1
|
Manafi-Farid R, Ataeinia B, Ranjbar S, Jamshidi Araghi Z, Moradi MM, Pirich C, Beheshti M. ImmunoPET: Antibody-Based PET Imaging in Solid Tumors. Front Med (Lausanne) 2022; 9:916693. [PMID: 35836956 PMCID: PMC9273828 DOI: 10.3389/fmed.2022.916693] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/24/2022] [Indexed: 12/13/2022] Open
Abstract
Immuno-positron emission tomography (immunoPET) is a molecular imaging modality combining the high sensitivity of PET with the specific targeting ability of monoclonal antibodies. Various radioimmunotracers have been successfully developed to target a broad spectrum of molecules expressed by malignant cells or tumor microenvironments. Only a few are translated into clinical studies and barely into clinical practices. Some drawbacks include slow radioimmunotracer kinetics, high physiologic uptake in lymphoid organs, and heterogeneous activity in tumoral lesions. Measures are taken to overcome the disadvantages, and new tracers are being developed. In this review, we aim to mention the fundamental components of immunoPET imaging, explore the groundbreaking success achieved using this new technique, and review different radioimmunotracers employed in various solid tumors to elaborate on this relatively new imaging modality.
Collapse
Affiliation(s)
- Reyhaneh Manafi-Farid
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahar Ataeinia
- Department of Radiology, Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Shaghayegh Ranjbar
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Zahra Jamshidi Araghi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mobin Moradi
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Christian Pirich
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Mohsen Beheshti
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
2
|
Imaging Early-Stage Metastases Using an 18F-Labeled VEGFR-1-Specific Single Chain VEGF Mutant. Mol Imaging Biol 2020; 23:340-349. [PMID: 33156495 DOI: 10.1007/s11307-020-01555-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 09/11/2020] [Accepted: 10/13/2020] [Indexed: 12/26/2022]
Abstract
PURPOSE Metastatic breast cancer is the second leading cause of cancer-related death in women. The 5-year survival rate for metastatic breast cancer has remained near 26.9 % for over a decade. The recruitment of hematopoietic stem cells with high expression of the vascular endothelial growth factor receptor 1 (VEGFR-1) has been implicated in early stages of metastasis formation. We propose the use of an 18F-labeled single-chain version of VEGF121, re-engineered to be selective for VEGFR-1 (scVR1), as a positron emission tomography (PET) imaging agent to non-invasively image early-stage metastases. PROCEDURES scVR1 was 18F-labeled via a biorthogonal click reaction between site-specifically trans-cyclooctene functionalized scVR1 and an Al18F labeled tetrazine-NODA (1,4,7-triazacyclononane-1,4-diiacetic acid). The [18F]AlF-NODA-scVR1 was purified using a PD10 column and subsequently analyzed on HPLC to determine radiochemical purity. Animal experiments were performed in 6-8-week-old female BALB/c mice bearing orthotopic primary 4T1 breast tumors or 4T1 metastatic lesions. The [18F]AlF-NODA-scVR1 tracer was administered via tail vein injection; PET imaging and ex vivo analysis was performed 2 h post-injection. RESULTS The [18F]AlF-NODA-scVR1 was prepared with a 98.2 ± 1.5 % radiochemical purity and an apparent molar activity of 7.5 ± 1.2 GBq/μmol. The specific binding of scVR1 to VEGFR-1 was confirmed via bead-based assay. The ex vivo biodistribution showed tumor uptake of 3.5 ± 0.5 % ID/g and was readily observable in PET images. Metastasis formation was detected with [18F]AlF-NODA-scVR1 tracer showing colocalization with bioluminescent imaging as well as ex vivo autoradiography and immunofluorescent staining of VEGFR-1. CONCLUSIONS The diagnostic capabilities of the [18F]AlF-NODA-scVR1 PET tracer was confirmed in both orthotopic and metastatic murine cancer models. These results support the potential use of [18F]AlF-NODA-scVR1 as a PET tracer that could image metastases, providing clinicians with an additional tool to assess a patient's need for adjuvant therapies.
Collapse
|
3
|
Mortensen ACL, Morin E, Brown CJ, Lane DP, Nestor M. Enhancing the therapeutic effects of in vitro targeted radionuclide therapy of 3D multicellular tumor spheroids using the novel stapled MDM2/X-p53 antagonist PM2. EJNMMI Res 2020; 10:38. [PMID: 32300907 PMCID: PMC7163001 DOI: 10.1186/s13550-020-0613-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/16/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Precision therapeutics continuously make advances in cancer therapy, and a field of growing interest is the combination of targeted radionuclide therapy (TRNT) with potential radiosensitizing agents. This study evaluated whether the effects of in vitro TRNT, using the 177Lu-labeled anti-CD44v6 antibody AbN44v6, were potentiated by the novel stapled MDM2/X-p53 antagonist PM2. MATERIALS AND METHODS Two wt p53 cell lines, HCT116 (colorectal carcinoma) and UM-SCC-74B (head and neck squamous cell carcinoma), expressing different levels of the target antigen, CD44v6, were used. Antigen-specific binding of 177Lu-AbN44v6 was initially verified in a 2D cell assay, after which the potential effects of unlabeled AbN44v6 on downstream phosphorylation of Erk1/2 were evaluated by western blotting. Further, the therapeutic effects of unlabeled AbN44v6, 177Lu-AbN44v6, PM2, or a combination (labeled/unlabeled AbN44v6 +/- PM2) were assessed in 3D multicellular tumor spheroid assays. RESULTS Radiolabeled antibody bound specifically to CD44v6 on both cell lines. Unlabeled AbN44v6 binding did not induce downstream phosphorylation of Erk1/2 at any of the concentrations tested, and repeated treatments with the unlabeled antibody did not result in any spheroid growth inhibition. 177Lu-AbN44v6 impaired spheroid growth in a dose-dependent and antigen-dependent manner. A single modality treatment with 20 μM of PM2 significantly impaired spheroid growth in both spheroid models. Furthermore, the combination of TRNT and PM2-based therapy proved significantly more potent than either monotherapy. In HCT116 spheroids, this resulted in a two- and threefold spheroid growth rate decrease for the combination of PM2 and 100 kBq 177Lu-AbN44v6 compared to monotherapies 14-day post treatment. In UM-SCC-74B spheroids, the combination therapy resulted in a reduction in spheroid size compared to the initial spheroid size 10-day post treatment. CONCLUSION TRNT using 177Lu-AbN44v6 proved efficient in stalling spheroid growth in a dose-dependent and antigen-dependent manner, and PM2 treatment demonstrated a growth inhibitory effect as a monotherapy. Moreover, by combining TRNT with PM2-based therapy, therapeutic effects of TRNT were potentiated in a 3D multicellular tumor spheroid model. This proof-of-concept study exemplifies the strength and possibility of combining TRNT targeting CD44v6 with PM2-based therapy.
Collapse
Affiliation(s)
- Anja C. L. Mortensen
- Department of Immunology, Genetics, and Pathology, The Rudbeck Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Eric Morin
- Department of Immunology, Genetics, and Pathology, The Rudbeck Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Christopher J. Brown
- p53Lab, A*STAR, 8A Biomedical Grove, #06-04/05 Neuros/Immunos, Singapore, 138648 Singapore
| | - David P. Lane
- p53Lab, A*STAR, 8A Biomedical Grove, #06-04/05 Neuros/Immunos, Singapore, 138648 Singapore
- Department of Microbiology, Tumor and Cell Biology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Marika Nestor
- Department of Immunology, Genetics, and Pathology, The Rudbeck Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden
| |
Collapse
|
4
|
Bosse KR, Majzner RG, Mackall CL, Maris JM. Immune-Based Approaches for the Treatment of Pediatric Malignancies. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2020; 4:353-370. [PMID: 34113750 PMCID: PMC8189419 DOI: 10.1146/annurev-cancerbio-030419-033436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Immune-based therapies have now been credentialed for pediatric cancers with the robust efficacy of chimeric antigen receptor (CAR) T cells for pediatric B cell acute lymphocytic leukemia (ALL), offering a chance of a cure for children with previously lethal disease and a potentially more targeted therapy to limit treatment-related morbidities. The developmental origins of most pediatric cancers make them ideal targets for immune-based therapies that capitalize on the differential expression of lineage-specific cell surface molecules such as antibodies, antibody-drug conjugates, or CAR T cells, while the efficacy of other therapies that depend on tumor immunogenicity such as immune checkpoint inhibitors has been limited to date. Here we review the current status of immune-based therapies for childhood cancers, discuss challenges to developing immunotherapeutics for these diseases, and outline future directions of pediatric immunotherapy discovery and development.
Collapse
Affiliation(s)
- Kristopher R Bosse
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Robbie G Majzner
- Department of Pediatrics and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Crystal L Mackall
- Department of Pediatrics and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California 94305, USA
| | - John M Maris
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
5
|
Ramakrishnan S, Natarajan A, Chan CT, Panesar PS, Gambhir SS. Engineering of a novel subnanomolar affinity fibronectin III domain binder targeting human programmed death-ligand 1. Protein Eng Des Sel 2019; 32:231-240. [PMID: 31612217 PMCID: PMC7212189 DOI: 10.1093/protein/gzz030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 06/09/2019] [Accepted: 07/09/2019] [Indexed: 01/24/2023] Open
Abstract
The programmed death-ligand 1 (PD-L1) is a major checkpoint protein that helps cancer cells evade the immune system. A non-invasive imaging agent with rapid clearance rate would be an ideal tool to predict and monitor the efficacy of anti-PD-L1 therapy. The aim of this research was to engineer a subnanomolar, high-affinity fibronectin type 3 domain (FN3)-based small binder targeted against human PD-L1 (hPD-L1) present on tumor cells. A naive yeast G4 library containing the FN3 gene with three binding loop sequences was used to isolate high-affinity binders targeted to purified full-length hPD-L1. The selected binder clones displayed several mutations in the loop regions of the FN3 domain. One unique clone (FN3hPD-L1-01) with a 6x His-tag at the C-terminus had a protein yield of >5 mg/L and a protein mass of 12 kDa. In vitro binding assays on six different human cancer cell lines (MDA-MB-231, DLD1, U87, 293 T, Raji and Jurkat) and murine CT26 colon carcinoma cells stably expressing hPD-L1 showed that CT26/hPD-L1 cells had the highest expression of hPD-L1 in both basal and IFN-γ-induced states, with a binding affinity of 2.38 ± 0.26 nM for FN3hPD-L1-01. The binding ability of FN3hPD-L1-01 was further confirmed by immunofluorescence staining on ex vivo CT26/hPD-L1 tumors sections. The FN3hPD-L1-01 binder represents a novel, small, high-affinity binder for imaging hPD-L1 expression on tumor cells and would aid in earlier imaging of tumors. Future clinical validation studies of the labeled FN3hPD-L1 binder(s) have the potential to monitor immune checkpoint inhibitors therapy and predict responders.
Collapse
Affiliation(s)
- Sindhuja Ramakrishnan
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, 318 Campus Drive, Stanford, CA 94305, USA
| | - Arutselvan Natarajan
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, 318 Campus Drive, Stanford, CA 94305, USA
| | - Carmel T Chan
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, 318 Campus Drive, Stanford, CA 94305, USA
| | - Paramjyot Singh Panesar
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, 318 Campus Drive, Stanford, CA 94305, USA
| | - Sanjiv S Gambhir
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, 318 Campus Drive, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, 318 Campus Drive, Stanford, CA 94305, USA
- Department of Materials Science & Engineering, Stanford University, 318 Campus Drive, Stanford, CA 94305, USA
| |
Collapse
|
6
|
Generation and characterization of novel recombinant anti-hERG1 scFv antibodies for cancer molecular imaging. Oncotarget 2018; 9:34972-34989. [PMID: 30405887 PMCID: PMC6201861 DOI: 10.18632/oncotarget.26200] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/21/2018] [Indexed: 01/12/2023] Open
Abstract
Modern molecular imaging techniques have greatly improved tumor detection and post-treatment follow-up of cancer patients. In this context, antibody-based imaging is rapidly becoming the gold standard, since it combines the unique specificity of antibodies with the sensitivity of the different imaging technologies. The aim of this study was to generate and characterize antibodies in single chain Fragment variable (scFv) format directed to an emerging cancer biomarker, the human ether-à-go-go-related gene-1 (hERG1) potassium channel, and to obtain a proof of concept for their potential use for in vivo molecular imaging. The anti-hERG1scFv was generated from a full length monoclonal antibody and then mutagenized, substituting a Phenylalanine residue in the third framework of the VH domain with a Cysteine residue. The resulting scFv-hERG1-Cys showed much higher stability and protein yield, increased affinity and more advantageous binding kinetics, compared to the “native” anti-hERG1scFv. The scFv-hERG1-Cys was hence chosen and characterized: it showed a good binding to the native hERG1 antigen expressed on cells, was stable in serum and displayed a fast pharmacokinetic profile once injected intravenously in nude mice. The calculated half-life was 3.1 hours and no general toxicity or cardiac toxic effects were detected. Finally, the in vivo distribution of an Alexa Fluor 750 conjugated scFv-hERG1-Cys was evaluated both in healthy and tumor-bearing nude mice, showing a good tumor-to-organ ratio, ideal for visualizing hERG1-expressing tumor masses in vivo. In conclusion, the scFv-hERG1-Cys possesses features which make it a suitable tool for application in cancer molecular imaging.
Collapse
|
7
|
CD44v6-Targeted Imaging of Head and Neck Squamous Cell Carcinoma: Antibody-Based Approaches. CONTRAST MEDIA & MOLECULAR IMAGING 2017; 2017:2709547. [PMID: 29097914 PMCID: PMC5612744 DOI: 10.1155/2017/2709547] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/23/2017] [Accepted: 05/21/2017] [Indexed: 12/11/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a common and severe cancer with low survival rate in advanced stages. Noninvasive imaging of prognostic and therapeutic biomarkers could provide valuable information for planning and monitoring of the different therapy options. Thus, there is a major interest in development of new tracers towards cancer-specific molecular targets to improve diagnostic imaging and treatment. CD44v6, an oncogenic variant of the cell surface molecule CD44, is a promising molecular target since it exhibits a unique expression pattern in HNSCC and is associated with drug- and radio-resistance. In this review we summarize results from preclinical and clinical investigations of radiolabeled anti-CD44v6 antibody-based tracers: full-length antibodies, Fab, F(ab′)2 fragments, and scFvs with particular focus on the engineering of various antibody formats and choice of radiolabel for the use as molecular imaging agents in HNSCC. We conclude that the current evidence points to CD44v6 imaging being a promising approach for providing more specific and sensitive diagnostic tools, leading to customized treatment decisions and functional diagnosis. Improved imaging tools hold promise to enable more effective treatment for head and neck cancer patients.
Collapse
|