1
|
Stoof J, Kalmoua Z, Sobota A, Brakenhoff RH, Stigter M, Pham TV, Piersma SR, Henneman A, Lagerweij T, de Goeij-de Haas R, van Moorselaar RJA, Jimenez CR, Bijnsdorp IV. Non-thermal plasma as promising anti-cancer therapy against bladder cancer by inducing DNA damage and cell cycle arrest. Sci Rep 2025; 15:2334. [PMID: 39824909 PMCID: PMC11742390 DOI: 10.1038/s41598-025-85568-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/03/2025] [Indexed: 01/20/2025] Open
Abstract
Bladder cancer often recurs, necessitating innovative treatments to reduce recurrence. We investigated non-thermal plasma's potential as a novel anti-cancer therapy, focusing on plasma-activated solution (PAS), created by exposing saline to non-thermal plasma. Our study aims to elucidate the biological effects of PAS on bladder cancer cell lines in vitro, as well as the combination with mitomycin C (MMC), using clinically relevant settings. PAS treatment exerts a potent cytotoxic effect through the production of intracellular reactive oxygen species, resulting in DNA damage and subsequent induction of G1 cell cycle arrest/senescence. This is induced via upregulation of cell cycle checkpoint signalling and DNA damage repair pathways using LC-M/MS-based phospho-proteomics. Importantly, combining PAS with MMC reveals a synergistic effect (Combination Index of 0.59-0.67), suggesting the potential of utilizing PAS in combination therapies. Our findings demonstrate PAS's mode of action and suggest its potential as a promising treatment for bladder cancer, warranting further clinical studies.
Collapse
Affiliation(s)
- Jojanneke Stoof
- Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, de Boelelaan 1117, 1018 HV, Amsterdam, The Netherlands
- Amsterdam UMC, Location VUmc, Urology, Amsterdam, The Netherlands
- Amsterdam UMC, Location VUmc, OncoProteomics Laboratory, Medical Oncology, Amsterdam, The Netherlands
- Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, Target and Therapy Discovery, Amsterdam, The Netherlands
| | - Zakaria Kalmoua
- Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, de Boelelaan 1117, 1018 HV, Amsterdam, The Netherlands
- Amsterdam UMC, Location VUmc, Urology, Amsterdam, The Netherlands
- Amsterdam UMC, Location VUmc, OncoProteomics Laboratory, Medical Oncology, Amsterdam, The Netherlands
- Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, Target and Therapy Discovery, Amsterdam, The Netherlands
| | - Ana Sobota
- Department of Applied Physics and Science Education, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Ruud H Brakenhoff
- Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, de Boelelaan 1117, 1018 HV, Amsterdam, The Netherlands
- Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, Target and Therapy Discovery, Amsterdam, The Netherlands
- Amsterdam UMC, Location VUmc, Otolaryngology/Head and Neck Surgery, Amsterdam, The Netherlands
| | - Marijke Stigter
- Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, de Boelelaan 1117, 1018 HV, Amsterdam, The Netherlands
- Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, Target and Therapy Discovery, Amsterdam, The Netherlands
- Amsterdam UMC, Location VUmc, Otolaryngology/Head and Neck Surgery, Amsterdam, The Netherlands
| | - Thang V Pham
- Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, de Boelelaan 1117, 1018 HV, Amsterdam, The Netherlands
- Amsterdam UMC, Location VUmc, OncoProteomics Laboratory, Medical Oncology, Amsterdam, The Netherlands
- Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, Target and Therapy Discovery, Amsterdam, The Netherlands
| | - Sander R Piersma
- Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, de Boelelaan 1117, 1018 HV, Amsterdam, The Netherlands
- Amsterdam UMC, Location VUmc, Urology, Amsterdam, The Netherlands
- Amsterdam UMC, Location VUmc, OncoProteomics Laboratory, Medical Oncology, Amsterdam, The Netherlands
- Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, Target and Therapy Discovery, Amsterdam, The Netherlands
| | - Alex Henneman
- Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, de Boelelaan 1117, 1018 HV, Amsterdam, The Netherlands
- Amsterdam UMC, Location VUmc, OncoProteomics Laboratory, Medical Oncology, Amsterdam, The Netherlands
- Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, Target and Therapy Discovery, Amsterdam, The Netherlands
| | - Tonny Lagerweij
- Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, de Boelelaan 1117, 1018 HV, Amsterdam, The Netherlands
- Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, Target and Therapy Discovery, Amsterdam, The Netherlands
- Amsterdam UMC, Location VUmc, Neurosurgery, Amsterdam, The Netherlands
| | - Richard de Goeij-de Haas
- Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, de Boelelaan 1117, 1018 HV, Amsterdam, The Netherlands
- Amsterdam UMC, Location VUmc, OncoProteomics Laboratory, Medical Oncology, Amsterdam, The Netherlands
- Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, Target and Therapy Discovery, Amsterdam, The Netherlands
| | - R Jeroen A van Moorselaar
- Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, de Boelelaan 1117, 1018 HV, Amsterdam, The Netherlands
- Amsterdam UMC, Location VUmc, Urology, Amsterdam, The Netherlands
- Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, Target and Therapy Discovery, Amsterdam, The Netherlands
| | - Connie R Jimenez
- Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, de Boelelaan 1117, 1018 HV, Amsterdam, The Netherlands
- Amsterdam UMC, Location VUmc, OncoProteomics Laboratory, Medical Oncology, Amsterdam, The Netherlands
- Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, Target and Therapy Discovery, Amsterdam, The Netherlands
| | - Irene V Bijnsdorp
- Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, de Boelelaan 1117, 1018 HV, Amsterdam, The Netherlands.
- Amsterdam UMC, Location VUmc, Urology, Amsterdam, The Netherlands.
- Amsterdam UMC, Location VUmc, OncoProteomics Laboratory, Medical Oncology, Amsterdam, The Netherlands.
- Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, Target and Therapy Discovery, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Savin IA, Sen’kova AV, Goncharova EP, Zenkova MA, Markov AV. Novel Core Gene Signature Associated with Inflammation-to-Metaplasia Transition in Influenza A Virus-Infected Lungs. Int J Mol Sci 2024; 25:11958. [PMID: 39596028 PMCID: PMC11594146 DOI: 10.3390/ijms252211958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Respiratory infections caused by RNA viruses are a major contributor to respiratory disease due to their ability to cause annual epidemics with profound public health implications. Influenza A virus (IAV) infection can affect a variety of host signaling pathways that initiate tissue regeneration with hyperplastic and/or dysplastic changes in the lungs. Although these changes are involved in lung recovery after IAV infection, in some cases, they can lead to serious respiratory failure. Despite being ubiquitously observed, there are limited data on the regulation of long-term recovery from IAV infection leading to normal or dysplastic repair represented by inflammation-to-metaplasia transition in mice or humans. To address this knowledge gap, we used integrative bioinformatics analysis with further verification in vivo to elucidate the dynamic molecular changes in IAV-infected murine lung tissue and identified the core genes (Birc5, Cdca3, Plk1, Tpx2, Prc1. Rrm2, Nusap1, Spag5, Top2a, Mcm5) and transcription factors (E2F1, E2F4, NF-YA, NF-YB, NF-YC) involved in persistent lung injury and regeneration processes, which may serve as gene signatures reflecting the long-term effects of IAV proliferation on the lung. Further analysis of the identified core genes revealed their involvement not only in IAV infection but also in COVID-19 and lung neoplasm development, suggesting their potential role as biomarkers of severe lung disease and its complications represented by abnormal epithelial proliferation and oncotransformation.
Collapse
|
3
|
Morgan EL, Saleh AD, Cornelius S, Carlson SG, Toni T, Cheng H, Jeon J, Viswanathan R, Yang X, Silvin C, Clavijo PE, Sowers AL, Mitchell JB, Ormanoglu P, Lal Nag M, Martin SE, Chen Z, Van Waes C. Functional RNAi Screening Identifies G2/M and Kinetochore Components as Modulators of TNFα/NF-κB Prosurvival Signaling in Head and Neck Squamous Cell Carcinoma. CANCER RESEARCH COMMUNICATIONS 2024; 4:2903-2918. [PMID: 39392349 PMCID: PMC11541648 DOI: 10.1158/2767-9764.crc-24-0274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/14/2024] [Accepted: 10/09/2024] [Indexed: 10/12/2024]
Abstract
SIGNIFICANCE Here, RNAi library screening reveals that multiple G2/M and kinetochore components, including TTK/monopolar spindle 1, modulate TNFα-induced NF-κB activation, cell survival, and genotoxicity, underscoring their potential importance as therapeutic targets in HNSCC.
Collapse
Affiliation(s)
- Ethan L. Morgan
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, National Institutes of Health, Bethesda, Maryland
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Anthony D. Saleh
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Shaleeka Cornelius
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Sophie G. Carlson
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Tiffany Toni
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Hui Cheng
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Jun Jeon
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Ramya Viswanathan
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Xinping Yang
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Christopher Silvin
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Paul E. Clavijo
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Anastasia L. Sowers
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - James B. Mitchell
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Pinar Ormanoglu
- RNAi Screening Facility, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland
| | - Madhu Lal Nag
- RNAi Screening Facility, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland
| | - Scott E. Martin
- RNAi Screening Facility, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland
| | - Zhong Chen
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Carter Van Waes
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
4
|
van Harten AM, Shah R, de Boer DV, Buijze M, Kreft M, Song JY, Zürcher LM, Jacobs H, Brakenhoff RH. Gemcitabine as chemotherapy of head and neck cancer in Fanconi anemia patients. Oncogenesis 2024; 13:26. [PMID: 38992100 PMCID: PMC11239817 DOI: 10.1038/s41389-024-00525-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 06/04/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024] Open
Abstract
Fanconi anemia (FA) is a rare hereditary disease resulting from an inactivating mutation in the FA/BRCA pathway, critical for the effective repair of DNA interstrand crosslinks (ICLs). The disease is characterized by congenital abnormalities, progressing bone marrow failure, and an increased risk of developing malignancies early in life, in particular head and neck squamous cell carcinoma (HNSCC). While ICL-inducing cisplatin combined with radiotherapy is a mainstay of HNSCC treatment, cisplatin is contra-indicated for FA-HNSCC patients. This dilemma necessitates the identification of novel treatment modalities tolerated by FA-HNSCC patients. To identify druggable targets, an siRNA-based genetic screen was previously performed in HNSCC-derived cell lines from FA and non-FA tumor origin. Here, we report that the Ribonucleotide Reductase (RNR) complex, consisting of the RRM1 and RRM2 subunits, was identified as a therapeutic target for both, FA and non-FA HNSCC. While non-FA HNSCC cells responded differentially to RNR depletion, FA-HNSCC cells were consistently found hypersensitive. This insight was confirmed pharmacologically using 2', 2'-difluoro 2'deoxycytidine (dFdC), also known as gemcitabine, a clinically used nucleotide analog that is a potent inhibitor of the RNR complex. Importantly, while cisplatin exposure displayed severe, long-lasting toxicity on the hematopoietic stem and progenitor compartments in Fancg-/- mice, gemcitabine was well tolerated and had only a mild, transient impact. Taken together, our data implicate that gemcitabine-based chemoradiotherapy could serve as an alternative HNSCC treatment in Fanconi patients, and deserves clinical testing.
Collapse
Affiliation(s)
- Anne M van Harten
- Amsterdam UMC location Vrije Universiteit Amsterdam, Otolaryngology-Head and Neck Surgery, Head and Neck Cancer Biology & Immunology Section, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Ronak Shah
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - D Vicky de Boer
- Amsterdam UMC location Vrije Universiteit Amsterdam, Otolaryngology-Head and Neck Surgery, Head and Neck Cancer Biology & Immunology Section, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Marijke Buijze
- Amsterdam UMC location Vrije Universiteit Amsterdam, Otolaryngology-Head and Neck Surgery, Head and Neck Cancer Biology & Immunology Section, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Maaike Kreft
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ji-Ying Song
- Department of Experimental Animal Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Lisa M Zürcher
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Heinz Jacobs
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ruud H Brakenhoff
- Amsterdam UMC location Vrije Universiteit Amsterdam, Otolaryngology-Head and Neck Surgery, Head and Neck Cancer Biology & Immunology Section, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Wils LJ, Buijze M, Stigter-van Walsum M, Brink A, van Kempen BE, Peferoen L, Brouns ER, de Visscher JGAM, van der Meij EH, Bloemena E, Poell JB, Brakenhoff RH. Genomic Engineering of Oral Keratinocytes to Establish In Vitro Oral Potentially Malignant Disease Models as a Platform for Treatment Investigation. Cells 2024; 13:710. [PMID: 38667326 PMCID: PMC11049138 DOI: 10.3390/cells13080710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Precancerous cells in the oral cavity may appear as oral potentially malignant disorders, but they may also present as dysplasia without visual manifestation in tumor-adjacent tissue. As it is currently not possible to prevent the malignant transformation of these oral precancers, new treatments are urgently awaited. Here, we generated precancer culture models using a previously established method for the generation of oral keratinocyte cultures and incorporated CRISPR/Cas9 editing. The generated cell lines were used to investigate the efficacy of a set of small molecule inhibitors. Tumor-adjacent mucosa and oral leukoplakia biopsies were cultured and genetically characterized. Mutations were introduced in CDKN2A and TP53 using CRISPR/Cas9 and combined with the ectopic activation of telomerase to generate cell lines with prolonged proliferation. The method was tested in normal oral keratinocytes and tumor-adjacent biopsies and subsequently applied to a large set of oral leukoplakia biopsies. Finally, a subset of the immortalized cell lines was used to assess the efficacy of a set of small molecule inhibitors. Culturing and genomic engineering was highly efficient for normal and tumor-adjacent oral keratinocytes, but success rates in oral leukoplakia were remarkably low. Knock-out of CDKN2A in combination with either the activation of telomerase or knock-out of TP53 seemed a prerequisite for immortalization. Prolonged culturing was accompanied by additional genetic aberrations in these cultures. The generated cell lines were more sensitive than normal keratinocytes to small molecule inhibitors of previously identified targets. In conclusion, while very effective for normal keratinocytes and tumor-adjacent biopsies, the success rate of oral leukoplakia cell culturing methods was very low. Genomic engineering enabled the prolonged culturing of OL-derived keratinocytes but was associated with acquired genetic changes. Further studies are required to assess to what extent the immortalized cultures faithfully represent characteristics of the cells in vivo.
Collapse
Affiliation(s)
- Leon J. Wils
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Oral and Maxillofacial Surgery and Oral Pathology, 1081 HV Amsterdam, The Netherlands; (L.J.W.); (J.G.A.M.d.V.); (E.B.)
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Otolaryngology and Head & Neck Surgery, 1081 HV Amsterdam, The Netherlands (A.B.)
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Pathology, 1081 HV Amsterdam, The Netherlands;
- Academic Centre for Dentistry Amsterdam (ACTA), 1081 LA Amsterdam, The Netherlands
- Cancer Center Amsterdam (CCA), Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
| | - Marijke Buijze
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Otolaryngology and Head & Neck Surgery, 1081 HV Amsterdam, The Netherlands (A.B.)
- Cancer Center Amsterdam (CCA), Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
| | - Marijke Stigter-van Walsum
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Otolaryngology and Head & Neck Surgery, 1081 HV Amsterdam, The Netherlands (A.B.)
- Cancer Center Amsterdam (CCA), Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
| | - Arjen Brink
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Otolaryngology and Head & Neck Surgery, 1081 HV Amsterdam, The Netherlands (A.B.)
- Cancer Center Amsterdam (CCA), Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
| | - Britt E. van Kempen
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Otolaryngology and Head & Neck Surgery, 1081 HV Amsterdam, The Netherlands (A.B.)
- Cancer Center Amsterdam (CCA), Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
| | - Laura Peferoen
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Pathology, 1081 HV Amsterdam, The Netherlands;
| | - Elisabeth R. Brouns
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Oral and Maxillofacial Surgery and Oral Pathology, 1081 HV Amsterdam, The Netherlands; (L.J.W.); (J.G.A.M.d.V.); (E.B.)
- Academic Centre for Dentistry Amsterdam (ACTA), 1081 LA Amsterdam, The Netherlands
| | - Jan G. A. M. de Visscher
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Oral and Maxillofacial Surgery and Oral Pathology, 1081 HV Amsterdam, The Netherlands; (L.J.W.); (J.G.A.M.d.V.); (E.B.)
- Academic Centre for Dentistry Amsterdam (ACTA), 1081 LA Amsterdam, The Netherlands
| | - Erik H. van der Meij
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Oral and Maxillofacial Surgery and Oral Pathology, 1081 HV Amsterdam, The Netherlands; (L.J.W.); (J.G.A.M.d.V.); (E.B.)
- Academic Centre for Dentistry Amsterdam (ACTA), 1081 LA Amsterdam, The Netherlands
| | - Elisabeth Bloemena
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Oral and Maxillofacial Surgery and Oral Pathology, 1081 HV Amsterdam, The Netherlands; (L.J.W.); (J.G.A.M.d.V.); (E.B.)
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Otolaryngology and Head & Neck Surgery, 1081 HV Amsterdam, The Netherlands (A.B.)
- Academic Centre for Dentistry Amsterdam (ACTA), 1081 LA Amsterdam, The Netherlands
- Cancer Center Amsterdam (CCA), Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
| | - Jos B. Poell
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Otolaryngology and Head & Neck Surgery, 1081 HV Amsterdam, The Netherlands (A.B.)
- Cancer Center Amsterdam (CCA), Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
| | - Ruud H. Brakenhoff
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Otolaryngology and Head & Neck Surgery, 1081 HV Amsterdam, The Netherlands (A.B.)
- Cancer Center Amsterdam (CCA), Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
6
|
Chilamakuri R, Rouse DC, Agarwal S. Inhibition of Polo-like Kinase 1 by HMN-214 Blocks Cell Cycle Progression and Inhibits Neuroblastoma Growth. Pharmaceuticals (Basel) 2022; 15:ph15050523. [PMID: 35631350 PMCID: PMC9144399 DOI: 10.3390/ph15050523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
Polo-like kinase 1 (PLK1) is an essential cell cycle mitotic kinase component that plays an important role in cell cycle progression and has been reported to be involved in various cancers, including neuroblastoma (NB). PLK1 also regulates G2/M transition, chromosomal segregation, spindle assembly maturation, and mitotic exit. NB is an early embryonic-stage heterogeneous solid tumor and accounts for 15% of all pediatric cancer-related deaths. Therefore, we aimed to develop a targeting strategy for PLK1 by repurposing HMN-214 in NB. HMN-214 is a prodrug of HMN-176 and is known to selectively interfere with PLK1 function. In the present study, we performed the transcriptomic analysis of a large cohort of primary NB patient samples and revealed that PLK1 expression is inversely correlated with the overall survival of NB patients. Additionally, we found that PLK1 strongly correlates with NB disease and stage progression. HMN-214 significantly inhibited NB proliferation and colony formation in both MYCN-amplified and -nonamplified cell lines in a dose-dependent manner. Furthermore, HMN-214 induces apoptosis and significantly obstructs the cell cycle at the G2/M phase in NB cells by inhibiting multiple cell-cycle-related genes, such as PLK1, WEE1, CDK1, CDK2, Cyclin B1, CHK1, and CHK2. HMN-214 significantly inhibits cell cycle regulator CDK1 and the phosphorylation and activation of PLK1 in NB. In the NB 3D spheroid tumor model, HMN-214 significantly and in a dose-dependent manner inhibits spheroid tumor mass and growth. Overall, our study highlights that targeting PLK1 using HMN-214 is a novel therapeutic approach for NB.
Collapse
|
7
|
Bouaoud J, Bossi P, Elkabets M, Schmitz S, van Kempen LC, Martinez P, Jagadeeshan S, Breuskin I, Puppels GJ, Hoffmann C, Hunter KD, Simon C, Machiels JP, Grégoire V, Bertolus C, Brakenhoff RH, Koljenović S, Saintigny P. Unmet Needs and Perspectives in Oral Cancer Prevention. Cancers (Basel) 2022; 14:cancers14071815. [PMID: 35406587 PMCID: PMC8997728 DOI: 10.3390/cancers14071815] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 12/24/2022] Open
Abstract
Oral potentially malignant disorders (OPMD) may precede oral squamous cell carcinoma (OSCC). Reported rates of malignant transformation of OPMD range from 3 to 50%. While some clinical, histological, and molecular factors have been associated with a high-risk OPMD, they are, to date, insufficiently accurate for treatment decision-making. Moreover, this range highlights differences in the clinical definition of OPMD, variation in follow-up periods, and molecular and biological heterogeneity of OPMD. Finally, while treatment of OPMD may improve outcome, standard therapy has been shown to be ineffective to prevent OSCC development in patients with OPMD. In this perspective paper, several experts discuss the main challenges in oral cancer prevention, in particular the need to (i) to define an OPMD classification system by integrating new pathological and molecular characteristics, aiming (ii) to better identify OPMD at high risk of malignant transformation, and (iii) to develop treatment strategies to eradicate OPMD or prevent malignant transformation.
Collapse
Affiliation(s)
- Jebrane Bouaoud
- Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, CNRS 5286, INSERM 1052, Université Claude Bernard Lyon 1, University Lyon, F-69008 Lyon, France;
- Department of Translational Research and Innovation, Centre Léon Bérard, Université Claude Bernard Lyon 1, University Lyon, F-69008 Lyon, France; (V.G.); (C.B.)
- Department of Maxillo-Facial Surgery, Assistance Publique des Hôpitaux de Paris, Sorbonne Université, Hôpital Pitié-Salpêtrière, F-75013 Paris, France
- Correspondence: (J.B.); (P.S.)
| | - Paolo Bossi
- Medical Oncology, ASST Spedali Civili Brescia, I-25064 Brescia, Italy;
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, I-25123 Brescia, Italy
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (M.E.); (S.J.)
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Sandra Schmitz
- Department of Medical Oncology and Head and Neck Surgery, Institut Roi Albert II, Cliniques Universitaires Saint-Luc and Institut de Recherche Clinique et Expérimentale (Pole MIRO), UCLouvain, 1200 Brussels, Belgium; (S.S.); (J.-P.M.)
| | - Léon C. van Kempen
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9712 CP Groningen, The Netherlands;
| | - Pierre Martinez
- Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, CNRS 5286, INSERM 1052, Université Claude Bernard Lyon 1, University Lyon, F-69008 Lyon, France;
- Department of Translational Research and Innovation, Centre Léon Bérard, Université Claude Bernard Lyon 1, University Lyon, F-69008 Lyon, France; (V.G.); (C.B.)
| | - Sankar Jagadeeshan
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (M.E.); (S.J.)
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Ingrid Breuskin
- Department of Head and Neck Oncology, Gustave Roussy Cancer Campus, F-94805 Villejuif, France;
| | - Gerwin J. Puppels
- Department of Dermatology, Erasmus MC, University Medical Center Rotterdam, Room Ee-1691, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands;
| | - Caroline Hoffmann
- INSERM U932 Research Unit, Department of Surgery, Institut Curie, PSL Research University, F-75006 Paris, France;
| | - Keith D. Hunter
- Unit of Oral and Maxillofacial Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK;
| | - Christian Simon
- Department of Otolaryngology and Head and Neck Surgery, Lausanne University Hospital, 1011 Lausanne, Switzerland;
| | - Jean-Pascal Machiels
- Department of Medical Oncology and Head and Neck Surgery, Institut Roi Albert II, Cliniques Universitaires Saint-Luc and Institut de Recherche Clinique et Expérimentale (Pole MIRO), UCLouvain, 1200 Brussels, Belgium; (S.S.); (J.-P.M.)
| | - Vincent Grégoire
- Department of Translational Research and Innovation, Centre Léon Bérard, Université Claude Bernard Lyon 1, University Lyon, F-69008 Lyon, France; (V.G.); (C.B.)
- Radiation Oncology Department, Centre Léon Bérard, Université Claude Bernard Lyon 1, University Lyon, F-69008 Lyon, France
| | - Chloé Bertolus
- Department of Translational Research and Innovation, Centre Léon Bérard, Université Claude Bernard Lyon 1, University Lyon, F-69008 Lyon, France; (V.G.); (C.B.)
- Department of Maxillo-Facial Surgery, Assistance Publique des Hôpitaux de Paris, Sorbonne Université, Hôpital Pitié-Salpêtrière, F-75013 Paris, France
| | - Ruud H. Brakenhoff
- Cancer Center Amsterdam, Section Head and Neck Cancer Biology & Immunology, Otolaryngology and Head and Neck Surgery, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands;
| | - Senada Koljenović
- Department of Pathology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands;
| | - Pierre Saintigny
- Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, CNRS 5286, INSERM 1052, Université Claude Bernard Lyon 1, University Lyon, F-69008 Lyon, France;
- Department of Translational Research and Innovation, Centre Léon Bérard, Université Claude Bernard Lyon 1, University Lyon, F-69008 Lyon, France; (V.G.); (C.B.)
- Department of Medical Oncology, Centre Léon Bérard, Université Claude Bernard Lyon 1, University Lyon, 28 Promenade Léa et Napoléon Bullukian, F-69008 Lyon, France
- Correspondence: (J.B.); (P.S.)
| |
Collapse
|
8
|
Hagege A, Ambrosetti D, Boyer J, Bozec A, Doyen J, Chamorey E, He X, Bourget I, Rousset J, Saada E, Rastoin O, Parola J, Luciano F, Cao Y, Pagès G, Dufies M. The Polo-like kinase 1 inhibitor onvansertib represents a relevant treatment for head and neck squamous cell carcinoma resistant to cisplatin and radiotherapy. Theranostics 2021; 11:9571-9586. [PMID: 34646387 PMCID: PMC8490521 DOI: 10.7150/thno.61711] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/04/2021] [Indexed: 01/19/2023] Open
Abstract
Rationale: Head and neck squamous cell carcinoma (HNSCC) represent the 4th most aggressive cancer. 50% of patients relapse to the current treatments combining surgery, radiotherapy and cisplatin and die two years after the diagnosis. Elevated expression of the polo-like kinase 1 (Plk1) correlated to a poor prognosis in epidermoid carcinomas. Methods: The molecular links between Plk1 and resistance to cisplatin/radiotherapy were investigated in patients and cell lines resistant to cisplatin and/or to radiotherapy. The therapeutic relevance of the Plk1 inhibitor onvansertib, alone or combined with cisplatin/radiotherapy, was evaluated on the proliferation/migration on HNSCC cell lines, in experimental HNSCC in mice, in a zebrafish metastasis model and on patient-derived 3D tumor sections. Results: Plk1 expression correlated to a bad prognosis in HNSCC and increased after relapse on cisplatin/radiotherapy. Onvansertib induced mitotic arrest, chromosomic abnormalities and polyploidy leading to apoptosis of sensitive and resistant HNSCC cells at nanomolar concentrations without any effects on normal cells. Onvansertib inhibited the growth of experimental HNSCC in mice and metastatic dissemination in zebrafishes. Moreover, onvansertib combined to cisplatin and/or radiotherapy resulted in a synergic induction of tumor cell death. The efficacy of onvansertib alone and in combination with reference treatments was confirmed on 3D viable sections of HNSCC surgical specimens. Conclusions: Targeting Plk1 by onvansertib represents a new strategy for HNSCC patients at the diagnosis in combination with reference treatments, or alone as a second line treatment for HNCSCC patients experiencing relapses.
Collapse
Affiliation(s)
- Anais Hagege
- University Côte d'Azur, Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284; INSERM U1081, Centre Antoine Lacassagne, 06189 Nice, France
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco
| | - Damien Ambrosetti
- University Côte d'Azur, Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284; INSERM U1081, Centre Antoine Lacassagne, 06189 Nice, France
- University Côte d'Azur, Centre Hospitalier Universitaire (CHU) de Nice, Hôpital Pasteur, Central laboratory of Pathology, 06000 Nice, France
| | | | | | | | | | - Xingkang He
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Isabelle Bourget
- University Côte d'Azur, Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284; INSERM U1081, Centre Antoine Lacassagne, 06189 Nice, France
| | | | - Esma Saada
- Centre Antoine Lacassagne, 06189 Nice, France
| | - Olivia Rastoin
- University Côte d'Azur, Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284; INSERM U1081, Centre Antoine Lacassagne, 06189 Nice, France
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco
| | - Julien Parola
- University Côte d'Azur, Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284; INSERM U1081, Centre Antoine Lacassagne, 06189 Nice, France
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco
- Centre Antoine Lacassagne, 06189 Nice, France
| | - Frederic Luciano
- University Côte d'Azur, Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284; INSERM U1081, Centre Antoine Lacassagne, 06189 Nice, France
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Gilles Pagès
- University Côte d'Azur, Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284; INSERM U1081, Centre Antoine Lacassagne, 06189 Nice, France
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco
- Centre Scientifique de Monaco, Biomedical Department, 8 quai Antoine Premier, 98 000 Monaco, Principality of Monaco
| | - Maeva Dufies
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco
- Centre Scientifique de Monaco, Biomedical Department, 8 quai Antoine Premier, 98 000 Monaco, Principality of Monaco
| |
Collapse
|
9
|
Bhat GR, Hyole RG, Li J. Head and neck cancer: Current challenges and future perspectives. Adv Cancer Res 2021; 152:67-102. [PMID: 34353444 DOI: 10.1016/bs.acr.2021.05.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Head and neck cancers are a heterogeneous, aggressive and genetically complex collection of malignancies of the oral cavity, nasopharynx, oropharynx, hypopharynx, larynx, paranasal sinuses and salivary glands, which are difficult to treat. About 90% of all head and neck cancers are squamous cell carcinomas (HNSCC). Larynx and Oral cavity carcinomas are generally related with tobacco consumption, alcohol abuse (or both), but pharynx carcinomas are generally associated with infection of human papillomavirus (HPV), especially HPV-16 subtype. Thus, usually HNSCC can be separated into HPV-negative and HPV-positive categories. Despite substantial efforts invested into therapeutic development of HNSCC, the 5-year survival rate of patients with HNSCC still remains dismal. The primary reason being late diagnosis, recurrent metastasis, relapse and resistance to therapies. Currently surgery and radiotherapy represent the baseline treatment options for most initial stage HNSCC patients, but these treatments are associated with significant morbidity and poor prognosis. Moreover, the issue of resistance to both radiotherapy/chemotherapy and recurrent relapse are common in HNSCC. Elucidation of the genetic landscape, tumor microenvironment and aberrant signaling pathways have generated new insights into the molecular pathogenesis of this disease. Thus, the scientific research has therefore been focused on the understanding of HNSCC biology and immunobiology to identification of predictive/prognostic biomarkers, which will be key to develop more effective targeted therapies with less toxicity and high specificity.
Collapse
Affiliation(s)
- Gh Rasool Bhat
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States
| | - Rosalie G Hyole
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States
| | - Jiong Li
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States; Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, United States; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States; Department of Oral and Craniofacial Molecular Biology, School of Dentistry, Virginia Commonwealth University, Richmond, VA, United States; Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
10
|
van Harten AM, Brakenhoff RH. Targeted Treatment of Head and Neck (Pre)Cancer: Preclinical Target Identification and Development of Novel Therapeutic Applications. Cancers (Basel) 2021; 13:2774. [PMID: 34204886 PMCID: PMC8199752 DOI: 10.3390/cancers13112774] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/14/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCC) develop in the mucosal lining of the upper-aerodigestive tract. In carcinogen-induced HNSCC, tumors emerge from premalignant mucosal changes characterized by tumor-associated genetic alterations, also coined as 'fields' that are occasionally visible as leukoplakia or erythroplakia lesions but are mostly invisible. Consequently, HNSCC is generally diagnosed de novo at more advanced stages in about 70% of new diagnosis. Despite intense multimodality treatment protocols, the overall 5-years survival rate is 50-60% for patients with advanced stage of disease and seems to have reached a plateau. Of notable concern is the lack of further improvement in prognosis despite advances in treatment. This can be attributed to the late clinical presentation, failure of advanced HNSCC to respond to treatment, the deficit of effective targeted therapies to eradicate tumors and precancerous changes, and the lack of suitable markers for screening and personalized therapy. The molecular landscape of head and neck cancer has been elucidated in great detail, but the absence of oncogenic mutations hampers the identification of druggable targets for therapy to improve outcome of HNSCC. Currently, functional genomic approaches are being explored to identify potential therapeutic targets. Identification and validation of essential genes for both HNSCC and oral premalignancies, accompanied with biomarkers for therapy response, are being investigated. Attentive diagnosis and targeted therapy of the preceding oral premalignant (preHNSCC) changes may prevent the development of tumors. As classic oncogene addiction through activating mutations is not a realistic concept for treatment of HNSCC, synthetic lethality and collateral lethality need to be exploited, next to immune therapies. In recent studies it was shown that cell cycle regulation and DNA damage response pathways become significantly altered in HNSCC causing replication stress, which is an avenue that deserves further exploitation as an HNSCC vulnerability for treatment. The focus of this review is to summarize the current literature on the preclinical identification of potential druggable targets for therapy of (pre)HNSCC, emerging from the variety of gene knockdown and knockout strategies, and the testing of targeted inhibitors. We will conclude with a future perspective on targeted therapy of HNSCC and premalignant changes.
Collapse
Affiliation(s)
- Anne M. van Harten
- Cancer Center Amsterdam, Otolaryngology-Head and Neck Surgery, Tumor Biology & Immunology Section, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands; or
- Sidney Kimmel Cancer Center, Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ruud H. Brakenhoff
- Cancer Center Amsterdam, Otolaryngology-Head and Neck Surgery, Tumor Biology & Immunology Section, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands; or
| |
Collapse
|
11
|
Pierik AS, Leemans CR, Brakenhoff RH. Resection Margins in Head and Neck Cancer Surgery: An Update of Residual Disease and Field Cancerization. Cancers (Basel) 2021; 13:2635. [PMID: 34071997 PMCID: PMC8198309 DOI: 10.3390/cancers13112635] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/13/2021] [Accepted: 05/21/2021] [Indexed: 12/16/2022] Open
Abstract
Surgery is one of the mainstays of head and neck cancer treatment, and aims at radical resection of the tumor with 1 cm tumor-free margins to obtain locoregional control. Surgical margins are evaluated by histopathological examination of the resection specimen. It has been long an enigma that approximately 10-30% of surgically treated head and neck cancer patients develop locoregional recurrences even though the resection margins were microscopically tumor-free. However, the origins of these recurrences have been elucidated by a variety of molecular studies. Recurrences arise either from minimal residual disease, cancer cells in the surgical margins that escape detection by the pathologist when examining the specimen, or from precancerous mucosal changes that may remain unnoticed. Head and neck tumors develop in mucosal precursor changes that are sometimes visible but mostly not, fueling research into imaging modalities such as autofluorescence, to improve visualization. Mostly unnoticed, these precancerous changes may stay behind when the tumor is resected, and subsequent malignant progression will cause a local relapse. This led to a clinical trial of autofluorescence-guided surgery, of which the results were reported in 2020. This review focuses on the most recent literature of the improved diagnosis of the resection margins of surgically treated head and neck cancer patients, the pathobiological origin of recurrent disease, and relevant biomarkers to predict local relapse. Directions for further research will be discussed, including potential options for improved and personalized treatment, based on the most recently published data.
Collapse
Affiliation(s)
| | | | - Ruud H. Brakenhoff
- Amsterdam UMC, Vrije Universiteit Amsterdam Tumor Biology and Immunology Section, Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands; (A.S.P.); (C.R.L.)
| |
Collapse
|
12
|
Lagerweij T, Sewing C, van Battum L, Koken P, Heukelom S. Inhalation anesthesia and shielding devices to allow accurate preclinical irradiation of mice with clinical linac-based systems: Design and dosimetric characteristics. Clin Transl Radiat Oncol 2021; 26:92-97. [PMID: 33367118 PMCID: PMC7749295 DOI: 10.1016/j.ctro.2020.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/17/2020] [Accepted: 11/21/2020] [Indexed: 11/29/2022] Open
Abstract
This technical note describes two devices to enable accurate irradiation of mice on clinical linac-based systems. To study the effects of radiation in murine, preclinical animal models, controlled and accurate dosing is important. This is not only important when specific volumes need to be irradiated, but also when the whole animal body is irradiated. To enable both purposes, we designed two devices. One device to administer Total Body Irradiation (TBI) simultaneously to six, free walking mice, and a second device, denoted as target box, in which we irradiate specific parts of the mice whilst organs-at-risk (OAR) are protected. In this latter device, we can position the mice in multiple ways. One configuration allows to sedate twelve mice simultaneously by isoflurane inhalation anesthesia and protect the body by lead shielding to allow radiation of the head only. Alternatively, the target box can be used to sedate maximal 4 mice simultaneously to irradiate the flank or paws only. All these setups allow high experimental throughput and thus a minimal occupation of the clinical equipment. As measured, the delivered radiation dosages in the regions of interest were accurate for both devices. In this technical note, we describe the design and build of these devices.
Collapse
Affiliation(s)
- Tonny Lagerweij
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam University Medical Centers, Location VUmc, Amsterdam, the Netherlands
| | - Charlotte Sewing
- Department of Paediatric Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Location VUmc, Amsterdam, the Netherlands
| | - Leo van Battum
- Department of Radiation Oncology, Amsterdam University Medical Centers, Location VUmc, Amsterdam, the Netherlands
| | - Phil Koken
- Department of Radiation Oncology, Amsterdam University Medical Centers, Location VUmc, Amsterdam, the Netherlands
| | - Stan Heukelom
- Department of Radiation Oncology, Amsterdam University Medical Centers, Location VUmc, Amsterdam, the Netherlands
| |
Collapse
|
13
|
Wang L, Shen J, Zhang X, Lu H, Chu W. Retrospective analysis of the clinical effects of endoscopic mucosal dissection on treatment of early esophagogastric precancerous lesions. Clin Transl Oncol 2020; 23:731-737. [PMID: 32789667 DOI: 10.1007/s12094-020-02462-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The purpose of this study was to conduct a retrospective study about the clinical effects of endoscopic mucosal dissection on the treatment of early esophagogastric precancerous lesions. METHODS A total of 132 patients with early esophagogastric precancerous lesions who were diagnosed and treated with concurrent surgery in our hospital from January 2018 to December 2019 were included in this retrospective study. Patients were divided into endoscopic mucosal resection (EMR) group (n = 58) and endoscopic submucosal dissection (ESD) group (n = 74) according to different surgical methods. The data in the two groups were compared and analyzed in terms of surgical indicators, treatment status and incidence of postoperative complications. RESULTS There were statistically significant differences between the two groups in the whole block cutting rate, fractional cutting rate and complete cutting rate (P < 0.05). The mean operation time of ESD group was significantly longer than that of EMR group (P < 0.05). There were no significant differences in the intraoperative bleeding rate, blood loss, average specimen area, length of hospital stay and treatment cost between the two groups (P > 0.05). The incidence and recurrence of postoperative complications, including bleeding, perforation and stenosis in the two groups, were observed within 1 year of postoperative follow-up. The incidence of complications in ESD group was slightly higher than that in EMR group, and the local recurrence rate in ESD group was lower than that in EMR group (P > 0.05). CONCLUSION ESD is an alternative surgical treatment for patients with early esophagogastric precancerous lesions.
Collapse
Affiliation(s)
- L Wang
- Department of Gastroenterology, Shanghai Jinshan Branch of the Sixth People's Hospital, Health Road No. 147, Zhujing Town, Jinshan District, Shanghai, 201500, China.
| | - J Shen
- Department of Gastroenterology, Shanghai Jinshan Branch of the Sixth People's Hospital, Health Road No. 147, Zhujing Town, Jinshan District, Shanghai, 201500, China
| | - X Zhang
- Department of Gastroenterology, Shanghai Jinshan Branch of the Sixth People's Hospital, Health Road No. 147, Zhujing Town, Jinshan District, Shanghai, 201500, China
| | - H Lu
- Department of Gastroenterology, Shanghai Jinshan Branch of the Sixth People's Hospital, Health Road No. 147, Zhujing Town, Jinshan District, Shanghai, 201500, China
| | - W Chu
- Department of Gastroenterology, Shanghai Jinshan Branch of the Sixth People's Hospital, Health Road No. 147, Zhujing Town, Jinshan District, Shanghai, 201500, China
| |
Collapse
|
14
|
van Harten AM, Poell JB, Buijze M, Brink A, Wells SI, René Leemans C, Wolthuis RMF, Brakenhoff RH. Characterization of a head and neck cancer-derived cell line panel confirms the distinct TP53-proficient copy number-silent subclass. Oral Oncol 2019; 98:53-61. [PMID: 31541927 PMCID: PMC7372097 DOI: 10.1016/j.oraloncology.2019.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/13/2019] [Accepted: 09/06/2019] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Head and neck squamous cell carcinomas (HNSCC) arise in the mucosal lining of the upper aerodigestive tract. Risk factors are exogenous carcinogen exposure, human papillomavirus (HPV) infection, and genetic predisposition such as Fanconi anemia (FA). Clinically, tumors are stratified based on stage, site and HPV-status. The majority of HPV-positive and -negative HNSCC is characterized by frequent copy number (CN) changes and an abrogated p53-pathway. A third genetically-defined HPV-negative subclass of HNSCC is emerging: tumors that lack gross chromosomal changes (CN-silent), are mostly TP53-proficient, and have a relatively favorable prognosis. METHODS A representative panel of HPV-positive, HPV-negative and FA-HNSCC-derived cell lines was genetically characterized. RESULTS Despite apparent differences in etiology, FA-HNSCC cell lines show comparable genetic alterations as sporadic non-FA-HNSCC-derived cell lines. Furthermore, we identified a near diploid CN-silent HPV-negative HNSCC line: VU-SCC-040. Molecular characterization uncovers the absence of TP53 mutations, a functional p53-pathway and a CASP8 mutation. TP53 gene knockout using CRISPR-Cas9 resulted in resistance to MDM2 inhibition. Whereas p53-status is often proposed as a predictive biomarker for treatment response, TP53-knockout did not change sensitivity to cisplatin, Chk1 and Wee1 inhibition. Additionally, 84 CN-silent tumors were identified in the HNSCC PanCancer cohort and shown to be enriched for female gender, HRAS and CASP8 mutations. CONCLUSION FA-derived HNSCC cell lines share comparable CN-profiles and mutation patterns as sporadic HPV-negative HNSCC. In contrast, a subclass of CN-silent, HPV-negative and TP53 wild-type HNSCC separates from the majority of HNSCC tumors. We show that VU-SCC-040 is a HNSCC cell model representative of this subclass.
Collapse
Affiliation(s)
- Anne M van Harten
- Amsterdam UMC, Vrije Universiteit Amsterdam, Otolaryngology/Head and Neck Surgery, Section Tumor Biology, Cancer Center Amsterdam, the Netherlands
| | - Jos B Poell
- Amsterdam UMC, Vrije Universiteit Amsterdam, Otolaryngology/Head and Neck Surgery, Section Tumor Biology, Cancer Center Amsterdam, the Netherlands
| | - Marijke Buijze
- Amsterdam UMC, Vrije Universiteit Amsterdam, Otolaryngology/Head and Neck Surgery, Section Tumor Biology, Cancer Center Amsterdam, the Netherlands
| | - Arjen Brink
- Amsterdam UMC, Vrije Universiteit Amsterdam, Otolaryngology/Head and Neck Surgery, Section Tumor Biology, Cancer Center Amsterdam, the Netherlands
| | - Susanne I Wells
- Division of Pediatric Hematology/Oncology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA
| | - C René Leemans
- Amsterdam UMC, Vrije Universiteit Amsterdam, Otolaryngology/Head and Neck Surgery, Section Tumor Biology, Cancer Center Amsterdam, the Netherlands
| | - Rob M F Wolthuis
- Amsterdam UMC, Vrije Universiteit Amsterdam, Clinical Genetics, Section Oncogenetics, Cancer Center Amsterdam, the Netherlands
| | - Ruud H Brakenhoff
- Amsterdam UMC, Vrije Universiteit Amsterdam, Otolaryngology/Head and Neck Surgery, Section Tumor Biology, Cancer Center Amsterdam, the Netherlands.
| |
Collapse
|
15
|
Shaikh I, Ansari A, Ayachit G, Gandhi M, Sharma P, Bhairappanavar S, Joshi CG, Das J. Differential gene expression analysis of HNSCC tumors deciphered tobacco dependent and independent molecular signatures. Oncotarget 2019; 10:6168-6183. [PMID: 31692905 PMCID: PMC6817442 DOI: 10.18632/oncotarget.27249] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/16/2019] [Indexed: 12/15/2022] Open
Abstract
Head and neck cancer is the sixth most common cancer worldwide, with tobacco as the leading cause. However, it is increasing in non-tobacco users also, hence limiting our understanding of its underlying molecular mechanisms. RNA-seq analysis of cancers has proven as effective tool in understanding disease etiology. In the present study, RNA-Seq of 86 matched Tumor/Normal pairs, of tobacco smoking (TOB) and non-smokers (N-TOB) HNSCC samples analyzed, followed by validation on 375 similar datasets. Total 2194 and 2073 differentially expressed genes were identified in TOB and N-TOB tumors, respectively. GO analysis found muscle contraction as the most enriched biological process in both TOB and N-TOB tumors. Pathway analysis identified muscle contraction and salivary secretion pathways enriched in both categories, whereas calcium signaling and neuroactive ligand-receptor pathway was more enriched in TOB and N-TOB tumors respectively. Network analysis identified muscle development related genes as hub node i. e. ACTN2, MYL2 and TTN in both TOB and N-TOB tumors, whereas EGFR and MYH6, depicts specific role in TOB and N-TOB tumors. Additionally, we found enriched gene networks possibly be regulated by tumor suppressor miRNAs such as hsa-miR-29/a/b/c, hsa-miR-26b-5p etc., suggestive to be key riboswitches in regulatory cascade of HNSCC. Interestingly, three genes PKLR, CST1 and C17orf77 found to show opposite regulation in each category, hence suggested to be key genes in separating TOB from N-TOB tumors. Our investigation identified key genes involved in important pathways implicated in tobacco dependent and independent carcinogenesis hence may help in designing precise HNSCC diagnostics and therapeutics strategies.
Collapse
Affiliation(s)
- Inayatullah Shaikh
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), Government of Gujarat, Gandhinagar 382011, India
| | - Afzal Ansari
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), Government of Gujarat, Gandhinagar 382011, India
| | - Garima Ayachit
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), Government of Gujarat, Gandhinagar 382011, India
| | - Monika Gandhi
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), Government of Gujarat, Gandhinagar 382011, India
| | - Priyanka Sharma
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), Government of Gujarat, Gandhinagar 382011, India
| | - Shivarudrappa Bhairappanavar
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), Government of Gujarat, Gandhinagar 382011, India
| | - Chaitanya G. Joshi
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), Government of Gujarat, Gandhinagar 382011, India
| | - Jayashankar Das
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), Government of Gujarat, Gandhinagar 382011, India
| |
Collapse
|
16
|
van Harten AM, Buijze M, van der Mast R, Rooimans MA, Martens-de Kemp SR, Bachas C, Brink A, Stigter-van Walsum M, Wolthuis RMF, Brakenhoff RH. Targeting the cell cycle in head and neck cancer by Chk1 inhibition: a novel concept of bimodal cell death. Oncogenesis 2019; 8:38. [PMID: 31209198 PMCID: PMC6572811 DOI: 10.1038/s41389-019-0147-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/19/2019] [Accepted: 04/17/2019] [Indexed: 12/14/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) coincide with poor survival rates. The lack of driver oncogenes complicates the development of targeted treatments for HNSCC. Here, we follow-up on two previous genome-wide RNA and microRNA interference screens in HNSCC to cross-examine tumor-specific lethality by targeting ATM, ATR, CHEK1, or CHEK2. Our results uncover CHEK1 as the most promising target for HNSCC. CHEK1 expression is essential across a panel of HNSCC cell lines but redundant for growth and survival of untransformed oral keratinocytes and fibroblasts. LY2603618 (Rabusertib), which specifically targets Chk1 kinase, kills HNSCC cells effectively and specifically. Our findings show that HNSCC cells depend on Chk1-mediated signaling to progress through S-phase successfully. Chk1 inhibition coincides with stalled DNA replication, replication fork collapses, and accumulation of DNA damage. We further show that Chk1 inhibition leads to bimodal HNSCC cell killing. In the most sensitive cell lines, apoptosis is induced in S-phase, whereas more resistant cell lines manage to bypass replication-associated apoptosis, but accumulate chromosomal breaks that become lethal in subsequent mitosis. Interestingly, CDK1 expression correlates with treatment outcome. Moreover, sensitivity to Chk1 inhibition requires functional CDK1 and CDK4/6 to drive cell cycle progression, arguing against combining Chk1 inhibitors with CDK inhibitors. In contrast, Wee1 inhibitor Adavosertib progresses the cell cycle and thereby increases lethality to Chk1 inhibition in HNSCC cell lines. We conclude that Chk1 has become a key molecule in HNSCC cell cycle regulation and a very promising therapeutic target. Chk1 inhibition leads to S-phase apoptosis or death in mitosis. We provide a potential efficacy biomarker and combination therapy to follow-up in clinical setting.
Collapse
Affiliation(s)
- Anne M van Harten
- Amsterdam UMC, Vrije Universiteit Amsterdam, Otolaryngology/Head and Neck Surgery, Section Tumor Biology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Marijke Buijze
- Amsterdam UMC, Vrije Universiteit Amsterdam, Otolaryngology/Head and Neck Surgery, Section Tumor Biology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Richard van der Mast
- Amsterdam UMC, Vrije Universiteit Amsterdam, Otolaryngology/Head and Neck Surgery, Section Tumor Biology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Martin A Rooimans
- Amsterdam UMC, Vrije Universiteit Amsterdam, Clinical Genetics, Section Oncogenetics, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Sanne R Martens-de Kemp
- Amsterdam UMC, Vrije Universiteit Amsterdam, Otolaryngology/Head and Neck Surgery, Section Tumor Biology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Costa Bachas
- Amsterdam UMC, Vrije Universiteit Amsterdam, Otolaryngology/Head and Neck Surgery, Section Tumor Biology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Arjen Brink
- Amsterdam UMC, Vrije Universiteit Amsterdam, Otolaryngology/Head and Neck Surgery, Section Tumor Biology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Marijke Stigter-van Walsum
- Amsterdam UMC, Vrije Universiteit Amsterdam, Otolaryngology/Head and Neck Surgery, Section Tumor Biology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Rob M F Wolthuis
- Amsterdam UMC, Vrije Universiteit Amsterdam, Clinical Genetics, Section Oncogenetics, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Ruud H Brakenhoff
- Amsterdam UMC, Vrije Universiteit Amsterdam, Otolaryngology/Head and Neck Surgery, Section Tumor Biology, Cancer Center Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
17
|
de Boer DV, Brink A, Buijze M, Stigter-van Walsum M, Hunter KD, Ylstra B, Bloemena E, Leemans CR, Brakenhoff RH. Establishment and Genetic Landscape of Precancer Cell Model Systems from the Head and Neck Mucosal Lining. Mol Cancer Res 2018; 17:120-130. [PMID: 30224542 DOI: 10.1158/1541-7786.mcr-18-0445] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/06/2018] [Accepted: 08/21/2018] [Indexed: 11/16/2022]
Abstract
Head and neck squamous cell carcinomas (HNSCC) develop in fields of genetically altered cells. These fields are often dysplastic and a subset can be recognized as (erythro)leukoplakia, but most are macroscopically invisible. There is a lack of adequate treatment options to eradicate these fields, whereas they underlie the development of primary tumors as well as part of the local relapses. Unfortunately, there are almost no representative cellular models available to identify suitable treatment options. To this end, clinical biopsy specimens (n = 98) were cultured from normal appearing mucosa of the surgical margins of patients with primary HNSCCs (n = 32) to generate precancer cell culture models. This collection was extended with six previously established precancer cell cultures. Genetic analysis was performed on cultures with an extended life span (≥20 population doublings), the previously established cultures, and some randomly selected cultures. In total, cancer-associated changes were detected in 18 out of 34 (53%) cultures analyzed, which appeared to be independent of life span. A variety of genetic changes were identified, including somatic mutations as well as chromosomal copy-number aberrations (CNA). Loss of CDKN2A/p16Ink4A and mutations in TP53/p53 were most prominent. Remarkably, in some of these precancer cell cultures only chromosomal CNAs were detected, and none of the frequently occurring driver mutations. IMPLICATIONS: The precancer cell cultures, characterized herein, form a representative collection of field models that can be exploited to identify and validate new therapeutic strategies to prevent primary HNSCCs and local relapses.
Collapse
Affiliation(s)
- D Vicky de Boer
- Amsterdam UMC, Vrije Universiteit Amsterdam, Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Arjen Brink
- Amsterdam UMC, Vrije Universiteit Amsterdam, Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Marijke Buijze
- Amsterdam UMC, Vrije Universiteit Amsterdam, Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Marijke Stigter-van Walsum
- Amsterdam UMC, Vrije Universiteit Amsterdam, Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Keith D Hunter
- Academic Unit of Oral and Maxillofacial Medicine, Surgery and Pathology, University of Sheffield, South Yorkshire, England
| | - Bauke Ylstra
- Amsterdam UMC, Vrije Universiteit Amsterdam, Pathology, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Elisabeth Bloemena
- Amsterdam UMC, Vrije Universiteit Amsterdam, Pathology, Cancer Center Amsterdam, Amsterdam, the Netherlands.,Department of Maxillofacial Surgery/Oral Pathology, Academic Center for Dentistry Amsterdam (ACTA), Amsterdam, the Netherlands
| | - C René Leemans
- Amsterdam UMC, Vrije Universiteit Amsterdam, Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Ruud H Brakenhoff
- Amsterdam UMC, Vrije Universiteit Amsterdam, Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
18
|
Abstract
Head and neck squamous cell carcinomas (HNSCCs) arise in the mucosal linings of the upper aerodigestive tract and are unexpectedly heterogeneous in nature. Classical risk factors are smoking and excessive alcohol consumption, and in recent years, the role of human papillomavirus (HPV) has emerged, particularly in oropharyngeal tumours. HPV-induced oropharyngeal tumours are considered a separate disease entity, which recently has manifested in an adapted prognostic staging system while the results of de-intensified treatment trials are awaited. Carcinogenesis caused by HPV in the mucosal linings of the upper aerodigestive tract remains an enigma, but with some recent observations, a model can be proposed. In 2015, The Cancer Genome Atlas (TCGA) consortium published a comprehensive molecular catalogue on HNSCC. Frequent mutations of novel druggable oncogenes were not demonstrated, but the existence of a subgroup of genetically distinct HPV-negative head and neck tumours with favourable prognoses was confirmed. Tumours can be further subclassified based on genomic profiling. However, the amount of molecular data is currently overwhelming and requires detailed biological interpretation. It also became apparent that HNSCC is a disease characterized by frequent mutations that create neoantigens, indicating that immunotherapies might be effective. In 2016, the first results of immunotherapy trials with immune checkpoint inhibitors were published, and these may be considered as a paradigm shift in head and neck oncology.
Collapse
Affiliation(s)
- C René Leemans
- Department of Otolaryngology/Head and Neck Surgery, VU University Medical Center
| | - Peter J F Snijders
- Department of Pathology, VU University Medical Center, Amsterdam, Netherlands
| | - Ruud H Brakenhoff
- Department of Otolaryngology/Head and Neck Surgery, VU University Medical Center
| |
Collapse
|