1
|
Mahenge CM, Akasheh RT, Kinder B, Nguyen XV, Kalam F, Cheng TYD. CT-Scan-Assessed Body Composition and Its Association with Tumor Protein Expression in Endometrial Cancer: The Role of Muscle and Adiposity Quantities. Cancers (Basel) 2024; 16:4222. [PMID: 39766121 PMCID: PMC11674723 DOI: 10.3390/cancers16244222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/04/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Endometrial cancer is strongly associated with obesity, and tumors often harbor mutations in major cancer signaling pathways. To inform the integration of body composition into targeted therapy paradigms, this hypothesis-generating study explores the association between muscle mass, body fat, and tumor proteomics. Methods: We analyzed data from 113 patients in The Cancer Genome Atlas (TCGA) and Cancer Proteomic Tumor Analysis Consortium (CPTAC) cohorts and their corresponding abdominal CT scans. Among these patients, tumor proteomics data were available for 45 patients, and 133 proteins were analyzed. Adiposity and muscle components were assessed at the L3 vertebral level on the CT scans. Patients were stratified into tertiles of muscle and fat mass and categorized into three groups: high muscle/low adiposity, high muscle/high adiposity, and low muscle/all adiposities. Linear and Cox regression models were adjusted for study cohort, stage, histology type, age, race, and ethnicity. Results: Compared with the high-muscle/low-adiposity group, both the high-muscle/high-adiposity (HR = 4.3, 95% CI = 1.0-29.0) and low-muscle (HR = 4.4, 95% CI = 1.3-14.9) groups experienced higher mortality. Low muscle was associated with higher expression of phospho-4EBP1(T37 and S65), phospho-GYS(S641) and phospho-MAPK(T202/Y204) but lower expression of ARID1A, CHK2, SYK, LCK, EEF2, CYCLIN B1, and FOXO3A. High muscle/high adiposity was associated with higher expression of phospho-4EBP1 (T37), phospho-GYS (S641), CHK1, PEA15, SMAD3, BAX, DJ1, GYS, PKM2, COMPLEX II Subunit 30, and phospho-P70S6K (T389) but with lower expression of CHK2, CRAF, MSH6, TUBERIN, PR, ERK2, beta-CATENIN, AKT, and S6. Conclusions: These findings demonstrate an association between body composition and proteins involved in key cancer signaling pathways, notably the PI3K/AKT/MTOR, MAPK/ERK, cell cycle regulation, DNA damage response, and mismatch repair pathways. These findings warrant further validation and assessment in relation to prognosis and outcomes in these patients.
Collapse
Affiliation(s)
- Cuthbert Mario Mahenge
- Division of Cancer Control and Prevention, Department of Internal Medicine, College of Medicine, The Ohio State University, 3650 Olentangy River Rd., Suite 200, Columbus, OH 43214, USA; (C.M.M.); (R.T.A.); (F.K.)
| | - Rand Talal Akasheh
- Division of Cancer Control and Prevention, Department of Internal Medicine, College of Medicine, The Ohio State University, 3650 Olentangy River Rd., Suite 200, Columbus, OH 43214, USA; (C.M.M.); (R.T.A.); (F.K.)
| | - Ben Kinder
- Division of Cancer Control and Prevention, Department of Internal Medicine, College of Medicine, The Ohio State University, 3650 Olentangy River Rd., Suite 200, Columbus, OH 43214, USA; (C.M.M.); (R.T.A.); (F.K.)
| | - Xuan Viet Nguyen
- Department of Radiology, College of Medicine, The Ohio State University, 395 W 12th Ave., Suite 486, Columbus, OH 43210, USA;
| | - Faiza Kalam
- Division of Cancer Control and Prevention, Department of Internal Medicine, College of Medicine, The Ohio State University, 3650 Olentangy River Rd., Suite 200, Columbus, OH 43214, USA; (C.M.M.); (R.T.A.); (F.K.)
| | - Ting-Yuan David Cheng
- Division of Cancer Control and Prevention, Department of Internal Medicine, College of Medicine, The Ohio State University, 3650 Olentangy River Rd., Suite 200, Columbus, OH 43214, USA; (C.M.M.); (R.T.A.); (F.K.)
| |
Collapse
|
2
|
Ejlalidiz M, Mehri-Ghahfarrokhi A, Saberiyan M. Identification of hub genes and pathways in Uterine corpus endometrial carcinoma (UCEC): A comprehensive in silico study. Biochem Biophys Rep 2024; 40:101860. [PMID: 39552710 PMCID: PMC11565547 DOI: 10.1016/j.bbrep.2024.101860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 10/27/2024] [Indexed: 11/19/2024] Open
Abstract
Background Uterine corpus endometrial carcinoma (UCEC), derived from the endometrium, is the most common type of endometrial malignasis. This gynecological malignancy is very common all over the world, especially in developed countries and shows a potentially rising trend correlated with the increase in obese women. Methods Differentially Expressed Genes (DEGs) analysis was conducted on GSE7305 and GSE25628 datasets from the Gene Expression Omnibus (GEO). DEGs were identified using GEO2R (adjusted p-value <0.05, |logFC| > 1). Pathway analysis employed KEGG and Gene Ontology databases, while protein-protein interactions were analyzed using Cytoscape and Gephi. GEPIA was used for target gene validation. Results We have identified 304 common DEGs and 78 hub genes using GEO and PPI analysis, respectively. The GO and KEGG pathways analysis revealed enrichment of DEGs in extracellular matrix structural constituent, extracellular space, cell adhesion, and ECM-receptor interaction. GEPIA analysis identified three genes, ENG, GNG4, and ECT2, whose expression significantly differed between normal and tumor samples. Conclusion This analysis study identified the hub genes and associated pathways involved in the pathogenesis of UCEC. The identified hub genes exhibit remarkable potential as diagnostic biomarkers, providing a significant opportunity for early diagnosis and more effective therapeutic approaches for UCEC.
Collapse
Affiliation(s)
- Mahsa Ejlalidiz
- Medical Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ameneh Mehri-Ghahfarrokhi
- Clinical Research Developmental Unit, Hajar Hospital, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammadreza Saberiyan
- Department of Medical Genetics, School of Medical Sciences, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
3
|
Dey DK, Krause D, Rai R, Choudhary S, Dockery LE, Chandra V. The role and participation of immune cells in the endometrial tumor microenvironment. Pharmacol Ther 2023; 251:108526. [PMID: 37690483 DOI: 10.1016/j.pharmthera.2023.108526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/12/2023]
Abstract
The tumor microenvironment is surrounded by blood vessels and consists of malignant, non-malignant, and immune cells, as well as signalling molecules, which primarily affect the therapeutic response and curative effects of drugs in clinical studies. Tumor-infiltrating immune cells participate in tumor progression, impact anticancer therapy, and eventually lead to the development of immune tolerance. Immunotherapy is evolving as a promising therapeutic intervention to stimulate and activate the immune system to suppress cancer cell growth. Endometrial cancer (EC) is an immunogenic disease, and in recent years, immunotherapy has shown benefit in the treatment of recurrent and advanced EC. This review discusses the key molecular pathways associated with the intra-tumoral immune response and the involvement of circulatory signalling molecules. Specific immunologic signatures in EC which offer targets for immunomodulating agents, are also discussed. We have summarized the available literature in support of using immunotherapy in EC. Lastly, we have also discussed ongoing clinical trials that may offer additional promising immunotherapy options in the future. The manuscript also explored innovative approaches for screening and identifying effective drugs, and to reduce the financial burdens for the development of personalized treatment strategies. Collectively, we aim to provide a comprehensive review of the role of immune cells and the tumor microenvironment in the development, progression, and treatment of EC.
Collapse
Affiliation(s)
- Debasish Kumar Dey
- Gynecologic Oncology Section, Obstetrics and Gynecology Department, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Danielle Krause
- Gynecologic Oncology Section, Obstetrics and Gynecology Department, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Rajani Rai
- Gynecologic Oncology Section, Obstetrics and Gynecology Department, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Swati Choudhary
- Gynecologic Oncology Section, Obstetrics and Gynecology Department, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Lauren E Dockery
- Gynecologic Oncology Section, Obstetrics and Gynecology Department, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Vishal Chandra
- Gynecologic Oncology Section, Obstetrics and Gynecology Department, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
4
|
Padežnik T, Oleksy A, Cokan A, Takač I, Sobočan M. Changes in the Extracellular Matrix in Endometrial and Cervical Cancer: A Systematic Review. Int J Mol Sci 2023; 24:ijms24065463. [PMID: 36982551 PMCID: PMC10052846 DOI: 10.3390/ijms24065463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023] Open
Abstract
Endometrial and cervical cancers are the two most common gynaecological malignancies and among the leading causes of death worldwide. The extracellular matrix (ECM) is an important component of the cellular microenvironment and plays an important role in developing and regulating normal tissues and homeostasis. The pathological dynamics of the ECM contribute to several different processes such as endometriosis, infertility, cancer, and metastasis. Identifying changes in components of ECM is crucial for understanding the mechanisms of cancer development and its progression. We performed a systematic analysis of publications on the topic of changes in the extracellular matrix in cervical and endometrial cancer. The findings of this systematic review show that matrix metalloproteinases (MMP) play an important role impacting tumour growth in both types of cancer. MMPs degrade various specific substrates (collagen, elastin, fibronectin, aggrecan, fibulin, laminin, tenascin, vitronectin, versican, nidogen) and play a crucial role in the basal membrane degradation and ECM components. Similar types of MMPs were found to be increased in both cancers, namely, MMP-1, MMP-2, MMP-9, and MMP-11. Elevated concentrations of MMP-2 and MMP-9 were correlated with the FIGO stage and are associated with poor prognosis in endometrial cancer, whereas in cervical cancer, elevated concentrations of MMP-9 have been associated with a better outcome. Elevated ADAMTS levels were found in cervical cancer tissues. Elevated disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) levels were also found in endometrial cancer, but their role is still unclear. Following these findings, this review reports on tissue inhibitors of ECM enzymes, MMPs, and ADAMTS. The present review demonstrates changes in the extracellular matrix in cervical and endometrial cancers and compared their effect on cancer development, progression, and patient prognosis.
Collapse
Affiliation(s)
- Tjaša Padežnik
- Department of Gynaecology and Obstetrics, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| | - Anja Oleksy
- Department of Gynaecology and Obstetrics, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| | - Andrej Cokan
- Department of Gynaecology and Obstetrics, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| | - Iztok Takač
- Department of Gynaecology and Obstetrics, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
- Divison for Gynaecology and Perinatology, University Medical Centre Maribor, Ljubljanska Ulica 5, 2000 Maribor, Slovenia
| | - Monika Sobočan
- Department of Gynaecology and Obstetrics, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
- Divison for Gynaecology and Perinatology, University Medical Centre Maribor, Ljubljanska Ulica 5, 2000 Maribor, Slovenia
- Department for Pharmacology, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
- Correspondence:
| |
Collapse
|
5
|
Li H, Wang J, Li L, Zhao L, Wang Z. Expression of EMT-related genes in lymph node metastasis in endometrial cancer: a TCGA-based study. World J Surg Oncol 2023; 21:55. [PMID: 36814242 PMCID: PMC9945723 DOI: 10.1186/s12957-023-02893-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/10/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Endometrial cancer (EC) with metastasis in pelvic/para-aortic lymph nodes suggests an unsatisfactory prognosis. Nevertheless, there is still rare literature focusing on the role of epithelial-mesenchymal transition (EMT) in lymph node metastasis (LNM) in EC. METHODS Transcriptional data were derived from the TCGA database. Patients with stage IA-IIIC2 EC were included, constituting the LN-positive and LN-negative groups. To evaluate the extent of EMT, an EMT signature composed of 315 genes was adopted. The EMT-related genes (ERGs) were obtained from the dbEMT2 database, and the differentially expressed ERGs (DEERGs) between these two groups were screened. On the basis of DEERGs, pathway analysis was carried out. We eventually adopted the logistic regression model to build an ERG-based gene signature with predictive value for LNM in EC. RESULTS A total of 498 patients were included, with 75 in the LN-positive group. Median EMT score of tumor tissues from LN-negative group was - 0.369, while that from the LN-positive group was - 0.296 (P < 0.001), which clearly exhibited a more mesenchymal phenotype for LNM cases on the EMT continuum. By comparing expression profiles, 266 genes were identified as DEERGs, in which 184 were upregulated and 82 were downregulated. In pathway analysis, various EMT-related pathways were enriched. DEERGs shared between molecular subtypes were comparatively few. The ROC curve and logistic regression analysis screened 7 genes with the best performance to distinguish between the LN-positive and LN-negative group, i.e., CIRBP, DDR1, F2RL2, HOXA10, PPARGC1A, SEMA3E, and TGFB1. A logistic regression model including the 7-gene-based risk score, age, grade, myometrial invasion, and histological subtype was built, with an AUC of 0.850 and a favorite calibration (P = 0.074). In the validation dataset composed of 83 EC patients, the model exhibited a satisfactory predictive value and was well-calibrated (P = 0.42). CONCLUSION The EMT status and expression of ERGs varied in LNM and non-LNM EC tissues, involving multiple EMT-related signaling pathways. Aside from that, the distribution of DEERGs differed among molecular subtypes. An ERG-based gene signature including 7 DEERGs exhibited a desirable predictive value for LNM in EC, which required further validation based upon clinical specimens in the future.
Collapse
Affiliation(s)
- He Li
- Department of Obstetrics and Gynecology, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Junzhu Wang
- The Big Data and Public Policy Laboratory, School of Government, Peking University, Beijing, China
| | - Liwei Li
- Department of Obstetrics and Gynecology, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Luyang Zhao
- Department of Obstetrics and Gynecology, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Zhiqi Wang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China.
| |
Collapse
|
6
|
Do Tumor Mechanical Stresses Promote Cancer Immune Escape? Cells 2022; 11:cells11233840. [PMID: 36497097 PMCID: PMC9740277 DOI: 10.3390/cells11233840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022] Open
Abstract
Immune evasion-a well-established cancer hallmark-is a major barrier to immunotherapy efficacy. While the molecular mechanisms and biological consequences underpinning immune evasion are largely known, the role of tissue mechanical stresses in these processes warrants further investigation. The tumor microenvironment (TME) features physical abnormalities (notably, increased fluid and solid pressures applied both inside and outside the TME) that drive cancer mechanopathologies. Strikingly, in response to these mechanical stresses, cancer cells upregulate canonical immune evasion mechanisms, including epithelial-mesenchymal transition (EMT) and autophagy. Consideration and characterization of the origins and consequences of tumor mechanical stresses in the TME may yield novel strategies to combat immunotherapy resistance. In this Perspective, we posit that tumor mechanical stresses-namely fluid shear and solid stresses-induce immune evasion by upregulating EMT and autophagy. In addition to exploring the basis for our hypothesis, we also identify explicit gaps in the field that need to be addressed in order to directly demonstrate the existence and importance of this biophysical relationship. Finally, we propose that reducing or neutralizing fluid shear stress and solid stress-induced cancer immune escape may improve immunotherapy outcomes.
Collapse
|
7
|
Lack of extracellular matrix switches TGF-β induced apoptosis of endometrial cells to epithelial to mesenchymal transition. Sci Rep 2022; 12:14821. [PMID: 36050359 PMCID: PMC9437059 DOI: 10.1038/s41598-022-18976-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/23/2022] [Indexed: 11/12/2022] Open
Abstract
The extracellular matrix and the correct establishment of epithelial cell polarity plays a critical role in epithelial cell homeostasis and cell polarity. In addition, loss of tissue structure is a hallmark of carcinogenesis. In this study, we have addressed the role of extracellular matrix in the cellular responses to TGF-β. It is well known that TGF-β is a double-edged sword: it acts as a tumor suppressor in normal epithelial cells, but conversely has tumor-promoting effects in tumoral cells. However, the factors that determine cellular outcome in response to TGF-β remain controversial. Here, we have demonstrated that the lack of extracellular matrix and consequent loss of cell polarity inhibits TGF-β-induced apoptosis, observed when endometrial epithelial cells are polarized in presence of extracellular matrix. Rather, in absence of extracellular matrix, TGF-β-treated endometrial epithelial cells display features of epithelial-to-mesenchymal transition. We have also investigated the molecular mechanism of such a switch in cellular response. On the one hand, we found that the lack of Matrigel results in increased AKT signaling which is sufficient to inhibit TGF-β-induced apoptosis. On the other hand, we demonstrate that TGF-β-induced epithelial-to-mesenchymal transition requires ERK and SMAD2/3 activation. In summary, we demonstrate that loss of cell polarity changes the pro-apoptotic function of TGF-β to tumor-associated phenotype such as epithelial-to-mesenchymal transition. These results may be important for understanding the dual role of TGF-β in normal versus tumoral cells.
Collapse
|
8
|
Spirulina phycocyanin extract and its active components suppress epithelial-mesenchymal transition process in endometrial cancer via targeting TGF-beta1/SMAD4 signaling pathway. Biomed Pharmacother 2022; 152:113219. [PMID: 35691155 DOI: 10.1016/j.biopha.2022.113219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 12/23/2022] Open
Abstract
Metastasis is a major challenge in aggressive endometrial cancer treatment accounting for the high recurrence risk and poor prognosis of epithelial-mesenchymal transition (EMT), regulated by the transforming growth factor beta (TGFβ) signaling pathway, facilitates tumor metastasis. Spirulina phycocyanin extract (SPE) and its purified products allophycocyanin (APC) and C-phycocyanin (C-PC), derived from Spirulina platensis, can be considered a nutraceutical compound with the ability to inhibit tumor growth and metastasis. Current study aims to investigate the anti-metastatic potential of SPE, and its purified products APC, and C-PC on endometrial cancer both in vitro and in vivo. Firstly, human endometrial cancer cell lines (HEC-1A and Ishikawa) as an in vitro model. Secondly, HEC-1A cells transfected with luminescence gene were implanted into female nude mice as a xenograft model. MTT assay, transwell migration assay, immunoblotting assay, quantitative real-time polymerase chain reaction assay, and IVIS XRMS analysis techniques were used. The in vitro results showed that SPE and its purified products APC and C-PC inhibited cell migration, and altered the expression of EMT-related phenotypes by reversing the TGFβ/SMADs signaling pathway. The in vivo results indicated that SPE repressed the metastasis of HEC-1A-LUC cells through modulating EMT-related markers expression. Overall, SPE and its efficient components APC and C-PC reversed the EMT through targeting the TGFβ/SMADs signaling pathway, suggesting an effective therapeutic strategy for metastatic endometrial cancer.
Collapse
|
9
|
Luo F, Huang Y, Li Y, Zhao X, Xie Y, Zhang Q, Mei J, Liu X. A narrative review of the relationship between TGF-β signaling and gynecological malignant tumor. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1601. [PMID: 34790807 PMCID: PMC8576662 DOI: 10.21037/atm-21-4879] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/14/2021] [Indexed: 12/24/2022]
Abstract
Objective This paper reviews the association between transforming growth factor-β (TGF-β) and its receptor and tumor, focusing on gynecological malignant tumors. we hope to provide more methods to help increase the potential of TGF-β signaling targeted treatment of specific cancers. Background The occurrence of a malignant tumor is a complex process of multi-step, multi-gene regulation, and its progression is affected by various components of the tumor cells and/or tumor microenvironment. The occurrence of gynecological diseases not only affect women's health, but also bring some troubles to their normal life. Especially when gynecological malignant tumors occur, the situation is more serious, which will endanger the lives of patients. Due to differences in environmental and economic conditions, not all women have access to assistance and treatment specifically meeting their needs. TGF-β is a multi-potent growth factor that maintains homeostasis in mammals by inhibiting cell growth and promoting apoptosis in vivo. TGF-β signaling is fundamental to inflammatory disease and favors the emergence of tumors, and it also plays an important role in immunosuppression in the tumor microenvironment. In the early stages of the tumor, TGF-β acts as a tumor inhibitor, whereas in advanced tumors, mutations or deletion of the TGF-β signaling core component initiate neogenesis. Methods Literatures about TGF-β and gynecological malignant tumor were extensively reviewed to analyze and discuss. Conclusions We discussed the role of TGF-β signaling in different types of gynecological tumor cells, thus demonstrating that targeted TGF-β signaling may be an effective tumor treatment strategy.
Collapse
Affiliation(s)
- Fangyuan Luo
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, China.,Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Yu Huang
- Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Yilin Li
- Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Xiaolan Zhao
- Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Yao Xie
- Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Qianwen Zhang
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Jie Mei
- Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Xinghui Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
10
|
A ten-gene methylation signature as a novel biomarker for improving prediction of prognosis and indicating gene targets in endometrial cancer. Genomics 2021; 113:2032-2044. [PMID: 33915245 DOI: 10.1016/j.ygeno.2021.04.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 03/10/2021] [Accepted: 04/23/2021] [Indexed: 12/17/2022]
Abstract
Endometrial cancer (EC) is a common female reproductive tumor worldwide. Nonetheless, the pathogenesis of EC still remains ambiguous and associated epigenetic mechanism still to be explored. The goal of this study is to investigate whether gene methylation signature is associated with overall survival (OS) for EC patients. In this study, a 10-gene methylation risk model was built and the OS in high- and low-risk groups was significant different. The area under the ROC curve (AUC) of this model was 0.856 at 5 years survival. The nomogram could accurately predict the OS in EC patients, with concordance index and AUC at 5 year survival reached 0.796 and 0.792, respectively. Furthermore, we verified the nomogram with 24 patients in our center and the Kaplan-Meier survival curve also proved to be significantly different (p < 0.01). WGCNA revealed a key gene group for the model and further bioinformatics analysis indicated 6 genes as the hub genes in the module. Knockdown of MMP12 inhibited the proliferation, invasion and metastasis of EC cells. After all, a methylation signature and a nomogram based on this signature were constructed, and they could both predict survival in patients with EC. Moreover, WGCNA model identified MMP12 as a potential target for the treatment of EC.
Collapse
|
11
|
The Fibronectin Expression Determines the Distinct Progressions of Malignant Gliomas via Transforming Growth Factor-Beta Pathway. Int J Mol Sci 2021; 22:ijms22073782. [PMID: 33917452 PMCID: PMC8038731 DOI: 10.3390/ijms22073782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/17/2022] Open
Abstract
Due to the increasing incidence of malignant gliomas, particularly glioblastoma multiforme (GBM), a simple and reliable GBM diagnosis is needed to screen early the death-threaten patients. This study aimed to identify a protein that can be used to discriminate GBM from low-grade astrocytoma and elucidate further that it has a functional role during malignant glioma progressions. To identify proteins that display low or no expression in low-grade astrocytoma but elevated levels in GBM, glycoprotein fibronectin (FN) was particularly examined according to the mining of the Human Protein Atlas. Web-based open megadata minings revealed that FN was mainly mutated in the cBio Cancer Genomic Portal but dominantly overexpressed in the ONCOMINE (a cancer microarray database and integrated data-mining platform) in distinct tumor types. Furthermore, numerous different cancer patients with high FN indeed exhibited a poor prognosis in the PrognoScan mining, indicating that FN involves in tumor malignancy. To investigate further the significance of FN expression in glioma progression, tumor specimens from five malignant gliomas with recurrences that received at least two surgeries were enrolled and examined. The immunohistochemical staining showed that FN expression indeed determined the distinct progressions of malignant gliomas. Furthermore, the expression of vimentin (VIM), a mesenchymal protein that is strongly expressed in malignant cancers, was similar to the FN pattern. Moreover, the level of epithelial-mesenchymal transition (EMT) inducer transforming growth factor-beta (TGF-β) was almost recapitulated with the FN expression. Together, this study identifies a protein FN that can be used to diagnose GBM from low-grade astrocytoma; moreover, its expression functionally determines the malignant glioma progressions via TGF-β-induced EMT pathway.
Collapse
|
12
|
Pol α-primase dependent nuclear localization of the mammalian CST complex. Commun Biol 2021; 4:349. [PMID: 33731801 PMCID: PMC7969954 DOI: 10.1038/s42003-021-01845-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 02/11/2021] [Indexed: 01/31/2023] Open
Abstract
The human CST complex composed of CTC1, STN1, and TEN1 is critically involved in telomere maintenance and homeostasis. Specifically, CST terminates telomere extension by inhibiting telomerase access to the telomeric overhang and facilitates lagging strand fill in by recruiting DNA Polymerase alpha primase (Pol α-primase) to the telomeric C-strand. Here we reveal that CST has a dynamic intracellular localization that is cell cycle dependent. We report an increase in nuclear CST several hours after the initiation of DNA replication, followed by exit from the nucleus prior to mitosis. We identify amino acids of CTC1 involved in Pol α-primase binding and nuclear localization. We conclude, the CST complex does not contain a nuclear localization signal (NLS) and suggest that its nuclear localization is reliant on Pol α-primase. Hypomorphic mutations affecting CST nuclear import are associated with telomere syndromes and cancer, emphasizing the important role of this process in health.
Collapse
|
13
|
Tong Y, Li Z, Wu Y, Zhu S, Lu K, He Z. Lotus leaf extract inhibits ER - breast cancer cell migration and metastasis. Nutr Metab (Lond) 2021; 18:20. [PMID: 33602253 PMCID: PMC7891157 DOI: 10.1186/s12986-021-00549-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 02/05/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Patients with estrogen receptor negative (ER-) breast cancer have poor prognosis due to high rates of metastasis. However, there is no effective treatment and drugs for ER- breast cancer metastasis. Our purpose of this study was to evaluate the effect of lotus leaf alcohol extract (LAE) on the cell migration and metastasis of ER- breast cancer. METHODS The anti-migratory effect of LAE were analyzed in ER- breast cancer cells including SK-BR-3, MDA-MB-231 and HCC1806 cell lines. Cell viability assay, wound-healing assay, RNA-sequence analysis and immunoblotting assay were used to evaluate the cytotoxicity and anti-migratory effect of LAE. To further investigate the inhibitory effect of LAE on metastasis in vivo, subcutaneous xenograft and intravenous injection nude mice models were established. Lung and liver tissues were analyzed by the hematoxylin and eosin staining and immunoblotting assay. RESULTS We found that lotus LAE, not nuciferine, inhibited cell migration significantly in SK-BR-3, MDA-MB-231 and HCC1806 breast cancer cells, and did not affect viability of breast cancer cells. The anti-migratory effect of LAE was dependent on TGF-β1 signaling, while independent of Wnt signaling and autophagy influx. Intracellular H2O2 was involved in the TGF-β1-related inhibition of cell migration. LAE inhibited significantly the breast cancer cells metastasis in mice models. RNA-sequence analysis showed that extracellular matrix signaling pathways are associated with LAE-suppressed cell migration. CONCLUSIONS Our findings demonstrated that lotus leaf alcohol extract inhibits the cell migration and metastasis of ER- breast cancer, at least in part, via TGF-β1/Erk1/2 and TGF-β1/SMAD3 signaling pathways, which provides a potential therapeutic strategy for ER- breast cancer.
Collapse
Affiliation(s)
- Yuelin Tong
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Zhongwei Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yikuan Wu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Shenglong Zhu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Keke Lu
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhao He
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China. .,State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China. .,Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China. .,Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.
| |
Collapse
|
14
|
Semertzidou A, Brosens JJ, McNeish I, Kyrgiou M. Organoid models in gynaecological oncology research. Cancer Treat Rev 2020; 90:102103. [PMID: 32932156 DOI: 10.1016/j.ctrv.2020.102103] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023]
Abstract
Cell culture and animal models represent experimental cornerstones for the investigation of tissue, organ and body physiology in the context of gynaecological research. However, their ability to accurately reflect human mechanisms in vivo is limited. The development of organoid technologies has begun to address this limitation by providing platforms ex vivo that resemble the phenotype and genotype of the multi-cellular tissue from which they were derived more accurately. In this review, we discuss advances in organoid derivation from endometrial, ovarian, fallopian tube and cervical tissue, both benign and malignant, the manipulation of organoid microenvironment to preserve stem cell populations and achieve long-term expansion and we explore the morphological and molecular kinship of organoids to parent tissue. Apart from providing new insight into mechanisms of carcinogenesis, gynaecological cancer-derived organoids can be utilised as tools for drug screening of chemotherapeutic and hormonal compounds where they exhibit interpatient variability consistent with states in vivo and xenografted tumours allowing for patient-tailored treatment strategies. Bridging organoid with bioengineering accomplishments is clearly the way forward to the generation of organoid-on-a-chip technologies enhancing the robustness of the model and its translational potential. Undeniably, organoids are expected to stand their ground in the years to come and revolutionize development and disease modelling studies.
Collapse
Affiliation(s)
- Anita Semertzidou
- Department of Surgery and Cancer & Department of Digestion, Metabolism and Reproduction, Faculty of Medicine, Imperial College London, London W12 0NN, UK; Queen Charlotte's and Chelsea - Hammersmith Hospital, Imperial College Healthcare NHS Trust, London W12 0HS, UK
| | - Jan J Brosens
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK; Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire, Coventry CV2 2DX, UK
| | - Iain McNeish
- Department of Surgery and Cancer & Department of Digestion, Metabolism and Reproduction, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Maria Kyrgiou
- Department of Surgery and Cancer & Department of Digestion, Metabolism and Reproduction, Faculty of Medicine, Imperial College London, London W12 0NN, UK; Queen Charlotte's and Chelsea - Hammersmith Hospital, Imperial College Healthcare NHS Trust, London W12 0HS, UK.
| |
Collapse
|
15
|
O’Connor BB, Pope BD, Peters MM, Ris-Stalpers C, Parker KK. The role of extracellular matrix in normal and pathological pregnancy: Future applications of microphysiological systems in reproductive medicine. Exp Biol Med (Maywood) 2020; 245:1163-1174. [PMID: 32640894 PMCID: PMC7400725 DOI: 10.1177/1535370220938741] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
IMPACT STATEMENT Extracellular matrix in the womb regulates the initiation, progression, and completion of a healthy pregnancy. The composition and physical properties of extracellular matrix in the uterus and at the maternal-fetal interface are remodeled at each gestational stage, while maladaptive matrix remodeling results in obstetric disease. As in vitro models of uterine and placental tissues, including micro-and milli-scale versions of these organs on chips, are developed to overcome the inherent limitations of studying human development in vivo, we can isolate the influence of cellular and extracellular components in healthy and pathological pregnancies. By understanding and recreating key aspects of the extracellular microenvironment at the maternal-fetal interface, we can engineer microphysiological systems to improve assisted reproduction, obstetric disease treatment, and prenatal drug safety.
Collapse
Affiliation(s)
- Blakely B O’Connor
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering; Harvard John A. Paulson School of Engineering and Applied Sciences; Harvard University, Cambridge, MA 02138, USA
| | - Benjamin D Pope
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering; Harvard John A. Paulson School of Engineering and Applied Sciences; Harvard University, Cambridge, MA 02138, USA
| | - Michael M Peters
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering; Harvard John A. Paulson School of Engineering and Applied Sciences; Harvard University, Cambridge, MA 02138, USA
| | - Carrie Ris-Stalpers
- Department of Gynecology and Obstetrics, Academic Reproduction and Development, Amsterdam UMC, University of Amsterdam, Amsterdam 1105, The Netherlands
| | - Kevin K Parker
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering; Harvard John A. Paulson School of Engineering and Applied Sciences; Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
16
|
Camargo S, Shamis Y, Assis A, Mitrani E. An in vivo Like Micro-Carcinoma Model. Front Oncol 2019; 9:410. [PMID: 31192122 PMCID: PMC6540606 DOI: 10.3389/fonc.2019.00410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/01/2019] [Indexed: 11/13/2022] Open
Abstract
We here present a novel micro-system which allows to reconstitute an in vivo lung carcinoma where the various constituting epithelial and/or stromal structural and/or cellular components can be incorporated at will. In contrast to various "organs on a chip" the model is based on the observation that in nature, epithelial cells are always supported by a connective tissue or stroma. The model is based on acellular micro-scaffolds of microscopic dimensions which enable seeded cells to obtain gases and nutrients through diffusion thus avoiding the need for vascularization. As a proof of concept, we show that in this model, Calu-3 cells can form a well-organized, continuous, polarized, one-layer epithelium lining the stromal derived alveolar cavities, and express a different pattern of tumor-related genes than when grown as standard monolayer cultures on plastic culture dishes. To our knowledge, this model, introduces for the first time a system where the function of carcinogenic cells can be tested in vitro in an environment that closely mimics the natural in vivo situation.
Collapse
Affiliation(s)
- Sandra Camargo
- Department of Cell and Developmental Biology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yulia Shamis
- Department of Developmental and Regenerative Biology, Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Assaf Assis
- Department of Cell and Developmental Biology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eduardo Mitrani
- Department of Cell and Developmental Biology, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
17
|
Al-Juboori AAA, Ghosh A, Jamaluddin MFB, Kumar M, Sahoo SS, Syed SM, Nahar P, Tanwar PS. Proteomic Analysis of Stromal and Epithelial Cell Communications in Human Endometrial Cancer Using a Unique 3D Co-Culture Model. Proteomics 2019; 19:e1800448. [PMID: 30865368 DOI: 10.1002/pmic.201800448] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/04/2019] [Indexed: 12/16/2022]
Abstract
Epithelial and stromal communications are essential for normal uterine functions and their dysregulation contributes to the pathogenesis of many diseases including infertility, endometriosis, and cancer. Although many studies have highlighted the advantages of culturing cells in 3D compared to the conventional 2D culture system, one of the major limitations of these systems is the lack of incorporation of cells from non-epithelial lineages. In an effort to develop a culture system incorporating both stromal and epithelial cells, 3D endometrial cancer spheroids are developed by co-culturing endometrial stromal cells with cancerous epithelial cells. The spheroids developed by this method are phenotypically comparable to in vivo endometrial cancer tissue. Proteomic analysis of the co-culture spheroids comparable to human endometrial tissue revealed 591 common proteins and canonical pathways that are closely related to endometrium biology. To determine the feasibility of using this model for drug screening, the efficacy of tamoxifen and everolimus is tested. In summary, a unique 3D model system of human endometrial cancer is developed that will serve as the foundation for the further development of 3D culture systems incorporating different cell types of the human uterus for deciphering the contributions of non-epithelial cells present in cancer microenvironment.
Collapse
Affiliation(s)
- Aminah Ali Abid Al-Juboori
- Gynecology Oncology Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Arnab Ghosh
- Gynecology Oncology Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Muhammad Fairuz Bin Jamaluddin
- Gynecology Oncology Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Manish Kumar
- Gynecology Oncology Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Subhransu Sekhar Sahoo
- Gynecology Oncology Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Shafiq Mukhtar Syed
- Gynecology Oncology Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Pravin Nahar
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, 2308, Australia.,Department of Maternity and Gynecology, John Hunter Hospital, New Lambton Heights, New South Wales, 2305, Australia
| | - Pradeep Singh Tanwar
- Gynecology Oncology Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, 2308, Australia
| |
Collapse
|
18
|
The Emerging Role of the Microenvironment in Endometrial Cancer. Cancers (Basel) 2018; 10:cancers10110408. [PMID: 30380719 PMCID: PMC6266917 DOI: 10.3390/cancers10110408] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 12/24/2022] Open
Abstract
Endometrial cancer (EC) is one of the most frequently diagnosed cancers in women, and despite recent therapeutic advances, in many cases, treatment failure results in cancer recurrence, metastasis, and death. Current research demonstrates that the interactive crosstalk between two discrete cell types (tumor and stroma) promotes tumor growth and investigations have uncovered the dual role of the stromal cells in the normal and cancerous state. In contrast to tumor cells, stromal cells within the tumor microenvironment (TME) are genetically stable. However, tumor cells modify adjacent stromal cells in the TME. The alteration in signaling cascades of TME from anti-tumorigenic to pro-tumorigenic enhances metastatic potential and/or confers therapeutic resistance. Therefore, the TME is a fertile ground for the development of novel therapies. Furthermore, disrupting cancer-promoting signals from the TME or re-educating stromal cells may be an effective strategy to impair metastatic progression. Here, we review the paradoxical role of different non-neoplastic stromal cells during specific stages of EC progression. We also suggest that the inhibition of microenvironment-derived signals may suppress metastatic EC progression and offer novel potential therapeutic interventions.
Collapse
|
19
|
Ten-eleven translocation 1 regulates methylation of autophagy-related genes in human glioma. Neuroreport 2018; 29:731-738. [DOI: 10.1097/wnr.0000000000001024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Lou W, Liu J, Gao Y, Zhong G, Chen D, Shen J, Bao C, Xu L, Pan J, Cheng J, Ding B, Fan W. MicroRNAs in cancer metastasis and angiogenesis. Oncotarget 2017; 8:115787-115802. [PMID: 29383201 PMCID: PMC5777813 DOI: 10.18632/oncotarget.23115] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/17/2017] [Indexed: 12/15/2022] Open
Abstract
Cancer metastasis is a malignant process by which tumor cells migrate from their primary site of origin to other organs. It is the main cause of poor prognosis in cancer patients. Angiogenesis is the process of generating new blood capillaries from pre-existing vasculature. It plays a vital role in primary tumor growth and distant metastasis. MicroRNAs are small non-coding RNAs involved in regulating normal physiological processes as well as cancer pathogenesis. They suppress gene expression by specifically binding to the 3′-untranslated region (3′-UTR) of their target genes. They can thus act as oncogenes or tumor suppressors depending on the function of their target genes. MicroRNAs have shown great promise for use in anti-metastatic cancer therapy. In this article, we review the roles of various miRNAs in cancer angiogenesis and metastasis and highlight their potential for use in future therapies against metastatic cancer.
Collapse
Affiliation(s)
- Weiyang Lou
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou 310003, China
| | - Jingxing Liu
- Department of Intensive Care Unit, Changxing People's Hospital of Zhejiang, Zhejiang Province, Huzhou 313100, China
| | - Yanjia Gao
- Department of Anesthesiology, International Hospital of Zhejiang University, Shulan (Hangzhou) Hospital, Zhejiang Province, Hangzhou 310003, China
| | - Guansheng Zhong
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou 310003, China
| | - Danni Chen
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou 310003, China
| | - Jiaying Shen
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou 310003, China
| | - Chang Bao
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou 310003, China
| | - Liang Xu
- Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang Province, Hangzhou 310003, China
| | - Jie Pan
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou 310003, China
| | - Junchi Cheng
- Department of Chemotherapy, Zhejiang Cancer Hospital, Zhejiang Province, Hangzhou 310003, China
| | - Bisha Ding
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou 310003, China
| | - Weimin Fan
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou 310003, China.,Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
21
|
Sahoo SS, Lombard JM, Ius Y, O'Sullivan R, Wood LG, Nahar P, Jaaback K, Tanwar PS. Adipose-Derived VEGF-mTOR Signaling Promotes Endometrial Hyperplasia and Cancer: Implications for Obese Women. Mol Cancer Res 2017; 16:309-321. [PMID: 29133593 DOI: 10.1158/1541-7786.mcr-17-0466] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/12/2017] [Accepted: 11/01/2017] [Indexed: 11/16/2022]
Abstract
Obesity is responsible for increased morbidity and mortality in endometrial cancer. Despite the positive correlation of body mass index (BMI) or obesity in endometrial carcinogenesis, the contribution of adipose tissue to the pathogenesis of endometrial hyperplasia and cancer is unclear. This study clarifies the role of adipocytes in the pathogenesis of endometrial cancer by demonstrating that adipocyte-conditioned medium (ACM) increases proliferation, migration, and survival of endometrial cancer cells compared with preadipocyte-conditioned medium (PACM). Comparative cytokine array analysis of ACM and PACM reveal upregulation of a group of cytokines belonging to the VEGF signaling pathway in ACM. VEGF protein expression is upregulated in visceral adipose tissue (VAT) in obese patients, which is correlated with increased tumor growth in an in vivo xenograft model. The increased tumor size is mechanistically associated with the activation of the PI3K/AKT/mTOR pathway, a downstream target of VEGF signaling, and its suppression decreased the growth-promoting effects of VAT on endometrial cancer cells. Similar to the human model systems, pathologic changes in endometrial cells in a hyperphagic obese mouse model are associated with increased body weight and hyperactive mTOR signaling. Analysis of human tissue specimens depicts increased in tumor vasculature and VEGF-mTOR activity in obese endometrial cancer patients compared with nonobese patients. Collectively, these results provide evidence that VEGF-mTOR signaling drives endometrial cell growth leading to hyperplasia and cancer.Implications: Adipocyte-derived VEGF-mTOR signaling may be an attractive therapeutic target against endometrial cancer in obese women. Mol Cancer Res; 16(2); 309-21. ©2017 AACR.
Collapse
Affiliation(s)
- Subhransu S Sahoo
- Gynaecology Oncology Group, University of Newcastle, Newcastle, New South Wales, Australia.,School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
| | - Janine M Lombard
- Department of Medical Oncology, Calvary Mater Newcastle, Newcastle, New South Wales, Australia
| | - Yvette Ius
- Department of Gynecological Oncology, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Rachel O'Sullivan
- Department of Gynecological Oncology, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Lisa G Wood
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
| | - Pravin Nahar
- Department of Maternity and Gynecology, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Kenneth Jaaback
- Department of Gynecological Oncology, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Pradeep S Tanwar
- Gynaecology Oncology Group, University of Newcastle, Newcastle, New South Wales, Australia. .,School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia.,Priority Research Centre for Reproductive Science, University of Newcastle, Newcastle, New South Wales, Australia.,Cancer Research Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| |
Collapse
|