1
|
Uehara Y, Suzukawa M, Horie M, Igarashi S, Minegishi M, Takada K, Saito A, Nagase H. ZFP36 family expression is suppressed by Th2 cells in asthma, leading to enhanced synthesis of inflammatory cytokines and cell surface molecules. Cell Immunol 2024; 403-404:104859. [PMID: 39067169 DOI: 10.1016/j.cellimm.2024.104859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/01/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Asthma is a chronic inflammatory airway disease, in which inflammatory cytokines play a pivotal role. The zinc finger binding protein 36 (ZFP36) family includes ZFP36, ZFP36L1, and ZFP36L2 and is among the RNA-binding proteins (RBPs) reported to cause inflammation. The present study aimed to clarify the roles of the ZFP36 family in asthma, particularly highlighting the relationship between the ZFP36 family and Th2 cells, which are key players in type 2 inflammation in asthma. Real-time PCR analysis revealed the preferential expression of ZFP36 family mRNAs in human white blood cells. Gene expression analysis using public datasets from the GEO database (https://www.ncbi.nlm.nih.gov/gds) showed significantly suppressed expression of ZFP36 family mRNAs in patients with asthma compared to that in healthy controls. Using multiple cytokine assays, Th2 cell transfection with ZFP36 family siRNAs enhanced the expression of inflammatory cytokines IL-8, IFN-γ, CCL3/MIP-1α, CCL4/MIP-1β, and TNF-α and cell surface molecules CCR4 (CD194) and PSGL-1 (CD162). Treatment with IL-2, 4, and 15 significantly suppressed, and corticosteroid significantly enhanced the expressions of ZFP36 family mRNAs by Th2 cells. In conclusion, the ZFP36 family expressed by Th2 cells was suppressed in patients with asthma, leading to the enhanced expression of cytokines and cell surface molecules. Suppressed ZFP36 expression in asthma may be involved in the enhancement of airway inflammation, and the ZFP36 family may be a therapeutic target for inflammatory diseases, including asthma.
Collapse
Affiliation(s)
- Yuki Uehara
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo, 204-8585, Japan; Division of Respiratory Medicine and Allergology, Department of Medicine, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-Ku, Tokyo, 173-8605, Japan
| | - Maho Suzukawa
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo, 204-8585, Japan.
| | - Masafumi Horie
- Department of Molecular and Cellular Pathology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Sayaka Igarashi
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo, 204-8585, Japan
| | - Masaaki Minegishi
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo, 204-8585, Japan
| | - Kazufumi Takada
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo, 204-8585, Japan; Department of Geriatric Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, 113-8655, Japan
| | - Akira Saito
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Nagase
- Division of Respiratory Medicine and Allergology, Department of Medicine, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-Ku, Tokyo, 173-8605, Japan
| |
Collapse
|
2
|
Hinton T, Karnak D, Tang M, Jiang R, Luo Y, Boonstra P, Sun Y, Nancarrow DJ, Sandford E, Ray P, Maurino C, Matuszak M, Schipper MJ, Green MD, Yanik GA, Tewari M, Naqa IE, Schonewolf CA, Haken RT, Jolly S, Lawrence TS, Ray D. Improved prediction of radiation pneumonitis by combining biological and radiobiological parameters using a data-driven Bayesian network analysis. Transl Oncol 2022; 21:101428. [PMID: 35460942 PMCID: PMC9046881 DOI: 10.1016/j.tranon.2022.101428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/25/2022] [Accepted: 04/10/2022] [Indexed: 02/07/2023] Open
Abstract
Grade 2 and higher radiation pneumonitis (RP2) is a potentially fatal toxicity that limits efficacy of radiation therapy (RT). We wished to identify a combined biomarker signature of circulating miRNAs and cytokines which, along with radiobiological and clinical parameters, may better predict a targetable RP2 pathway. In a prospective clinical trial of response-adapted RT for patients (n = 39) with locally advanced non-small cell lung cancer, we analyzed patients' plasma, collected pre- and during RT, for microRNAs (miRNAs) and cytokines using array and multiplex enzyme linked immunosorbent assay (ELISA), respectively. Interactions between candidate biomarkers, radiobiological, and clinical parameters were analyzed using data-driven Bayesian network (DD-BN) analysis. We identified alterations in specific miRNAs (miR-532, -99b and -495, let-7c, -451 and -139-3p) correlating with lung toxicity. High levels of soluble tumor necrosis factor alpha receptor 1 (sTNFR1) were detected in a majority of lung cancer patients. However, among RP patients, within 2 weeks of RT initiation, we noted a trend of temporary decline in sTNFR1 (a physiological scavenger of TNFα) and ADAM17 (a shedding protease that cleaves both membrane-bound TNFα and TNFR1) levels. Cytokine signature identified activation of inflammatory pathway. Using DD-BN we combined miRNA and cytokine data along with generalized equivalent uniform dose (gEUD) to identify pathways with better accuracy of predicting RP2 as compared to either miRNA or cytokines alone. This signature suggests that activation of the TNFα-NFκB inflammatory pathway plays a key role in RP which could be specifically ameliorated by etanercept rather than current therapy of non-specific leukotoxic corticosteroids.
Collapse
Affiliation(s)
- Tonaye Hinton
- Department of Radiation Oncology, Medical School, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109-2026, USA
| | - David Karnak
- Department of Radiation Oncology, Medical School, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109-2026, USA
| | - Ming Tang
- Department of Radiation Oncology, Medical School, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109-2026, USA; Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Ralph Jiang
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Yi Luo
- Department of Radiation Oncology, Medical School, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109-2026, USA
| | - Philip Boonstra
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Yilun Sun
- Department of Radiation Oncology, Medical School, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109-2026, USA; Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Derek J Nancarrow
- Department of Surgery, Division of Hematology-Oncology, Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Erin Sandford
- Division of Hematology and Oncology, Department of Internal Medicine, Henry Ford Cancer Institute/Henry Ford Hospital, Detroit, MI, USA
| | - Paramita Ray
- Department of Radiation Oncology, Medical School, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109-2026, USA
| | - Christopher Maurino
- Department of Radiation Oncology, Medical School, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109-2026, USA
| | - Martha Matuszak
- Department of Radiation Oncology, Medical School, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109-2026, USA
| | - Matthew J Schipper
- Department of Radiation Oncology, Medical School, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109-2026, USA; Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Michael D Green
- Department of Radiation Oncology, Medical School, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109-2026, USA
| | - Gregory A Yanik
- Division of Hematology and Oncology, Department of Internal Medicine, Henry Ford Cancer Institute/Henry Ford Hospital, Detroit, MI, USA
| | - Muneesh Tewari
- Division of Hematology and Oncology, Department of Internal Medicine, Henry Ford Cancer Institute/Henry Ford Hospital, Detroit, MI, USA
| | - Issam El Naqa
- Department of Radiation Oncology, Medical School, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109-2026, USA
| | - Caitlin A Schonewolf
- Department of Radiation Oncology, Medical School, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109-2026, USA
| | - Randall Ten Haken
- Department of Radiation Oncology, Medical School, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109-2026, USA
| | - Shruti Jolly
- Department of Radiation Oncology, Medical School, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109-2026, USA
| | - Theodore S Lawrence
- Department of Radiation Oncology, Medical School, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109-2026, USA
| | - Dipankar Ray
- Department of Radiation Oncology, Medical School, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109-2026, USA.
| |
Collapse
|
3
|
Zhou Y, Liu L, Gu W. Serum MMP-9 and SAA in the Diagnosis of Severe Pneumonia Caused by Radiotherapy of Esophageal Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:6032546. [PMID: 34394388 PMCID: PMC8363459 DOI: 10.1155/2021/6032546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To explore the relationship and diagnostic value of serum MMP-9 and SAA in severe pneumonia (sCAP) caused by radiotherapy of esophageal cancer. METHODS A total of 144 esophageal cancer patients who underwent radiotherapy in our hospital from April 2016 to February 2018 were collected. Among them, 58 patients without radiation pneumonitis (RP) were in the control group, 49 patients with grade 1∼2 RP were in the radiation group, and 37 patients with sCAP were in the severe group. The levels of serum MMP-9 and SAA in every group of patients were detected. The ROC curve was used to determine the diagnostic value of serum MMP-9 and SAA in the diagnosis of RP and sCAP. The correlation between serum MMP-9 and SAA and the patient's lung function indexes was analyzed, and the logistic single-factor and multivariate analyses were performed to analyze the factors of sCAP in esophageal cancer radiotherapy. RESULTS PaO2, FVC, and FEV1 decreased in RP and sCAP, and PaCO2, white blood cells, serum MMP-9, and SAA levels increased (P < 0.05); serum MMP-9 and SAA were negatively correlated with lung function (P < 0.05); the AUC of serum MMP-9 and SAA in RP was 0.833 and 0.823, respectively, and the AUC of the two combined diagnosis of RP was 0.919. The AUC of serum MMP-9 and SAA in sCAP was 0.809 and 0.797, respectively, and the AUC of both combined diagnosis of sCAP was 0.873; logistics multivariate analysis found that serum MMP-9, serum SAA, double lung V5, and V20 were independent risk factors for sCAP caused by radiotherapy for esophageal cancer (P < 0.05). CONCLUSION Serum MMP-9 and SAA increase in RP and sCAP and are negatively correlated with lung function in patients with pneumonia. They are independent risk factors for severe pneumonia caused by radiotherapy of esophageal cancer and have good diagnostic value.
Collapse
Affiliation(s)
- Yu Zhou
- Department of ICU, Zhuji People's Hospital, Shaoxing, Zhejiang Province 311800, China
| | - Li Liu
- Department of Pediatrics, Zhuji People's Hospital, Shaoxing, Zhejiang Province 311800, China
| | - Wenjun Gu
- Department of Gastroenterology, The Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
4
|
Budroni V, Versteeg GA. Negative Regulation of the Innate Immune Response through Proteasomal Degradation and Deubiquitination. Viruses 2021; 13:584. [PMID: 33808506 PMCID: PMC8066222 DOI: 10.3390/v13040584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 12/25/2022] Open
Abstract
The rapid and dynamic activation of the innate immune system is achieved through complex signaling networks regulated by post-translational modifications modulating the subcellular localization, activity, and abundance of signaling molecules. Many constitutively expressed signaling molecules are present in the cell in inactive forms, and become functionally activated once they are modified with ubiquitin, and, in turn, inactivated by removal of the same post-translational mark. Moreover, upon infection resolution a rapid remodeling of the proteome needs to occur, ensuring the removal of induced response proteins to prevent hyperactivation. This review discusses the current knowledge on the negative regulation of innate immune signaling pathways by deubiquitinating enzymes, and through degradative ubiquitination. It focusses on spatiotemporal regulation of deubiquitinase and E3 ligase activities, mechanisms for re-establishing proteostasis, and degradation through immune-specific feedback mechanisms vs. general protein quality control pathways.
Collapse
Affiliation(s)
| | - Gijs A. Versteeg
- Max Perutz Labs, Department of Microbiology, Immunobiology, and Genetics, University of Vienna, Vienna Biocenter (VBC), 1030 Vienna, Austria;
| |
Collapse
|
5
|
Mungunsukh O, George J, McCart EA, Snow AL, Mattapallil JJ, Mog SR, Panganiban RAM, Bolduc DL, Rittase WB, Bouten RM, Day RM. Captopril reduces lung inflammation and accelerated senescence in response to thoracic radiation in mice. JOURNAL OF RADIATION RESEARCH 2021; 62:236-248. [PMID: 33616187 PMCID: PMC7948861 DOI: 10.1093/jrr/rraa142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 07/31/2020] [Indexed: 05/10/2023]
Abstract
The lung is sensitive to radiation and exhibits several phases of injury, with an initial phase of radiation-induced pneumonitis followed by delayed and irreversible fibrosis. The angiotensin-converting enzyme inhibitor captopril has been demonstrated to mitigate radiation lung injury and to improve survival in animal models of thoracic irradiation, but the mechanism remains poorly understood. Here we investigated the effect of captopril on early inflammatory events in the lung in female CBA/J mice exposed to thoracic X-ray irradiation of 17-17.9 Gy (0.5-0.745 Gy min-1). For whole-body + thoracic irradiation, mice were exposed to 7.5 Gy (0.6 Gy min-1) total-body 60Co irradiation and 9.5 Gy thoracic irradiation. Captopril was administered orally (110 mg kg-1 day-1) in the drinking water, initiated 4 h through to150 days post-irradiation. Captopril treatment increased survival from thoracic irradiation to 75% at 150 days compared with 0% survival in vehicle-treated animals. Survival was characterized by a significant decrease in radiation-induced pneumonitis and fibrosis. Investigation of early inflammatory events showed that captopril significantly attenuated macrophage accumulation and decreased the synthesis of radiation-induced interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) pro-inflammatory cytokines in the lungs of irradiated mice. Suppression of IL-1β and TNF-α correlated with an increase of the anti-inflammatory cytokine IL-10 in the spleen with captopril treatment. We also found that captopril decreased markers for radiation-induced accelerated senescence in the lung tissue. Our data suggest that suppression of inflammation and senescence markers, combined with an increase of anti-inflammatory factors, are a part of the mechanism for captopril-induced survival in thoracic irradiated mice.
Collapse
Affiliation(s)
- Ognoon Mungunsukh
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Jeffy George
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Elizabeth A McCart
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Andrew L Snow
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Joseph J Mattapallil
- Department of Microbiology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Steven R Mog
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD 20740, USA
| | - Ronald Allan M Panganiban
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - David L Bolduc
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
| | - W Bradley Rittase
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Roxane M Bouten
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Regina M Day
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
6
|
p38 MAPK Inhibition Mitigates Hypoxia-Induced AR Signaling in Castration-Resistant Prostate Cancer. Cancers (Basel) 2021; 13:cancers13040831. [PMID: 33671134 PMCID: PMC7922949 DOI: 10.3390/cancers13040831] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Progression of prostate cancer to a castration-resistant state is associated with poor patient outcomes, and new therapeutic targeting approaches are needed. Poorly oxygenated (hypoxic) cancer cells are resistant to many treatment modalities, and it is therefore important that novel therapies also target these cells. Here we show that targeting the p38 MAPK protein kinase can inhibit growth and survival of both well-oxygenated and hypoxic castration resistant prostate cancer cells and prolong survival of tumor bearing mice. p38 MAPK targeting inhibited phosphorylation of the chaperone protein Hsp27 and activity of the androgen receptor. This demonstrates that prostate cancer cells can remain dependent on the p38 MAPK/Hsp27 signaling axis upon progression to castration-resistance, and that hypoxia does not offer protection against targeting this pathway. Abstract Background: Aberrant androgen receptor (AR) signaling is a major driver of castration-resistant prostate cancer (CRPC). Tumor hypoxia increases AR signaling and is associated with treatment resistance in prostate cancer. Heat shock protein 27 (Hsp27) is a molecular chaperone that is activated in response to heat shock and hypoxia. Hsp27 has previously been reported to facilitate AR nuclear translocation in a p38 mitogen-activated protein kinase (MAPK) dependent manner in castration-sensitive prostate cancer cell lines. Here, we evaluated the potential for inhibiting p38 MAPK/Hsp27 mediated AR signaling under normoxia and hypoxia in experimental models of CRPC. Methods: We inhibited p38 MAPK with SB203580 in prostate cancer cell lines and measured Hsp27 phosphorylation, AR activity, cell proliferation, and clonogenicity under normoxia and hypoxia. AR activity was measured using an androgen response element driven reporter assay and qPCR to measure expression of AR target genes. Xenograft-bearing mice were treated with SB203580 to measure tumor growth and serum prostate specific antigen (PSA). Results: Our results indicate that p38 MAPK and Hsp27 are activated under normoxia and hypoxia in response to androgens in CRPC cells. p38 MAPK inhibition diminished Hsp27 activation and the hypoxia-mediated increase in AR activity. Additionally, inhibition of p38 MAPK activity decreased proliferation and survival of CRPC cells in vitro and prolonged the survival of tumor-bearing mice. Conclusions: These results suggest that p38 MAPK inhibition may represent a therapeutic strategy to disrupt AR signaling in the heterogeneous CRPC tumor microenvironment.
Collapse
|
7
|
Rezcallah MC, Al-Mazi T, Ammit AJ. Cataloguing the phosphorylation sites of tristetraprolin (TTP): Functional implications for inflammatory diseases. Cell Signal 2020; 78:109868. [PMID: 33276085 DOI: 10.1016/j.cellsig.2020.109868] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/29/2020] [Accepted: 11/29/2020] [Indexed: 01/10/2023]
Abstract
Tristetraprolin (TTP) is a destabilizing mRNA binding protein known to regulate gene expression of a wide variety of targets, including those that control inflammation. TTP expression, regulation and function is controlled by phosphorylation. While the importance of key serine (S) sites (S52 and S178 in mice and S186 in humans) has been recognized, other sites on the hyperphosphorylated TTP protein have more recently emerged as playing an important role in regulating cellular signalling and downstream functions of TTP. In order to propel investigation of TTP and fully exploit its potential as a drug target in inflammatory disease, this review will catalogue TTP phosphorylation sites in both the murine and human TTP protein, the known and unknown roles and functions of these sites, the kinases and phosphatases that act upon TTP and overview methodological approaches to increase our knowledge of this important protein regulated by phosphorylation.
Collapse
Affiliation(s)
- Maria C Rezcallah
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, NSW, Australia; School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Trisha Al-Mazi
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, NSW, Australia; School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Alaina J Ammit
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, NSW, Australia; School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.
| |
Collapse
|
8
|
Śliwińska-Mossoń M, Wadowska K, Trembecki Ł, Bil-Lula I. Markers Useful in Monitoring Radiation-Induced Lung Injury in Lung Cancer Patients: A Review. J Pers Med 2020; 10:72. [PMID: 32722546 PMCID: PMC7565537 DOI: 10.3390/jpm10030072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/06/2020] [Accepted: 07/22/2020] [Indexed: 12/14/2022] Open
Abstract
In 2018, lung cancer was the most common cancer and the most common cause of cancer death, accounting for a 1.76 million deaths. Radiotherapy (RT) is a widely used and effective non-surgical cancer treatment that induces remission in, and even cures, patients with lung cancer. However, RT faces some restrictions linked to the radioresistance and treatment toxicity, manifesting in radiation-induced lung injury (RILI). About 30-40% of lung cancer patients will develop RILI, which next to the local recurrence and distant metastasis is a substantial challenge to the successful management of lung cancer treatment. These data indicate an urgent need of looking for novel, precise biomarkers of individual response and risk of side effects in the course of RT. The aim of this review was to summarize both preclinical and clinical approaches in RILI monitoring that could be brought into clinical practice. Next to transforming growth factor-β1 (TGFβ1) that was reported as one of the most important growth factors expressed in the tissues after ionizing radiation (IR), there is a group of novel, potential biomarkers-microRNAs-that may be used as predictive biomarkers in therapy response and disease prognosis.
Collapse
Affiliation(s)
- Mariola Śliwińska-Mossoń
- Department of Medical Laboratory Diagnostics, Division of Clinical Chemistry and Laboratory Haematology, Wroclaw Medical University, ul. Borowska 211A, 50-556 Wroclaw, Poland; (M.Ś.-M.); (I.B.-L.)
| | - Katarzyna Wadowska
- Department of Medical Laboratory Diagnostics, Division of Clinical Chemistry and Laboratory Haematology, Wroclaw Medical University, ul. Borowska 211A, 50-556 Wroclaw, Poland; (M.Ś.-M.); (I.B.-L.)
| | - Łukasz Trembecki
- Department of Radiation Oncology, Lower Silesian Oncology Center, pl. Hirszfelda 12, 53-413 Wroclaw, Poland;
- Department of Oncology, Faculty of Medicine, Wroclaw Medical University, pl. Hirszfelda 12, 53-413 Wroclaw, Poland
| | - Iwona Bil-Lula
- Department of Medical Laboratory Diagnostics, Division of Clinical Chemistry and Laboratory Haematology, Wroclaw Medical University, ul. Borowska 211A, 50-556 Wroclaw, Poland; (M.Ś.-M.); (I.B.-L.)
| |
Collapse
|
9
|
Guo J, Lei M, Cheng F, Liu Y, Zhou M, Zheng W, Zhou Y, Gong R, Liu Z. RNA-binding proteins tristetraprolin and human antigen R are novel modulators of podocyte injury in diabetic kidney disease. Cell Death Dis 2020; 11:413. [PMID: 32487989 PMCID: PMC7265504 DOI: 10.1038/s41419-020-2630-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/21/2022]
Abstract
Diabetic kidney disease (DKD) is one of the most common complications of diabetes, and the most common cause of end-stage renal disease, for which no effective therapies are yet available. RNA-binding proteins (RBPs) play a pivotal role in epigenetic regulation; tristetraprolin (TTP) and human antigen R (HuR) competitively bind cytokine mRNAs, exert contrasting effects on RNA stability, and drive inflammation. However, RBPs’ roles in diabetes-related glomerulopathy are poorly understood. Herein, we investigated whether TTP and HuR are involved in post-transcriptional regulation of podocytopathic molecules and inflammatory cytokines in DKD. In DKD patients and db/db mice, TTP expression was significantly decreased and HuR expression was increased in glomerular podocytes, concurrent with podocyte injury, histological signs of DKD, and augmented glomerular expression of interleukin (IL)-17 and claudin-1, which are targets of TTP and HuR, as evidenced by RNA immunoprecipitation. In cultured podocytes, exposure to high ambient glucose amplified HuR expression and repressed TTP expression, upregulated IL-17 and claudin-1, and promoted podocyte injury. Thus, TTP hypoactivity or HuR hyperactivity is sufficient and essential to diabetic podocytopathy. Moreover, in silico analysis revealed that several kinases govern phosphorylation and activation of TTP and HuR, and glycogen synthase kinase (GSK)-3β activated both TTP and HuR, which harbor putative GSK-3β consensus phosphorylation motifs. Treatment of db/db mice with a small molecule inhibitor of GSK-3β abrogated the changes in TTP and HuR in glomeruli and mitigated the overexpression of their target genes (IL-17, claudin-1, B7-1, and MCP-1) thus also mitigating proteinuria and DKD pathology. Our study indicates that TTP and HuR are dysregulated in DKD via a GSK-3β-mediated mechanism and play crucial roles in podocyte injury through post-transcriptional regulation of diverse genes. It also provides novel insights into DKD’s pathophysiology and identifies potential therapeutic targets.
Collapse
Affiliation(s)
- Jia Guo
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.,Division of Kidney disease and Hypertension, Brown Medical School, Providence, RI, 02903, USA.,Division of Nephrology, Department of Medicine, University of Toledo College of Medicine, Toledo, OH, 43614, USA
| | - Min Lei
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Fei Cheng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yong Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Mengwen Zhou
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Wen Zheng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yali Zhou
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Rujun Gong
- Division of Kidney disease and Hypertension, Brown Medical School, Providence, RI, 02903, USA. .,Division of Nephrology, Department of Medicine, University of Toledo College of Medicine, Toledo, OH, 43614, USA.
| | - Zhangsuo Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| |
Collapse
|