK4/6 inhibitor therapy have demonstrated preclinical and clinical benefits for breast cancer, the development of resistance remains a significant challenge and the detailed mechanisms, and potential therapeutic targets in advanced breast cancer yet to be revealed. Since a crosstalk between tumor and tumor microenvironment (TME) plays an important role to grow tumor and metastasis, this effect could serve as key regulators in the resistance of endocrine therapy and the transition of breast cancer cells to metastasis. In this article, we have reviewed recent progress in endocrine therapy and the contribution of TME to ER positive breast cancer.
Collapse
Affiliation(s)
- Brianna Blakely
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Science, Albany, NY, United States
| | - Seobum Shin
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Science, Albany, NY, United States
| | - Kideok Jin
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Science, Albany, NY, United States.
| |
Collapse
|
3
|
Desai N, Morris JS, Baladandayuthapani V. NetCellMatch: Multiscale Network-Based Matching of Cancer Cell Lines to Patients Using Graphical Wavelets. Chem Biodivers 2022; 19:e202200746. [PMID: 36279370 PMCID: PMC10066864 DOI: 10.1002/cbdv.202200746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/21/2022] [Indexed: 12/27/2022]
Abstract
Cancer cell lines serve as model in vitro systems for investigating therapeutic interventions. Recent advances in high-throughput genomic profiling have enabled the systematic comparison between cell lines and patient tumor samples. The highly interconnected nature of biological data, however, presents a challenge when mapping patient tumors to cell lines. Standard clustering methods can be particularly susceptible to the high level of noise present in these datasets and only output clusters at one unknown scale of the data. In light of these challenges, we present NetCellMatch, a robust framework for network-based matching of cell lines to patient tumors. NetCellMatch first constructs a global network across all cell line-patient samples using their genomic similarity. Then, a multi-scale community detection algorithm integrates information across topologically meaningful (clustering) scales to obtain Network-Based Matching Scores (NBMS). NBMS are measures of cluster robustness which map patient tumors to cell lines. We use NBMS to determine representative "avatar" cell lines for subgroups of patients. We apply NetCellMatch to reverse-phase protein array data obtained from The Cancer Genome Atlas for patients and the MD Anderson Cell Line Project for cell lines. Along with avatar cell line identification, we evaluate connectivity patterns for breast, lung, and colon cancer and explore the proteomic profiles of avatars and their corresponding top matching patients. Our results demonstrate our framework's ability to identify both patient-cell line matches and potential proteomic drivers of similarity. Our methods are general and can be easily adapted to other'omic datasets.
Collapse
Affiliation(s)
- Neel Desai
- Division of Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jeffrey S Morris
- Division of Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|
4
|
Nishi K, Fu W, Kiyama R. Novel estrogen-responsive genes (ERGs) for the evaluation of estrogenic activity. PLoS One 2022; 17:e0273164. [PMID: 35976950 PMCID: PMC9385026 DOI: 10.1371/journal.pone.0273164] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/03/2022] [Indexed: 11/19/2022] Open
Abstract
Estrogen action is mediated by various genes, including estrogen-responsive genes (ERGs). ERGs have been used as reporter-genes and markers for gene expression. Gene expression profiling using a set of ERGs has been used to examine statistically reliable transcriptomic assays such as DNA microarray assays and RNA sequencing (RNA-seq). However, the quality of ERGs has not been extensively examined. Here, we obtained a set of 300 ERGs that were newly identified by six sets of RNA-seq data from estrogen-treated and control human breast cancer MCF-7 cells. The ERGs exhibited statistical stability, which was based on the coefficient of variation (CV) analysis, correlation analysis, and examination of the functional association with estrogen action using database searches. A set of the top 30 genes based on CV ranking were further evaluated quantitatively by RT-PCR and qualitatively by a functional analysis using the GO and KEGG databases and by a mechanistic analysis to classify ERα/β-dependent or ER-independent types of transcriptional regulation. The 30 ERGs were characterized according to (1) the enzymes, such as metabolic enzymes, proteases, and protein kinases, (2) the genes with specific cell functions, such as cell-signaling mediators, tumor-suppressors, and the roles in breast cancer, (3) the association with transcriptional regulation, and (4) estrogen-responsiveness. Therefore, the ERGs identified here represent various cell functions and cell signaling pathways, including estrogen signaling, and thus, may be useful to evaluate estrogenic activity.
Collapse
Affiliation(s)
- Kentaro Nishi
- Department of Life Science, Faculty of Life Science, Kyushu Sangyo University Matsukadai, Higashi-ku, Fukuoka, Japan
| | - Wenqiang Fu
- Department of Life Science, Faculty of Life Science, Kyushu Sangyo University Matsukadai, Higashi-ku, Fukuoka, Japan
| | - Ryoiti Kiyama
- Department of Life Science, Faculty of Life Science, Kyushu Sangyo University Matsukadai, Higashi-ku, Fukuoka, Japan
| |
Collapse
|
5
|
Abstract
Health and lifespan disparities between sexes are dependent on the immune responses. Men and women have different life styles which determine the environment, nutritional requirements and their interactions with the sex hormones. Sexual dimorphism in innate and adaptive immunity determines responses to infections and other environmental factors regulating health and diseases. Sex hormones regulate immune responses through the expression of receptors which differ for female and male hormones. Estrogen receptors are expressed in brain, lymphoid tissue cells and many immune cells while androgen receptors are limited in expression. Genetic, epigenetic factors and X chromosome linked immune function genes are important in enhanced adaptive immunity in females, leading to production of higher levels of antibodies compared to males. Different nutritional requirements and hormonal control of the mucosal microbiome and its function regulate mucosal immunity. Hormonal changes during various aspects of life and during aging control immune senescence. Evolutionarily, females have an advantage during young age when they are protected from infections by heightened immune reactivity though during aging that can lead to pathologies. Considering the sexual dimorphism in immunity, guidelines need to be established for sex-based treatments for optimal response.
Collapse
Affiliation(s)
- Veena Taneja
- Department of Immunology and Rheumatology, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
6
|
Zha J, Lai Q, Deng M, Shi P, Zhao H, Chen Q, Wu H, Xu B. Disruption of CTCF Boundary at HOXA Locus Promote BET Inhibitors' Therapeutic Sensitivity in Acute Myeloid Leukemia. Stem Cell Rev Rep 2020; 16:1280-1291. [PMID: 33057942 DOI: 10.1007/s12015-020-10057-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2020] [Indexed: 12/14/2022]
Abstract
Both HOX gene expression and CTCF regulation have been well demonstrated to play a critical role in regulating maintenance of leukemic stem cells (LSCs) that are known to be resistant to BET inhibitor (BETi). To investigate the regulatory role of CTCF boundary in aberrant HOX gene expression and the therapeutic sensitivity of BETi in AML, we employed CRISPR-Cas9 genome editing technology to delete 47 base pairs of the CTCF binding motif which is located between HOXA7 and HOXA9 genes (CBS7/9) in different subtypes of AML with either MLL-rearrangement or NPM1 mutation. Our results revealed that HOXA9 is significantly downregulated in response to the CBS7/9 deletion. Moreover, CBS7/9 boundary deletion sensitized the BETi treatment reaction in both MOLM-13 and OCI-AML3 cells. To further examine whether BETi therapeutic sensitivity in AML is depended on the expression level of the HOXA9 gene, we overexpressed the HOXA9 in the CBS7/9 deleted AML cell lines, which can rescue and restore the resistance to BETi treatment of the CBS7/9 KO cells by activating MAPK signaling pathway. Deletion of CBS7/9 specifically decreased the recruitment of BRD4 and RNA pol II to the posterior HOXA genes, in which, a transcription elongation factor ELL3 is the key factor in regulating HOXA gene transcription monitored by CBS7/9 chromatin boundary. Thus, disruption of CBS7/9 boundary perturbs HOXA9 transcription and regulates BETi sensitivity in AML treatment. Moreover, alteration of CTCF boundaries in the oncogene loci may provide a novel strategy to overcome the drug resistance of LSCs. Graphical abstract.
Collapse
Affiliation(s)
- Jie Zha
- Department of Hematology, the First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen, 361003, Fujian, China
- Key Laboratory for Diagnosis and Treatment of Hematological Malignancy of Xiamen, Xiamen, 361003, China
| | - Qian Lai
- Department of Hematology, the First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen, 361003, Fujian, China
- Key Laboratory for Diagnosis and Treatment of Hematological Malignancy of Xiamen, Xiamen, 361003, China
| | - Manman Deng
- Department of Hematology, the First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen, 361003, Fujian, China
- Key Laboratory for Diagnosis and Treatment of Hematological Malignancy of Xiamen, Xiamen, 361003, China
| | - Pengcheng Shi
- Department of Hematology, Nanfang Hospital. Southern Medical University, Guangzhou, 510515, China
| | - Haijun Zhao
- Department of Hematology, the First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen, 361003, Fujian, China
- Key Laboratory for Diagnosis and Treatment of Hematological Malignancy of Xiamen, Xiamen, 361003, China
| | - Qinwei Chen
- Department of Hematology, the First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen, 361003, Fujian, China
- Key Laboratory for Diagnosis and Treatment of Hematological Malignancy of Xiamen, Xiamen, 361003, China
| | - Hua Wu
- Department of Nuclear Medicine, the First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Bing Xu
- Department of Hematology, the First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen, 361003, Fujian, China.
- Key Laboratory for Diagnosis and Treatment of Hematological Malignancy of Xiamen, Xiamen, 361003, China.
| |
Collapse
|
7
|
Yaguchi T, Onishi T. Estrogen induces cell proliferation by promoting ABCG2-mediated efflux in endometrial cancer cells. Biochem Biophys Rep 2018; 16:74-78. [PMID: 30377671 PMCID: PMC6202658 DOI: 10.1016/j.bbrep.2018.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 10/08/2018] [Indexed: 02/07/2023] Open
Abstract
Recently, it has reported that overeating of lipid-food has led to increase the amount of estrogen in vivo and the incidence of endometrial carcinomas. It is well-known that ATP-binding cassette transporter sub-family G2 (ABCG2) is highly expressed in cancer stem cells (CSCs). CSCs possess the ability for differentiation, tumorigenesis, stem cell self-renewal, and the efflux of anti-cancer drug and these abilities affect malignancy of cancer cells. However, little is known about the relationship between the expression of ABCG2 and malignancy of cancer cells. The present study aimed at understanding the regulatory mechanism underlying 17-β-estradiol (E2)-induced cell proliferation under the control of ABCG2. E2 increased cell viability with a peak at 1 μM and facilitated ABCG2 mRNA expression followed by the increase of ABCG2 expression level at plasma membrane. E2-induced cell proliferation was inhibited by reserpine, an inhibitor of ABCG2, and the ABCG2 siRNA treatment. Thus, these results imply that ABCG2 plays an important role in the promotion of E2-induced cell proliferation in Ishikawa cells.
Collapse
Affiliation(s)
- Takahiro Yaguchi
- Department of Chemical Technology, Graduate School of Science and Industrial Technology, Kurashiki University of Science and the Arts, 2640 Nishinoura Tsurajima-cho, Kurashiki 712-8505, Japan
- Department of Medical Laboratory Science, Graduate School of Health and Welfare Sciences, International University of Health and Welfare, 137-1 Enokizu, Okawa, Fukuoka, 831-8501, Japan
| | - Takafumi Onishi
- Department of Chemical Technology, Graduate School of Science and Industrial Technology, Kurashiki University of Science and the Arts, 2640 Nishinoura Tsurajima-cho, Kurashiki 712-8505, Japan
| |
Collapse
|
8
|
Davaadelger B, Murphy AR, Clare SE, Lee O, Khan SA, Kim JJ. Mechanism of Telapristone Acetate (CDB4124) on Progesterone Receptor Action in Breast Cancer Cells. Endocrinology 2018; 159:3581-3595. [PMID: 30203004 PMCID: PMC6157418 DOI: 10.1210/en.2018-00559] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/30/2018] [Indexed: 12/12/2022]
Abstract
Progesterone is a steroid hormone that plays an important role in the breast. Progesterone exerts its action through binding to progesterone receptor (PR), a transcription factor. Deregulation of the progesterone signaling pathway is implicated in the formation, development, and progression of breast cancer. Next-generation selective progesterone receptor modulators (SPRMs) have potent antiprogestin activity and are selective for PR, reducing the off-target effects on other nuclear receptors. To date, there is limited information on how the newer generation of SPRMs, specifically telapristone acetate (TPA), affect PR function at the molecular level. In this study, T47D breast cancer cells were used to investigate the molecular mechanism by which TPA antagonizes PR action. Global profiling of the PR cistrome and interactome was done with chromatin immunoprecipitation sequencing (ChIP-seq) and rapid immunoprecipitation mass spectrometry. Validation studies were done on key genes and interactions. Our results demonstrate that treatment with the progestin (R5020) alone resulted in robust PR recruitment to the chromatin, and addition of TPA reduced PR recruitment globally. TPA significantly changed coregulator recruitment to PR compared with R5020. Upon conservative analysis, three proteins (TRPS1, LASP1, and AP1G1) were identified in the R5020+TPA-treated group. Silencing TRPS1 with small interfering RNA increased PR occupancy to the known PR regulatory regions and attenuated the inhibition of gene expression after TPA treatment. TRPS1 silencing alleviated the inhibition of proliferation by TPA. In conclusion, TPA decreases PR occupancy on chromatin and recruits coregulators such as TRPS1 to the PR complex, thereby regulating PR target gene expression and associated cellular responses.
Collapse
Affiliation(s)
- Batzaya Davaadelger
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Alina R Murphy
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Susan E Clare
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Oukseub Lee
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Seema A Khan
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - J Julie Kim
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Correspondence: J. Julie Kim, PhD, 303 East Superior Street, Lurie 4-117, Chicago, Illinois 60611. E-mail:
| |
Collapse
|
9
|
Lee JY, Oh N, Park KS. Ell3 Modulates the Wound Healing Activity of Conditioned Medium of Adipose-derived Stem Cells. Dev Reprod 2017; 21:335-342. [PMID: 29082349 PMCID: PMC5651700 DOI: 10.12717/dr.2017.21.3.335] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 01/09/2023]
Abstract
While adipose-derived stem cell-conditioned medium (ADSC-CM) has been
demonstrated to promote skin wound healing, the mechanism regulating this effect
remains unelucidated. In this study, we aimed to investigate the role of Ell3 in
the wound healing activity of ADSC-CM. In vitro analysis
revealed that Ell3 suppression in ADSCs impairs the promotive activity of
ADSC-CM on the proliferation and migration of mouse embryonic fibroblasts (MEF)
and normal human dermal fibroblasts (NHDF). Consistently, the expression of MMP
family genes, which regulate cell proliferation and migration, was significantly
suppressed in MEF and NHDF treated with siEll3-transfected ADSC-CM.
Proinflammatory cytokines, such as interleukin-1 and interleukin-6, were highly
expressed in MEF treated with siEll3-transfected ADSC-CM. The wound healing
activity of siEll3-transfected ADSC-CM was significantly lower than that of the
control in vivo. Our results suggest that Ell3 may contribute
to the inhibition of inflammatory response during skin wound healing.
Collapse
Affiliation(s)
- Jae-Yong Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seoul, Korea
| | - Nuri Oh
- Department of Biomedical Science, College of Life Science, CHA University, Seoul, Korea
| | - Kyung-Soon Park
- Department of Biomedical Science, College of Life Science, CHA University, Seoul, Korea
| |
Collapse
|