1
|
Deng MF, Yan YZ, Zhu SS, Zhou K, Tan SJ, Zeng P. A Serum Pharmacochemistry and Network Pharmacology-based Approach to Study the Anti-depressant Effect of Chaihu-Shugan San. Comb Chem High Throughput Screen 2025; 28:533-550. [PMID: 38551057 DOI: 10.2174/0113862073285198240322072301] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/15/2024] [Accepted: 02/14/2024] [Indexed: 04/11/2025]
Abstract
AIMS The aim of this study is to explore the anti-depressant mechanism of Chaihu- Shugan San based on serum medicinal chemistry and network pharmacology methods. BACKGROUND Depression lacks effective treatments, with current anti-depressants ineffective in 40% of patients. Chaihu-Shugan San (CHSGS) is a well-known traditional Chinese medicine compound to treat depression. However, the chemical components and the underlying mechanisms targeting the liver and brain in the anti-depressant effects of CHSGS need to be elucidated. METHODS The chemical components of CHSGS in most current network pharmacology studies are screened from TCMSP and TCMID databases. In this study, we investigated the mechanism and material basis of soothing the liver and relieving depression in the treatment of depression by CHSGS based on serum pharmacochemistry. The anti-depressant mechanism of CHSGS was further verified by proteomics and high-throughput data. RESULTS Through serum medicinal chemistry, we obtained 9 bioactive substances of CHSGS. These ingredients have good human oral bioavailability and are non-toxic. Based on liver ChIPseq data, CHSGS acts on 8 targets specifically localized in the liver, such as FGA, FGB, and FGG. The main contributors to CHSGS soothing the liver qi targets are hesperetin, nobiletin, ferulic acid, naringin and albiflorin. In addition, network pharmacology analysis identified 9 blood components of CHSGS that corresponded to 63 anti-depressant targets in the brain. Among them, nobiletin has the largest number of anti-depressant targets, followed by glycyrrhizic acid, ferulic acid, albiflorin and hesperetin. We also validated the anti-depressant mechanism of CHSGS based on hippocampal proteomics. CHSGS exerts anti-depressant effects on synaptic structure and neuronal function by targeting multiple synapse related proteins. CONCLUSION This study not only provides a theoretical basis for further expanding the clinical application of CHSGS, but also provides a series of potential lead compounds for the development of depression drugs.
Collapse
Affiliation(s)
- Man-Fei Deng
- Department of Physiology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yi-Zhi Yan
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Shan-Shan Zhu
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Ke Zhou
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Si-Jie Tan
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Peng Zeng
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| |
Collapse
|
2
|
Wang L, Wang W, Li Y, Jin H, Xiao B, Jin Q. Dopamine and D1 receptor in hippocampal dentate gyrus involved in chronic stress-induced alteration of spatial learning and memory in rats. Neurobiol Stress 2024; 33:100685. [PMID: 39524935 PMCID: PMC11550135 DOI: 10.1016/j.ynstr.2024.100685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/07/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
There is increasing evidence that chronic stress (CS), which occurs when the body is exposed to prolonged stressors, significantly impairs learning and memory. Dopamine (DA) plays a critical role in learning and memory in the hippocampus through the activation of D1-like receptors (D1R). However, the specific roles of DA and D1R in the hippocampal dentate gyrus (DG), particularly in CS-induced changes in spatial learning and memory, are not well understood. In this study, we established a CS rat model through the random application of various stressors. We assessed spatial learning and memory using the Morris water maze (MWM) and measured DA concentration and the amplitude of field excitatory postsynaptic potentials (fEPSP) in the DG during the MWM test in freely moving rats. We also examined the involvement of D1R in spatial learning and memory by microinjecting its antagonist (SCH23390) into the DG, and then analyzed the expressions of phosphorylated (p-) Ca2+/calmodulin-dependent protein kinase II (CaMKII), protein kinase A (PKA), and cAMP-response element binding protein (CREB) in the DG using Western blot. During the MWM test, compared with the control group, the escape latency was increased, and the percentage of distance in target quadrant and the number of platform crossings were decreased, in addition, the increase of fEPSP amplitude in the DG was significantly attenuated in CS group. In the control group, the DA concentration in the DG was significantly increased during the MWM test, and this response was enhanced in the CS group. Microinjection of SCH23390 into the DG significantly improved the spatial learning and memory impairments in CS rats, and reversed the inhibitory effect of CS on increase of fEPSP amplitude in the DG during the MWM test. Furthermore, SCH23390 partially reversed the inhibitory effects of CS on the expressions of p-CaMKII, p-PKA, and p-CREB in the DG. Our findings suggest that overactivation of the DA-D1R system in the hippocampal DG impairs spatial learning and memory and related synaptic plasticity in CS rats via downregulation of PKA-CREB signaling pathway.
Collapse
Affiliation(s)
- Linping Wang
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, China
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China
| | - Weiyao Wang
- Department of Physiology, College of Basic Medicine, Jilin Medical University, Jilin, China
| | - Yingshun Li
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, China
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China
| | - Hua Jin
- Department of Internal Medicine, Yanbian University Hospital, Yanji, China
| | - Bin Xiao
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, China
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China
| | - Qinghua Jin
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, China
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China
| |
Collapse
|
3
|
Tan B, Jiang X, Chen L, Wang R, Wei H. Plasma exosomal miR-30a-5p inhibits osteogenic differentiation of bone marrow mesenchymal stem cells from a chronic unpredictable mild stress-induced depression rat model. Mol Cell Probes 2024; 75:101957. [PMID: 38513992 DOI: 10.1016/j.mcp.2024.101957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/23/2024]
Abstract
With rising society stress, depression-induced osteoporosis is increasing. However, the mechanism involved is unclear. In this study, we explored the effect of plasma exosomal miRNAs on bone marrow mesenchymal stem cell (BMSC) osteogenic differentiation in a chronic unpredictable mild stress (CUMS)-induced depression rat model. After 12 weeks of CUMS-induced depression, the pathological changes in the bone tissue and markers of osteogenic differentiation were tested by micro-computed tomography, hematoxylin-eosin staining, and quantitative real-time reverse transcription PCR (qRT-PCR). Plasma exosomes from rats were isolated and co-incubated with BMSCs for 14 d to detect the effect on osteogenic markers. Next-generation sequencing identified the miRNAs in the plasma exosomes, and the differential miRNAs were analyzed and verified by qRT-PCR. BMSCs were infected with lentivirus to upregulate miRNA-30a-5p and incubated in a medium that induced osteogenic differentiation for 14 d. The effect of miR-30a-5p on osteogenic differentiation was determined by qPCR and alizarin red staining. CUMS-induced depression rat model was established successfully, and exhibited reduced bone mass and damaged bone microstructure compared to that of the controls. The observed pathological changes suggested the occurrence of osteoporosis in the CUMS group, and the mRNA expression of osteogenic markers was also significantly reduced. Incubation of BMSCs with plasma exosomes from the CUMS group for 14 d resulted in a significant decrease in the expression of osteogenic markers. Twenty-five differentially expressed miRNAs in plasma exosomes were identified and upregulation of miR-30a-5p was observed to significantly inhibit the expression of osteogenic markers in BMSCs. Our findings contributed to a comprehensive understanding of the mechanism of osteoporosis caused by depression, and demonstrated the potential of miR-30a-5p as a novel biomarker or therapeutic target for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Boyu Tan
- Department of Pharmacy, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Department of Pharmacy, The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Changsha, Hunan, China
| | - Xueyao Jiang
- Department of Pharmacy, The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Changsha, Hunan, China
| | - Li Chen
- Department of Pharmacy, The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Changsha, Hunan, China
| | - Rongsheng Wang
- Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Shanghai, China
| | - Hongyan Wei
- Department of Pharmacy, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Pharmacy, The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Changsha, Hunan, China; Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Shanghai, China.
| |
Collapse
|
4
|
Khandia R, Gurjar P, Kamal MA, Greig NH. Relative synonymous codon usage and codon pair analysis of depression associated genes. Sci Rep 2024; 14:3502. [PMID: 38346990 PMCID: PMC10861588 DOI: 10.1038/s41598-024-51909-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/11/2024] [Indexed: 02/15/2024] Open
Abstract
Depression negatively impacts mood, behavior, and mental and physical health. It is the third leading cause of suicides worldwide and leads to decreased quality of life. We examined 18 genes available at the genetic testing registry (GTR) from the National Center for Biotechnological Information to investigate molecular patterns present in depression-associated genes. Different genotypes and differential expression of the genes are responsible for ensuing depression. The present study, investigated codon pattern analysis, which might play imperative roles in modulating gene expression of depression-associated genes. Of the 18 genes, seven and two genes tended to up- and down-regulate, respectively, and, for the remaining genes, different genotypes, an outcome of SNPs were responsible alone or in combination with differential expression for different conditions associated with depression. Codon context analysis revealed the abundance of identical GTG-GTG and CTG-CTG pairs, and the rarity of methionine-initiated codon pairs. Information based on codon usage, preferred codons, rare, and codon context might be used in constructing a deliverable synthetic construct to correct the gene expression level of the human body, which is altered in the depressive state. Other molecular signatures also revealed the role of evolutionary forces in shaping codon usage.
Collapse
Affiliation(s)
- Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, 462026, MP, India.
| | - Pankaj Gurjar
- Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamilnadu, India
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | - Mohammad Amjad Kamal
- Joint Laboratory of Artificial Intelligence in Healthcare, Institutes for Systems Genetics and West China School of Nursing, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
- Enzymoics, Novel Global Community Educational Foundation, 7 Peterlee place, Hebersham, NSW, 2770, Australia
| | - Nigel H Greig
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD, 21224, USA.
| |
Collapse
|
5
|
Nguyen HD, Kim MS. Interactions between cadmium, lead, mercury, and arsenic and depression: A molecular mechanism involved. J Affect Disord 2023; 327:315-329. [PMID: 36758875 DOI: 10.1016/j.jad.2023.02.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 01/23/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023]
Abstract
BACKGROUND We aimed to assess the interactions between mixed heavy metals, genes, and miRNAs implicated in depression development and to design and create miRNA sponges. METHODS The key data-mining approaches in this study were the Comparative Toxicogenomics Database (CTD), MIENTURNET, GeneMania, Metascape, Webgestalt, miRNAsong, and Cytoscape software. RESULTS A mixture of cadmium, lead, mercury, and arsenic was related to the development of depression. Even though the genes acquired from the heavy metals of depression studied were different, the "selenium micronutrient network", "vitamin B12 and folate metabolism", and "positive regulation of peptidyl-serine phosphorylation" pathways were highlighted. The heavy metal mixture altered the genes SOD1, IL6, PTGS2, PON1, BDNF, and ALB, highlighting the role of oxidative stress, pro-inflammatory cytokines, paraoxonase activity, neurotrophic factors, and antioxidants related to depression, as well as the possibility of targeting these genes in prospective depressive treatment. Chr1q31.1, five transcription factors (NR4A3, NR1H4, ATF3, CREB3L3, and NR1I3), the "endoplasmic reticulum lumen," "blood microparticle," and "myelin sheath", were found to be important chromosomal locations, transcription factors, and cellular parts linked to depression and affected by mixed heavy metals. Furthermore, we developed a network-based approach to detect significant genes, miRNA, pathways, and illnesses related to depression development. We also observed eight important miRNAs related to depression induced by mixed heavy metals (hsa-miR-16-5p, hsa-miR-132-3p, hsa-miR-1-3p, hsa-miR-204-5p, hsa-miR-206, hsa-miR-124-3p, hsa-miR-146a-5p, and hsa-miR-26a-5p). In addition, we created and evaluated miRNA sponge sequences for these miRNAs in silico. LIMITATIONS A toxicogenomic design in silico was used. CONCLUSIONS Our findings highlight the importance of oxidative stress, notably SOD1 and the selenium micronutrient network, in depression caused by heavy metal mixtures and provide additional insights into common molecular pathways implicated in depression pathogenesis.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea.
| | - Min-Sun Kim
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea.
| |
Collapse
|
6
|
Jiang X, Wu J, Tan B, Yan S, Deng N, Wei H. Effect of chronic unpredicted mild stress-induced depression on clopidogrel pharmacokinetics in rats. PeerJ 2022; 10:e14111. [PMID: 36213502 PMCID: PMC9536304 DOI: 10.7717/peerj.14111] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/02/2022] [Indexed: 01/25/2023] Open
Abstract
Background Clopidogrel is widely used to prevent and treat cardiovascular atherosclerosis and thrombosis. However, disturbance in the expression and activity of liver cytochrome metabolic enzymes significantly changes clopidogrel efficacy. Therefore, the effect of chronic unpredictable mild stress (CUMS)-induced depression on the expression of liver cytochrome metabolic enzymes and clopidogrel pharmacokinetics in rats were explored. Methods Nine different CUMSs were selected to establish a rat model of depression. Open field experiment and sucrose preference test were applied to explore the depressive behaviors. The concentration of serotonin in the cortex of depressed rats was determined using enzyme linked immunosorbent assay (ELISA). All rats were given 10 mg/kg clopidogrel orally after 12 weeks, and blood samples were collected at different time points. The clopidogrel concentration and CYP2C19/ CYP2C9 activity in rat liver microsomes were assayed by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The rat liver drug enzymes expression was determined by Real-Time Quantitative Reverse Transcription PCR (RT-qPCR). Results Open field experiment and sucrose preference test indicated the successful construction of the CUMS-induced depression model. The concentration of serotonin in the cortex of depressed rats decreased by 42.56% (∗∗ p < 0.01). The area under the curve of clopidogrel pharmacokinetics decreased by 33.13% (∗ p < 0.05) in the depression rats, while distribution volume and clearance increased significantly (∗∗ p < 0.01). The half-time and distribution volume did not significantly differ. The CYP2C19 and CYP2C9 activity of liver microsomes in the CUMS-induced depression group were significantly higher than that in the control group (∗∗ p < 0.01). CYP2C11 and CYP1A2 mRNA expression up-regulated approximately 1.3 - fold in the depressed rat livers compared with that in the control, whereas that of CYP2C13 was down-regulated by 27.43% (∗∗ p < 0.01). CYP3A1 and CYP2C12 expression were slightly up-regulated, and that of CES1 did not change. Conclusions These results indicated that CUMS-induced depression altered clopidogrel pharmacokinetics, and the change in CYP450 activity and expression in depressed rat livers might contribute to the disturbance of clopidogrel pharmacokinetics.
Collapse
Affiliation(s)
| | - Jing Wu
- Hunan Normal University, Changsha, Hunan, China
| | - Boyu Tan
- Department of Pharmacy, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Sulan Yan
- Department of Cardiovascular, The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People’s Hospital, Changsha, Hunan, China
| | - Nan Deng
- Department of Pharmacy, The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People’s Hospital, Changsha, Hunan, China
| | - Hongyan Wei
- Department of Pharmacy, The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People’s Hospital, Changsha, Hunan, China
| |
Collapse
|
7
|
Bioinformatics and Network Pharmacology-Based Approaches to Explore the Potential Mechanism of the Antidepressant Effect of Cyperi Rhizoma through Soothing the Liver. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2021:8614963. [PMID: 35126596 PMCID: PMC8816580 DOI: 10.1155/2021/8614963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/13/2021] [Indexed: 02/07/2023]
Abstract
Major depressive disorder (MDD) has become the second most common disease worldwide, making it a threat to human health. Cyperi Rhizoma (CR) is a traditional herbal medicine with antidepressant properties. Traditional Chinese medicine theory states that CR relieves MDD by dispersing stagnated liver qi to soothe the liver, but the material basis and underlying mechanism have not been elucidated. In this study, we identified the active compounds and potential anti-MDD targets of CR by network pharmacology-based approaches. Through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, we hypothesized that the anti-MDD effect of CR may be mediated by an altered response of the liver to lipopolysaccharide (LPS) and glucose metabolism. Through bioinformatics analysis, comparing normal and MDD liver tissue in rats with spontaneous diabetes, we identified differentially expressed genes (DEGs) and selected PAI-1 (SERPINE1) as a target of CR in combating MDD. Molecular docking and molecular dynamics analysis also verified the binding of the active compound quercetin to PAI-1. It can be concluded that quercetin is the active compound of CR that acts against MDD by targeting PAI-1 to enhance the liver response to LPS and glucose metabolism. This study not only reveals the material basis and underlying mechanism of CR against MDD through soothing the liver but also provides evidence for PAI-1 as a potential target and quercetin as a potential agent for MDD treatment.
Collapse
|
8
|
He L, Zeng L, Tian N, Li Y, He T, Tan D, Zhang Q, Tan Y. Optimization of food deprivation and sucrose preference test in SD rat model undergoing chronic unpredictable mild stress. Animal Model Exp Med 2020; 3:69-78. [PMID: 32318662 PMCID: PMC7167236 DOI: 10.1002/ame2.12107] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The chronic unpredictable mild stress (CUMS) model has long been considered the best model for exploring the pathophysiological mechanisms underlying depression. However, there are no widely recognised standards for strategies for modeling and for behavioral testing. The present study aimed to optimize the protocols for food deprivation and the sucrose preference test (SPT) for the CUMS model. METHODS We first evaluated the effects of different long periods of food deprivation on the body weight of Sprague Dawley (SD) rats by testing food deprivation for 24 hours (8:00-8:00+), food deprivation for 12 hours during the daytime (8:00-20:00) and food deprivation for 12 hours at night (20:00-8:00+). Next, we established a SD rat CUMS model with 15 different stimulations, and used body weight measurement, SPT, forced swim test (FST), open field test (OFT) and Morris water maze (MWM) test to verify the success of the modeling. In the SPT, consumption of sucrose and pure water within 1 and 12 hours was measured. RESULTS Twelve hours of food deprivation during the daytime (8:00-20:00) had no effect on body weight, while 12 hours of food deprivation at night (20:00-8:00+) and 24 hours of food deprivation (8:00-8:00+) significantly reduced the mean body weight of the SD rats. When SPT was used to verify the successful establishment of the CUMS rat model, sucrose consumption measured within 12 hours was less variable than that measured within 1 hour. CONCLUSIONS Twelve hours of food deprivation in the daytime (8:00-20:00) may be considered a mild stimulus for the establishment of a CUMS rat model. Measuring sucrose consumption over 12 hours is recommended for SPT.
Collapse
Affiliation(s)
- Li‐Wen He
- Laboratory Animal CenterChongqing Medical UniversityChongqingChina
| | - Li Zeng
- Laboratory Animal CenterChongqing Medical UniversityChongqingChina
| | - Na Tian
- Pediatric Research InstituteChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Yi Li
- Laboratory Animal CenterChongqing Medical UniversityChongqingChina
| | - Tong He
- Laboratory Animal CenterChongqing Medical UniversityChongqingChina
| | - Dong‐Mei Tan
- Laboratory Animal CenterChongqing Medical UniversityChongqingChina
| | - Qian Zhang
- Laboratory Animal CenterChongqing Medical UniversityChongqingChina
| | - Yi Tan
- Laboratory Animal CenterChongqing Medical UniversityChongqingChina
| |
Collapse
|
9
|
Sun L, Chen Y, Shen X, Xu T, Yin Y, Zhang H, Ding S, Zhao Y, Zhang Y, Guan Y, Li W. Inhibition of NOX2-NLRP1 signaling pathway protects against chronic glucocorticoids exposure-induced hippocampal neuronal damage. Int Immunopharmacol 2019; 74:105721. [DOI: 10.1016/j.intimp.2019.105721] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/17/2019] [Accepted: 06/23/2019] [Indexed: 12/15/2022]
|
10
|
Xu YJ, Sheng H, Wu TW, Bao QY, Zheng Y, Zhang YM, Gong YX, Lu JQ, You ZD, Xia Y, Ni X. CRH/CRHR1 mediates prenatal synthetic glucocorticoid programming of depression-like behavior across 2 generations. FASEB J 2018. [PMID: 29543532 DOI: 10.1096/fj.201700948rr] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Pregnant women at risk of preterm labor usually receive synthetic glucocorticoids (sGCs) to promote fetal lung development. Emerging evidence indicates that antenatal sGC increases the risk of affective disorders in offspring. Data from animal studies show that such disorders can be transmitted to the second generation. However, the molecular mechanisms underlying the intergenerational effects of prenatal sGC remain largely unknown. Here we show that prenatal dexamethasone (Dex) administration in late pregnancy induced depression-like behavior in first-generation (F1) offspring, which could be transmitted to second-generation (F2) offspring with maternal dependence. Moreover, corticotropin-releasing hormone (CRH) and CRH receptor type 1 (CRHR1) expression in the hippocampus was increased in F1 Dex offspring and F2 offspring from F1 Dex female rats. Administration of a CRHR1 antagonist to newborn F1 Dex offspring alleviated depression-like behavior in these rats at adult. Furthermore, we demonstrated that increased CRHR1 expression in F1 and F2 offspring was associated with hypomethylation of CpG islands in Crhr1 promoter. Our results revealed that prenatal sGC exposure could program Crh and Crhr1 gene expression in hippocampus across 2 generations, thereby leading to depression-like behavior. Our study indicates that prenatal sGC can cause epigenetic instability, which increases the risk of disease development in the offspring's later life.-Xu, Y.-J., Sheng, H., Wu, T.-W., Bao, Q.-Y., Zheng, Y., Zhang, Y.-M., Gong, Y.-X., Lu, J.-Q., You, Z.-D., Xia, Y., Ni, X. CRH/CRHR1 mediates prenatal synthetic glucocorticoid programming of depression-like behavior across 2 generations.
Collapse
Affiliation(s)
- Yong-Jun Xu
- Department of Physiology, Second Military Medical University, Shanghai, China.,Department of Clinical Genetics and Experimental Medicine, Fuzhou General Hospital, Xiamen University School of Medicine, Fuzhou, China
| | - Hui Sheng
- Department of Physiology, Second Military Medical University, Shanghai, China
| | - Tian-Wen Wu
- Department of Physiology, Second Military Medical University, Shanghai, China
| | - Qing-Yue Bao
- Department of Physiology, Second Military Medical University, Shanghai, China
| | - You Zheng
- Department of Physiology, Second Military Medical University, Shanghai, China
| | - Yan-Min Zhang
- Department of Physiology, Second Military Medical University, Shanghai, China
| | - Yu-Xiang Gong
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences, Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Jian-Qiang Lu
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences, Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Zhen-Dong You
- Department of Neurobiology, Second Military Medical University, Shanghai, China
| | - Yang Xia
- Department of Physiology, Second Military Medical University, Shanghai, China.,Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, Houston, Texas, USA.,Institute of Molecular Metabolomics, Xiangya Hospital, Changsha, China
| | - Xin Ni
- Department of Physiology, Second Military Medical University, Shanghai, China.,Institute of Molecular Metabolomics, Xiangya Hospital, Changsha, China
| |
Collapse
|
11
|
Gao C, Chen X, Xu A, Cheng K, Shen J. Adaptor Protein APPL2 Affects Adult Antidepressant Behaviors and Hippocampal Neurogenesis via Regulating the Sensitivity of Glucocorticoid Receptor. Mol Neurobiol 2017; 55:5537-5547. [DOI: 10.1007/s12035-017-0785-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/21/2017] [Indexed: 12/19/2022]
|