1
|
Zhao Z, Guo A, Zou D, Li Z, Wei X. Efficient production of spermidine from Bacillus amyloliquefaciens by enhancing synthesis pathway, blocking degradation pathway and increasing precursor supply. J Biotechnol 2025; 398:87-96. [PMID: 39647709 DOI: 10.1016/j.jbiotec.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 11/11/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
Spermidine has broad application potential in food, medicine and other fields. In this study, a novel Bacillus amyloliquefaciens cell factory was constructed for production of spermidine from renewablebiomass resources. Firstly, the speB gene was found to be optimal for synthesis of spermidine, and the function of SpeB was explained by amino acid sequence analysis and molecular docking. By replacing the native promoter of the speEB operon with the P43, the synthesis of spermidine was significantly enhanced in B. amyloliquefaciens HSPM1-P43speEB. After knockout of the genes yobN and bltD associated with spermidine degradation, the spermidine titer of the strain HSPM2 was further improved to 115.96 mg/L, increased by 108 % compared to HSPM1-P43speEB. Subsequently, the titer of spermidine was further increased to 277.47 mg/L through enhancing the supply of the precursor methionine by overexpression of speD. Finally, the renewable biomass resources, xylose and feather meal were optimized to produce spermidine, and the maximum titer is up to 588.10 mg/L after optimization. In conclusion, an efficient spermidine producing B. amyloliquefaciens was constructed through combinatorial metabolic engineering strategies, and the sustainable production of spermidine was achieved using the biomass resources of xylose and feather meal.
Collapse
Affiliation(s)
- Ziyue Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ailing Guo
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Dian Zou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zhou Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xuetuan Wei
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
2
|
Li Z, Chen L, Qu L, Yu W, Liu T, Ning F, Li J, Guo X, Sun F, Sun B, Luo L. Potential implications of natural compounds on aging and metabolic regulation. Ageing Res Rev 2024; 101:102475. [PMID: 39222665 DOI: 10.1016/j.arr.2024.102475] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Aging is generally accompanied by a progressive loss of metabolic homeostasis. Targeting metabolic processes is an attractive strategy for healthy-aging. Numerous natural compounds have demonstrated strong anti-aging effects. This review summarizes recent findings on metabolic pathways involved in aging and explores the anti-aging effects of natural compounds by modulating these pathways. The potential anti-aging effects of natural extracts rich in biologically active compounds are also discussed. Regulating the metabolism of carbohydrates, proteins, lipids, and nicotinamide adenine dinucleotide is an important strategy for delaying aging. Furthermore, phenolic compounds, terpenoids, alkaloids, and nucleotide compounds have shown particularly promising effects on aging, especially with respect to metabolism regulation. Moreover, metabolomics is a valuable tool for uncovering potential targets against aging. Future research should focus on identifying novel natural compounds that regulate human metabolism and should delve deeper into the mechanisms of metabolic regulation using metabolomics methods, aiming to delay aging and extend lifespan.
Collapse
Affiliation(s)
- Zhuozhen Li
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Lili Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; School of Life Science, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Liangliang Qu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Wenjie Yu
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Tao Liu
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Fangjian Ning
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jinwang Li
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Xiali Guo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Fengjie Sun
- Department of Biological Sciences, School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA 30043, USA
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Liping Luo
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
3
|
Mundo Rivera VM, Tlacuahuac Juárez JR, Murillo Melo NM, Leyva Garcia N, Magaña JJ, Cordero Martínez J, Jiménez Gutierrez GE. Natural Autophagy Activators to Fight Age-Related Diseases. Cells 2024; 13:1611. [PMID: 39404375 PMCID: PMC11476028 DOI: 10.3390/cells13191611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
The constant increase in the elderly population presents significant challenges in addressing new social, economic, and health problems concerning this population. With respect to health, aging is a primary risk factor for age-related diseases, which are driven by interconnected molecular hallmarks that influence the development of these diseases. One of the main mechanisms that has attracted more attention to aging is autophagy, a catabolic process that removes and recycles damaged or dysfunctional cell components to preserve cell viability. The autophagy process can be induced or deregulated in response to a wide range of internal or external stimuli, such as starvation, oxidative stress, hypoxia, damaged organelles, infectious pathogens, and aging. Natural compounds that promote the stimulation of autophagy regulatory pathways, such as mTOR, FoxO1/3, AMPK, and Sirt1, lead to increased levels of essential proteins such as Beclin-1 and LC3, as well as a decrease in p62. These changes indicate the activation of autophagic flux, which is known to be decreased in cardiovascular diseases, neurodegeneration, and cataracts. The regulated administration of natural compounds offers an adjuvant therapeutic alternative in age-related diseases; however, more experimental evidence is needed to support and confirm these health benefits. Hence, this review aims to highlight the potential benefits of natural compounds in regulating autophagy pathways as an alternative approach to combating age-related diseases.
Collapse
Affiliation(s)
- Vianey M. Mundo Rivera
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Ciudad de México, Mexico City 14380, Mexico; (V.M.M.R.); (N.M.M.M.); (J.J.M.)
| | - José Roberto Tlacuahuac Juárez
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Nadia Mireya Murillo Melo
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Ciudad de México, Mexico City 14380, Mexico; (V.M.M.R.); (N.M.M.M.); (J.J.M.)
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico;
| | - Norberto Leyva Garcia
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico;
| | - Jonathan J. Magaña
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Ciudad de México, Mexico City 14380, Mexico; (V.M.M.R.); (N.M.M.M.); (J.J.M.)
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico;
| | - Joaquín Cordero Martínez
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | | |
Collapse
|
4
|
Qiao J, Cai W, Wang K, Haubruge E, Dong J, El-Seedi HR, Xu X, Zhang H. New Insights into Identification, Distribution, and Health Benefits of Polyamines and Their Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5089-5106. [PMID: 38416110 DOI: 10.1021/acs.jafc.3c08556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Polyamines and their derivatives are ubiquitously present in free or conjugated forms in various foods from animal, plant, and microbial origins. The current knowledge of free polyamines in foods and their contents is readily available; furthermore, conjugated polyamines generate considerable recent research interest due to their potential health benefits. The structural diversity of conjugated polyamines results in challenging their qualitative and quantitative analysis in food. Herein, we review and summarize the knowledge published on polyamines and their derivatives in foods, including their identification, sources, quantities, and health benefits. Particularly, facing the inherent challenges of isomer identification in conjugated polyamines, this paper provides a comprehensive overview of conjugated polyamines' structural characteristics, including the cleavage patterns and characteristic ion fragments of MS/MS for isomer identification. Free polyamines are present in all types of food, while conjugated polyamines are limited to plant-derived foods. Spermidine is renowned for antiaging properties, acclaimed as antiaging vitamins. Conjugated polyamines highlight their anti-inflammatory properties and have emerged as the mainstream drugs for antiprostatitis. This paper will likely help us gain better insight into polyamines and their derivatives to further develop functional foods and personalized nutraceuticals.
Collapse
Affiliation(s)
- Jiangtao Qiao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- Terra Research Center, Gembloux Agro-Bio Tech, University of Liege, Gembloux 5030, Belgium
| | - Wenwen Cai
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- College of Food Engineering, Harbin University of Commerce, Harbin 155023, China
| | - Kai Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- Terra Research Center, Gembloux Agro-Bio Tech, University of Liege, Gembloux 5030, Belgium
| | - Eric Haubruge
- Terra Research Center, Gembloux Agro-Bio Tech, University of Liege, Gembloux 5030, Belgium
| | - Jie Dong
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- Key Laboratory of Bee Products for Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Hesham R El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, BMC, Uppsala University, Box 591, SE 75124 Uppsala, Sweden
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Xiang Xu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Hongcheng Zhang
- Key Laboratory of Bee Products for Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| |
Collapse
|
5
|
Fang W, Chen S, Jin X, Liu S, Cao X, Liu B. Metabolomics in aging research: aging markers from organs. Front Cell Dev Biol 2023; 11:1198794. [PMID: 37397261 PMCID: PMC10313136 DOI: 10.3389/fcell.2023.1198794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/02/2023] [Indexed: 07/04/2023] Open
Abstract
Metabolism plays an important role in regulating aging at several levels, and metabolic reprogramming is the main driving force of aging. Due to the different metabolic needs of different tissues, the change trend of metabolites during aging in different organs and the influence of different levels of metabolites on organ function are also different, which makes the relationship between the change of metabolite level and aging more complex. However, not all of these changes lead to aging. The development of metabonomics research has opened a door for people to understand the overall changes in the metabolic level in the aging process of organisms. The omics-based "aging clock" of organisms has been established at the level of gene, protein and epigenetic modifications, but there is still no systematic summary at the level of metabolism. Here, we reviewed the relevant research published in the last decade on aging and organ metabolomic changes, discussed several metabolites with high repetition rate, and explained their role in vivo, hoping to find a group of metabolites that can be used as metabolic markers of aging. This information should provide valuable information for future diagnosis or clinical intervention of aging and age-related diseases.
Collapse
Affiliation(s)
- Weicheng Fang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Shuxin Chen
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Xuejiao Jin
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Xiuling Cao
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Beidong Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
6
|
Francisqueti-Ferron FV, Belin MAF, Palacio TLN, Ferron AJT, Garcia JL, Siqueira JS, Nakandakare-Maia ET, Vieira TA, Kano HT, Moreto F, Lima GPP, Corrêa CR, Minatel IO. Fructose Consumption Alters Biogenic Amines Associated with Cardiovascular Disease Risk Factors. Arq Bras Cardiol 2023; 120:e20220770. [PMID: 37341227 PMCID: PMC10263407 DOI: 10.36660/abc.20220770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/06/2023] [Accepted: 04/05/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Cardiovascular diseases (CVD) are the major cause of mortality worldwide, whose most prominent risk factor is unhealthy eating habits, such as high fructose intake. Biogenic amines (BAs) perform important functions in the human body. However, the effect of fructose consumption on BA levels is still unclear, as is the association between these and CVD risk factors. OBJECTIVE This study aimed to establish the association between BA levels and CVD risk factors in animals that consumed fructose. METHODS Male Wistar rats received standard chow (n=8) or standard chow + fructose in drinking water (30%) (n=8) over a 24-week period. At the end of this period, the nutritional and metabolic syndrome (MS) parameters and plasmatic BA levels were analyzed. A 5% level of significance was adopted. RESULTS Fructose consumption led to MS, reduced the levels of tryptophan and 5-hydroxitryptophan, and increased histamine. Tryptophan, histamine, and dopamine showed a correlation with metabolic syndrome parameters. CONCLUSION Fructose consumption alters BAs associated with CVD risk factors.
Collapse
Affiliation(s)
- Fabiane Valentini Francisqueti-Ferron
- Universidade Estadual Paulista Júlio de Mesquita FilhoFaculdade de MedicinaBotucatuSPBrasilUniversidade Estadual Paulista Júlio de Mesquita Filho Câmpus de Botucatu Faculdade de Medicina, Botucatu, SP – Brasil
| | - Matheus Antônio Filiol Belin
- Universidade Estadual Paulista Júlio de Mesquita FilhoFaculdade de MedicinaBotucatuSPBrasilUniversidade Estadual Paulista Júlio de Mesquita Filho Câmpus de Botucatu Faculdade de Medicina, Botucatu, SP – Brasil
| | - Thiago Luiz Novaga Palacio
- Universidade Estadual Paulista Júlio de Mesquita FilhoFaculdade de MedicinaBotucatuSPBrasilUniversidade Estadual Paulista Júlio de Mesquita Filho Câmpus de Botucatu Faculdade de Medicina, Botucatu, SP – Brasil
| | - Artur Junio Togneri Ferron
- Universidade Estadual Paulista Júlio de Mesquita FilhoFaculdade de MedicinaBotucatuSPBrasilUniversidade Estadual Paulista Júlio de Mesquita Filho Câmpus de Botucatu Faculdade de Medicina, Botucatu, SP – Brasil
| | - Jéssica Leite Garcia
- Universidade Estadual Paulista Júlio de Mesquita FilhoFaculdade de MedicinaBotucatuSPBrasilUniversidade Estadual Paulista Júlio de Mesquita Filho Câmpus de Botucatu Faculdade de Medicina, Botucatu, SP – Brasil
| | - Juliana Silva Siqueira
- Universidade Estadual Paulista Júlio de Mesquita FilhoFaculdade de MedicinaBotucatuSPBrasilUniversidade Estadual Paulista Júlio de Mesquita Filho Câmpus de Botucatu Faculdade de Medicina, Botucatu, SP – Brasil
| | - Erika Tiemi Nakandakare-Maia
- Universidade Estadual Paulista Júlio de Mesquita FilhoFaculdade de MedicinaBotucatuSPBrasilUniversidade Estadual Paulista Júlio de Mesquita Filho Câmpus de Botucatu Faculdade de Medicina, Botucatu, SP – Brasil
| | - Taynara Aparecida Vieira
- Universidade Estadual Paulista Júlio de Mesquita FilhoFaculdade de MedicinaBotucatuSPBrasilUniversidade Estadual Paulista Júlio de Mesquita Filho Câmpus de Botucatu Faculdade de Medicina, Botucatu, SP – Brasil
| | - Hugo Tadashi Kano
- Universidade Estadual Paulista Júlio de Mesquita FilhoFaculdade de MedicinaBotucatuSPBrasilUniversidade Estadual Paulista Júlio de Mesquita Filho Câmpus de Botucatu Faculdade de Medicina, Botucatu, SP – Brasil
| | - Fernando Moreto
- Universidade Estadual Paulista Júlio de Mesquita FilhoFaculdade de MedicinaBotucatuSPBrasilUniversidade Estadual Paulista Júlio de Mesquita Filho Câmpus de Botucatu Faculdade de Medicina, Botucatu, SP – Brasil
| | - Giuseppina Pace Pereira Lima
- Universidade Estadual Paulista Júlio de Mesquita FilhoFaculdade de MedicinaBotucatuSPBrasilUniversidade Estadual Paulista Júlio de Mesquita Filho Câmpus de Botucatu Faculdade de Medicina, Botucatu, SP – Brasil
| | - Camila Renata Corrêa
- Universidade Estadual Paulista Júlio de Mesquita FilhoFaculdade de MedicinaBotucatuSPBrasilUniversidade Estadual Paulista Júlio de Mesquita Filho Câmpus de Botucatu Faculdade de Medicina, Botucatu, SP – Brasil
| | - Igor Otavio Minatel
- Universidade Estadual Paulista Júlio de Mesquita FilhoFaculdade de MedicinaBotucatuSPBrasilUniversidade Estadual Paulista Júlio de Mesquita Filho Câmpus de Botucatu Faculdade de Medicina, Botucatu, SP – Brasil
| |
Collapse
|
7
|
Jiao Y, Zhou Y, Liu S, Yang D, Li J, Sun L, Cui Z. The Effect of Oat Hay, Alfalfa Hay, and Their Combined Diets on the Morphology and Function of the Pancreas in Preweaning Yak Calves. Animals (Basel) 2023; 13:ani13020293. [PMID: 36670833 PMCID: PMC9855006 DOI: 10.3390/ani13020293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/08/2023] [Accepted: 01/12/2023] [Indexed: 01/17/2023] Open
Abstract
In this study, we used a combination of animal nutrition and nontargeted metabolomics to investigate the effects of feeding different sources forages rations on the morphology and function of the pancreas in preweaning yak calves, providing theoretical guidance and important references for the healthy and high-quality rearing of yak calves. At 45 days old, 21 yak calf males were divided into OP, AP, and AOP groups, with seven animals in each group, which were fed with oat hay, alfalfa hay, and mixed oat and alfalfa hay, respectively. Five calves from each group were selected randomly to slaughter after a pretest period of 21 days and the official period of 120 days, when the average daily feed intake reached 1 kg. During the test, the growth and pancreas weight of yak calves were recorded, and the morphology and function of the pancreas tissues were determined using tissue sectioning methods, enzyme-linked immunosorbent assay (ELISA) tests, and nontargeted metabolomics strategies. The results showed that the body weight and pancreatic organ index of yak calves in the AOP group were significantly higher than those of the AP and OP groups. Compared to the AP and OP groups, the AOP group had considerably lower ratios of the area of the pancreatic endocrine component and overall percentage of that section of the organ, and the AOP group increased pancreatic amylase activity and a higher concentration of growth inhibitor. The AP group had significantly higher levels of the differential metabolites L-ascorbic acid, spermidine, spermine, and dopaquinone in the glutathione, β-alanine, and tyrosine metabolic pathways than the OP group. The AOP group had significantly lower levels of the differential metabolites spermine and phenylacetylglycine in the glutathione and phenylalanine metabolic pathways than the AP group. In summary, compared to feeding oat or alfalfa hay alone, combined feeding oat hay and alfalfa hay is more beneficial to promote the morphological and functional development of the pancreas in preweaning yak calves, so as to enhance the digestion and absorption of nutrients in the diet and maintain the positive regulation of blood glucose levels. This provides an important basis for the optimized forage supply of healthy and high-quality rearing in preweaning yak calves.
Collapse
Affiliation(s)
- Yang Jiao
- Qinghai Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining 810016, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Animal Nutrition and Forage-Feed of Grazing Yak and Tibetan Sheep in Qinghai-Tibetan Plateau, Xining 810016, China
- Yak Engineering Technology Research Center of Qinghai Province, Xining 810016, China
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xining 810016, China
| | - Yanan Zhou
- Qinghai Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining 810016, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Animal Nutrition and Forage-Feed of Grazing Yak and Tibetan Sheep in Qinghai-Tibetan Plateau, Xining 810016, China
- Yak Engineering Technology Research Center of Qinghai Province, Xining 810016, China
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xining 810016, China
| | - Shujie Liu
- Qinghai Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining 810016, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Animal Nutrition and Forage-Feed of Grazing Yak and Tibetan Sheep in Qinghai-Tibetan Plateau, Xining 810016, China
- Yak Engineering Technology Research Center of Qinghai Province, Xining 810016, China
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xining 810016, China
| | - Deyu Yang
- Qinghai Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining 810016, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Animal Nutrition and Forage-Feed of Grazing Yak and Tibetan Sheep in Qinghai-Tibetan Plateau, Xining 810016, China
- Yak Engineering Technology Research Center of Qinghai Province, Xining 810016, China
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xining 810016, China
| | - Jilan Li
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Lu Sun
- Qinghai Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining 810016, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Animal Nutrition and Forage-Feed of Grazing Yak and Tibetan Sheep in Qinghai-Tibetan Plateau, Xining 810016, China
- Yak Engineering Technology Research Center of Qinghai Province, Xining 810016, China
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xining 810016, China
| | - Zhanhong Cui
- Qinghai Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining 810016, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Animal Nutrition and Forage-Feed of Grazing Yak and Tibetan Sheep in Qinghai-Tibetan Plateau, Xining 810016, China
- Yak Engineering Technology Research Center of Qinghai Province, Xining 810016, China
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xining 810016, China
- Correspondence:
| |
Collapse
|
8
|
Pang L, Jiang X, Lian X, Chen J, Song EF, Jin LG, Xia ZY, Ma HC, Cai Y. Caloric restriction-mimetics for the reduction of heart failure risk in aging heart: with consideration of gender-related differences. Mil Med Res 2022; 9:33. [PMID: 35786219 PMCID: PMC9252041 DOI: 10.1186/s40779-022-00389-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 05/30/2022] [Indexed: 11/10/2022] Open
Abstract
The literature is full of claims regarding the consumption of polyphenol or polyamine-rich foods that offer some protection from developing cardiovascular disease (CVD). This is achieved by preventing cardiac hypertrophy and protecting blood vessels through improving the function of endothelium. However, do these interventions work in the aged human hearts? Cardiac aging is accompanied by an increase in left ventricular hypertrophy, along with diastolic and systolic dysfunction. It also confers significant cardiovascular risks for both sexes. The incidence and prevalence of CVD increase sharply at an earlier age in men than women. Furthermore, the patterns of heart failure differ between sexes, as do the lifetime risk factors. Do caloric restriction (CR)-mimetics, rich in polyphenol or polyamine, delay or reverse cardiac aging equally in both men and women? This review will discuss three areas: (1) mechanisms underlying age-related cardiac remodeling; (2) gender-related differences and potential mechanisms underlying diminished cardiac response in older men and women; (3) we select a few polyphenol or polyamine rich compounds as the CR-mimetics, such as resveratrol, quercetin, curcumin, epigallocatechin gallate and spermidine, due to their capability to extend health-span and induce autophagy. We outline their abilities and issues on retarding aging in animal hearts and preventing CVD in humans. We discuss the confounding factors that should be considered for developing therapeutic strategies against cardiac aging in humans.
Collapse
Affiliation(s)
- Lei Pang
- Department of Anesthesiology, the First Hospital of Jilin University, Changchun, 130021, China
| | - Xi Jiang
- Health Promotion Center, the First Hospital of Jilin University, Changchun, 130021, China
| | - Xin Lian
- Department of Urology, the First Hospital of Jilin University, Changchun, 130021, China
| | - Jie Chen
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, 512000, Guangdong, China
| | - Er-Fei Song
- Department of Metabolic and Bariatric Surgery, Jinan University First Affiliated Hospital, Guangzhou, 510630, China.,Department of Medicine, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Lei-Gang Jin
- Department of Medicine, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong, China.,State Key Laboratory of Pharmaceutical Biotechnology, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Zheng-Yuan Xia
- State Key Laboratory of Pharmaceutical Biotechnology, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong, China.,Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China
| | - Hai-Chun Ma
- Department of Anesthesiology, the First Hospital of Jilin University, Changchun, 130021, China.
| | - Yin Cai
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
9
|
Kambis TN, Tofilau HMN, Gawargi FI, Chandra S, Mishra PK. Regulating Polyamine Metabolism by miRNAs in Diabetic Cardiomyopathy. Curr Diab Rep 2021; 21:52. [PMID: 34902085 PMCID: PMC8668854 DOI: 10.1007/s11892-021-01429-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/22/2021] [Indexed: 11/08/2022]
Abstract
PURPOSE OF REVIEW Insulin is at the heart of diabetes mellitus (DM). DM alters cardiac metabolism causing cardiomyopathy, ultimately leading to heart failure. Polyamines, organic compounds synthesized by cardiomyocytes, have an insulin-like activity and effect on glucose metabolism, making them metabolites of interest in the DM heart. This review sheds light on the disrupted microRNA network in the DM heart in relation to developing novel therapeutics targeting polyamine biosynthesis to prevent/mitigate diabetic cardiomyopathy. RECENT FINDINGS Polyamines prevent DM-induced upregulation of glucose and ketone body levels similar to insulin. Polyamines also enhance mitochondrial respiration and thereby regulate all major metabolic pathways. Non-coding microRNAs regulate a majority of the biological pathways in our body by modulating gene expression via mRNA degradation or translational repression. However, the role of miRNA in polyamine biosynthesis in the DM heart remains unclear. This review discusses the regulation of polyamine synthesis and metabolism, and its impact on cardiac metabolism and circulating levels of glucose, insulin, and ketone bodies. We provide insights on potential roles of polyamines in diabetic cardiomyopathy and putative miRNAs that could regulate polyamine biosynthesis in the DM heart. Future studies will unravel the regulatory roles these miRNAs play in polyamine biosynthesis and will open new doors in the prevention/treatment of adverse cardiac remodeling in diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Tyler N Kambis
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | | | - Flobater I Gawargi
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Surabhi Chandra
- Department of Biology, University of Nebraska-Kearney, Kearney, NE, 68845, USA
| | - Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
10
|
Ni YQ, Liu YS. New Insights into the Roles and Mechanisms of Spermidine in Aging and Age-Related Diseases. Aging Dis 2021; 12:1948-1963. [PMID: 34881079 PMCID: PMC8612618 DOI: 10.14336/ad.2021.0603] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022] Open
Abstract
High incidences of morbidity and mortality associated with age-related diseases among the elderly population are a socio-economic challenge. Aging is an irreversible and inevitable process that is a risk factor for pathological progression of diverse age-related diseases. Spermidine, a natural polyamine, plays a critical role in molecular and cellular interactions involved in various physiological and functional processes. Spermidine has been shown to modulate aging, suppress the occurrence and severity of age-related diseases, and prolong lifespan. However, the precise mechanisms through which spermidine exerts its anti-aging effects have not been established. In this review, we elucidate on the mechanisms and roles underlying the beneficial effects of spermidine in aging from a molecular and cellular perspective. Moreover, we provide new insights into the promising potential diagnostic and therapeutic applications of spermidine in aging and age-related diseases.
Collapse
Affiliation(s)
- Yu-Qing Ni
- 1Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,2Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, China
| | - You-Shuo Liu
- 1Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,2Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, China
| |
Collapse
|
11
|
Hilse MS, Kretzschmar T, Pistulli R, Franz M, Bekfani T, Haase D, Neugebauer S, Kiehntopf M, Gummert JF, Milting H, Schulze PC. Analysis of Metabolic Markers in Patients with Chronic Heart Failure before and after LVAD Implantation. Metabolites 2021; 11:metabo11090615. [PMID: 34564430 PMCID: PMC8465815 DOI: 10.3390/metabo11090615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/26/2021] [Accepted: 09/06/2021] [Indexed: 12/22/2022] Open
Abstract
Chronic heart failure (HF) is a clinical syndrome characterized by functional impairments of the myocardium. Metabolic and clinical changes develop with disease progression. In an advanced state, left ventricular assist devices (LVADs) are implanted for mechanical unloading. Our study aimed to assess the effects of LVAD implantation on the metabolic phenotypes and their potential to reverse the latter in patients with advanced HF. Plasma metabolites were analyzed by LC–MS/MS in 20 patients with ischemic cardiomyopathy (ICM), 20 patients with dilative cardiomyopathy (DCM), and 20 healthy controls. Samples were collected in HF patients before, 30 days after, and >100 days after LVAD implantation. Out of 188 measured metabolites, 63 were altered in HF. Only three metabolites returned to pre-LVAD concentrations 100 days after LVAD implantation. Pre-LVAD differences between DCM and ICM were mainly observed for amino acids and biogenic amines. This study shows a reversal of metabolite abnormalities in HF as a result of LVAD implantation. The etiology of the underlying disease plays an essential role in defining which specific metabolic parameter is altered in HF and reversed by LVAD implantation. Our findings provide a detailed insight into the disease pattern of ICM and DCM and the potential for reversibility of metabolic abnormalities in HF.
Collapse
Affiliation(s)
- Marion S. Hilse
- Department of Internal Medicine I, Division of Cardiology, University Hospital Jena, 07747 Jena, Germany; (M.S.H.); (T.K.); (M.F.); (D.H.)
| | - Tom Kretzschmar
- Department of Internal Medicine I, Division of Cardiology, University Hospital Jena, 07747 Jena, Germany; (M.S.H.); (T.K.); (M.F.); (D.H.)
| | - Rudin Pistulli
- Department of Cardiology I—Coronary and Peripheral Vascular Disease, Heart Failure, Münster University Hospital, 48149 Münster, Germany;
| | - Marcus Franz
- Department of Internal Medicine I, Division of Cardiology, University Hospital Jena, 07747 Jena, Germany; (M.S.H.); (T.K.); (M.F.); (D.H.)
| | - Tarek Bekfani
- Department of Internal Medicine I, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Magdeburg, 39120 Magdeburg, Germany;
| | - Daniela Haase
- Department of Internal Medicine I, Division of Cardiology, University Hospital Jena, 07747 Jena, Germany; (M.S.H.); (T.K.); (M.F.); (D.H.)
| | - Sophie Neugebauer
- Department of Clinical Chemistry and Laboratory Diagnostics, University Hospital Jena, 07747 Jena, Germany; (S.N.); (M.K.)
| | - Michael Kiehntopf
- Department of Clinical Chemistry and Laboratory Diagnostics, University Hospital Jena, 07747 Jena, Germany; (S.N.); (M.K.)
| | - Jan F. Gummert
- Heart and Diabetes Center NRW, 32545 Bad Oeynhausen, Germany; (J.F.G.); (H.M.)
| | - Hendrik Milting
- Heart and Diabetes Center NRW, 32545 Bad Oeynhausen, Germany; (J.F.G.); (H.M.)
| | - P. Christian Schulze
- Department of Internal Medicine I, Division of Cardiology, University Hospital Jena, 07747 Jena, Germany; (M.S.H.); (T.K.); (M.F.); (D.H.)
- Correspondence: ; Tel.: +49-3641-9-32-41-00
| |
Collapse
|
12
|
Yan M, Sun S, Xu K, Huang X, Dou L, Pang J, Tang W, Shen T, Li J. Cardiac Aging: From Basic Research to Therapeutics. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9570325. [PMID: 33777324 PMCID: PMC7969106 DOI: 10.1155/2021/9570325] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 02/07/2021] [Accepted: 02/11/2021] [Indexed: 01/12/2023]
Abstract
With research progress on longevity, we have gradually recognized that cardiac aging causes changes in heart structure and function, including progressive myocardial remodeling, left ventricular hypertrophy, and decreases in systolic and diastolic function. Elucidating the regulatory mechanisms of cardiac aging is a great challenge for biologists and physicians worldwide. In this review, we discuss several key molecular mechanisms of cardiac aging and possible prevention and treatment methods developed in recent years. Insights into the process and mechanism of cardiac aging are necessary to protect against age-related diseases, extend lifespan, and reduce the increasing burden of cardiovascular disease in elderly individuals. We believe that research on cardiac aging is entering a new era of unique significance for the progress of clinical medicine and social welfare.
Collapse
Affiliation(s)
- Mingjing Yan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
- Peking University Fifth School of Clinical Medicine, Beijing 100730, China
| | - Shenghui Sun
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Kun Xu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiuqing Huang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Lin Dou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jing Pang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Weiqing Tang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Tao Shen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
- Peking University Fifth School of Clinical Medicine, Beijing 100730, China
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
- Peking University Fifth School of Clinical Medicine, Beijing 100730, China
| |
Collapse
|
13
|
Kretzschmar T, Wu JMF, Schulze PC. Mitochondrial Homeostasis Mediates Lipotoxicity in the Failing Myocardium. Int J Mol Sci 2021; 22:1498. [PMID: 33540894 PMCID: PMC7867320 DOI: 10.3390/ijms22031498] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 01/17/2023] Open
Abstract
Heart failure remains the most common cause of death in the industrialized world. In spite of new therapeutic interventions that are constantly being developed, it is still not possible to completely protect against heart failure development and progression. This shows how much more research is necessary to understand the underlying mechanisms of this process. In this review, we give a detailed overview of the contribution of impaired mitochondrial dynamics and energy homeostasis during heart failure progression. In particular, we focus on the regulation of fatty acid metabolism and the effects of fatty acid accumulation on mitochondrial structural and functional homeostasis.
Collapse
Affiliation(s)
| | | | - P. Christian Schulze
- Department of Internal Medicine I, University Hospital Jena, 07747 Jena, Thüringen, Germany; (T.K.); (J.M.F.W.)
| |
Collapse
|
14
|
Madeo F, Hofer SJ, Pendl T, Bauer MA, Eisenberg T, Carmona-Gutierrez D, Kroemer G. Nutritional Aspects of Spermidine. Annu Rev Nutr 2020; 40:135-159. [DOI: 10.1146/annurev-nutr-120419-015419] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Natural polyamines (spermidine and spermine) are small, positively charged molecules that are ubiquitously found within organisms and cells. They exert numerous (intra)cellular functions and have been implicated to protect against several age-related diseases. Although polyamine levels decline in a complex age-dependent, tissue-, and cell type–specific manner, they are maintained in healthy nonagenarians and centenarians. Increased polyamine levels, including through enhanced dietary intake, have been consistently linked to improved health and reduced overall mortality. In preclinical models, dietary supplementation with spermidine prolongs life span and health span. In this review, we highlight salient aspects of nutritional polyamine intake and summarize the current knowledge of organismal and cellular uptake and distribution of dietary (and gastrointestinal) polyamines and their impact on human health. We further summarize clinical and epidemiological studies of dietary polyamines.
Collapse
Affiliation(s)
- Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
| | - Sebastian J. Hofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Tobias Pendl
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Maria A. Bauer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Tobias Eisenberg
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
- Central Lab Graz Cell Informatics and Analyses (GRACIA), NAWI Graz, University of Graz, 8010 Graz, Austria
| | | | - Guido Kroemer
- Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, F-94805 Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, F-75015 Paris, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Jiangsu 215163, Suzhou, China
- Department of Women's and Children's Health, Karolinska Institute, Karolinska University, S-17177 Solna, Sweden
| |
Collapse
|
15
|
Wang J, Li S, Wang J, Wu F, Chen Y, Zhang H, Guo Y, Lin Y, Li L, Yu X, Liu T, Zhao Y. Spermidine alleviates cardiac aging by improving mitochondrial biogenesis and function. Aging (Albany NY) 2020; 12:650-671. [PMID: 31907336 PMCID: PMC6977682 DOI: 10.18632/aging.102647] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 12/23/2019] [Indexed: 05/08/2023]
Abstract
Polyamines have been shown to delay cellular and organismal aging and to provide cardiovascular protection in humans. Because age-related cardiovascular dysfunction is often accompanied by impaired mitochondrial biogenesis and function, we explored the ability of spermidine (SPD), a major mammalian polyamine, to attenuate cardiac aging through activation of mitochondrial biogenesis. Cardiac polyamine levels were reduced in aged (24-month-old) rats. Six-week SPD supplementation restored cardiac polyamine content, preserved myocardial ultrastructure, and inhibited mitochondrial dysfunction. Immunoblotting showed that ornithine decarboxylase (ODC) and SPD/spermine N1-acetyltransferase (SSAT) were downregulated and upregulated, respectively, in the myocardium of older rats. These changes were paralleled by age-dependent downregulation of components of the sirtuin-1/peroxisome proliferator-activated receptor gamma coactivator alpha (SIRT1/PGC-1α) signaling pathway, an important regulator of mitochondrial biogenesis. SPD administration increased SIRT1, PGC-1α, nuclear respiratory factors 1 and 2 (NRF1, NRF2), and mitochondrial transcription factor A (TFAM) expression; decreased ROS production; and improved OXPHOS performance in senescent (H2O2-treated) cardiomyocytes. Inhibition of polyamine biosynthesis or SIRT1 activity abolished these effects. PGC-1α knockdown experiments confirmed that SPD activated mitochondrial biogenesis through SIRT1-mediated deacetylation of PGC-1α. These data provide new insight into the antiaging effects of SPD, and suggest potential applicability to protect against deterioration of cardiac function with aging.
Collapse
Affiliation(s)
- Junying Wang
- Department of Pathophysiology, Harbin Medical University, Harbin, China
- Department of Medical Technology, Beijing Health Vocational College, Beijing, China
| | - Shaoqi Li
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Ju Wang
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Feixiang Wu
- Department of Pathophysiology, Harbin Medical University, Harbin, China
- Affiliated Hospital of Hebei University, Baoding, China
| | - Yuhan Chen
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Hao Zhang
- Department of Pathophysiology, Harbin Medical University, Harbin, China
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yubo Guo
- The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yan Lin
- Department of Pathophysiology, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Lingxu Li
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Xue Yu
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Ting Liu
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Yajun Zhao
- Department of Pathophysiology, Harbin Medical University, Harbin, China
- Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Ministry of Education, Harbin, China
| |
Collapse
|
16
|
Ocaña-Wilhelmi L, Cardona F, Garrido-Sanchez L, Fernandez-Garcia D, Tinahones FJ, Ramos-Molina B. Change in serum polyamine metabolome pattern after bariatric surgery in obese patients with metabolic syndrome. Surg Obes Relat Dis 2019; 16:306-311. [PMID: 31813775 DOI: 10.1016/j.soard.2019.10.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Recent works have reported that bariatric surgery has remarkable effects on the metabolome, which might be potentially associated to the metabolic improvement of this procedure in patients with obesity. Serum polyamines, metabolites derived from amino acid metabolism, have been recently related to the metabolic status in obese individuals. However, the impact of bariatric surgery on the circulating levels of polyamines remains elusive. OBJECTIVE To evaluate the effect of bariatric surgery on serum polyamine levels and to evaluate the association of changes in these molecules with metabolic improvement in patients with morbid obesity. SETTING Virgen de la Victoria University Hospital, Malaga, Spain. METHODS This study included 32 morbidly obese patients (weight index ≥40 kg/m2) with metabolic syndrome, who underwent sleeve gastrectomy. Serum levels of polyamines (putrescine, spermidine, and spermine), acetylpolyamines, and polyamine-related amino acids (arginine and ornithine) were assessed at baseline and 6 months after bariatric surgery, and were analyzed in an ultraperformance liquid chromatography-mass spectrometry platform. RESULTS Our metabolomic analysis revealed a significant rise in several metabolites related to the polyamine metabolism, such as putrescine and acetyl derivatives of spermidine and spermine in serum samples from morbidly obese patients after bariatric surgery. Changes in serum levels of both putrescine and acetylputrescine were associated to the resolution of metabolic syndrome after surgery. CONCLUSION Our study indicates that bariatric surgery affects the serum polyamine pattern and the resolution of metabolic syndrome after bariatric surgery is associated to specific changes in the serum polyamine metabolome.
Collapse
Affiliation(s)
- Luis Ocaña-Wilhelmi
- Unidad de Cirugía Metabólica, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Fernando Cardona
- Unidad Gestión Clínica Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
| | - Lourdes Garrido-Sanchez
- Unidad Gestión Clínica Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
| | - Diego Fernandez-Garcia
- Unidad Gestión Clínica Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Francisco J Tinahones
- Unidad Gestión Clínica Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain.
| | - Bruno Ramos-Molina
- Unidad Gestión Clínica Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
17
|
Phadwal K, Feng D, Zhu D, MacRae VE. Autophagy as a novel therapeutic target in vascular calcification. Pharmacol Ther 2019; 206:107430. [PMID: 31647975 DOI: 10.1016/j.pharmthera.2019.107430] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2019] [Indexed: 02/07/2023]
Abstract
The autophagy pathway is a key regulator of cellular metabolism and homeostasis, and plays a critical role in maintaining normal vascular cell function. It is well recognised that autophagy can regulate endothelial cell homeostasis, vascular smooth muscle cell (VSMC) phenotype transition, and calcium (Ca2+) homeostasis in VSMCs. Emerging evidence has demonstrated that autophagy directly protects against vascular calcification (VC). Crosstalk between endosomes, dysfunctional mitochondria, autophagic vesicles and Ca2+ and phosphate (Pi) enriched matrix vesicles (MVs) may underpin the pathogenesis of VC. In this review, we summarize the current experimental evidence in understanding how autophagy maintains normal vascular cell function and its protective role against vascular calcification. We also discuss the underlying molecular and cellular mechanisms through which autophagy inhibits vascular calcification. Pharmacological modulation of autophagy may offer an exciting new strategy for the treatment of vascular calcification.
Collapse
Affiliation(s)
- Kanchan Phadwal
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Du Feng
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation; State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511436, China.
| | - Dongxing Zhu
- Guangzhou Institute of Cardiovascular Diseases, The Second Affiliated Hospital, Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Vicky E MacRae
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| |
Collapse
|
18
|
Abstract
Cardiac ageing manifests as a decline in function leading to heart failure. At the cellular level, ageing entails decreased replicative capacity and dysregulation of cellular processes in myocardial and nonmyocyte cells. Various extrinsic parameters, such as lifestyle and environment, integrate important signalling pathways, such as those involving inflammation and oxidative stress, with intrinsic molecular mechanisms underlying resistance versus progression to cellular senescence. Mitigation of cardiac functional decline in an ageing organism requires the activation of enhanced maintenance and reparative capacity, thereby overcoming inherent endogenous limitations to retaining a youthful phenotype. Deciphering the molecular mechanisms underlying dysregulation of cellular function and renewal reveals potential interventional targets to attenuate degenerative processes at the cellular and systemic levels to improve quality of life for our ageing population. In this Review, we discuss the roles of extrinsic and intrinsic factors in cardiac ageing. Animal models of cardiac ageing are summarized, followed by an overview of the current and possible future treatments to mitigate the deleterious effects of cardiac ageing.
Collapse
|
19
|
Muñoz-Esparza NC, Latorre-Moratalla ML, Comas-Basté O, Toro-Funes N, Veciana-Nogués MT, Vidal-Carou MC. Polyamines in Food. Front Nutr 2019; 6:108. [PMID: 31355206 PMCID: PMC6637774 DOI: 10.3389/fnut.2019.00108] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/28/2019] [Indexed: 12/17/2022] Open
Abstract
The polyamines spermine, spermidine, and putrescine are involved in various biological processes, notably in cell proliferation and differentiation, and also have antioxidant properties. Dietary polyamines have important implications in human health, mainly in the intestinal maturation and in the differentiation and development of immune system. The antioxidant and anti-inflammatory effect of polyamine can also play an important role in the prevention of chronic diseases such as cardiovascular diseases. In addition to endogenous synthesis, food is an important source of polyamines. Although there are no recommendations for polyamine daily intake, it is known that in stages of rapid cell growth (i.e., in the neonatal period), polyamine requirements are high. Additionally, de novo synthesis of polyamines tends to decrease with age, which is why their dietary sources acquire a greater importance in an aging population. Polyamine daily intake differs among to the available estimations, probably due to different dietary patterns and methodologies of data collection. Polyamines can be found in all types of foods in a wide range of concentrations. Spermidine and spermine are naturally present in food whereas putrescine could also have a microbial origin. The main polyamine in plant-based products is spermidine, whereas spermine content is generally higher in animal-derived foods. This article reviews the main implications of polyamines for human health, as well as their content in food and breast milk and infant formula. In addition, the estimated levels of polyamines intake in different populations are provided.
Collapse
Affiliation(s)
- Nelly C. Muñoz-Esparza
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona (UB), Barcelona, Spain
- Research Institute of Nutrition and Food Safety of the University of Barcelona (INSA·UB), Barcelona, Spain
- Catalonian Reference Network on Food Technology (XaRTA), Barcelona, Spain
| | - M. Luz Latorre-Moratalla
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona (UB), Barcelona, Spain
- Research Institute of Nutrition and Food Safety of the University of Barcelona (INSA·UB), Barcelona, Spain
- Catalonian Reference Network on Food Technology (XaRTA), Barcelona, Spain
| | - Oriol Comas-Basté
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona (UB), Barcelona, Spain
- Research Institute of Nutrition and Food Safety of the University of Barcelona (INSA·UB), Barcelona, Spain
- Catalonian Reference Network on Food Technology (XaRTA), Barcelona, Spain
| | - Natalia Toro-Funes
- Eurecat, Technological Unit of Nutrition and Health, Technology Centre of Catalonia, Reus, Spain
| | - M. Teresa Veciana-Nogués
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona (UB), Barcelona, Spain
- Research Institute of Nutrition and Food Safety of the University of Barcelona (INSA·UB), Barcelona, Spain
- Catalonian Reference Network on Food Technology (XaRTA), Barcelona, Spain
| | - M. Carmen Vidal-Carou
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona (UB), Barcelona, Spain
- Research Institute of Nutrition and Food Safety of the University of Barcelona (INSA·UB), Barcelona, Spain
- Catalonian Reference Network on Food Technology (XaRTA), Barcelona, Spain
| |
Collapse
|
20
|
Horie Y, Goto A, Tsubuku S, Itoh M, Ikegawa S, Ogawa S, Higashi T. Changes in Polyamine Content in Rice Bran due to Fermentation with Aspergillus oryzae Analyzed by LC/ESI-MS/MS Combined with Derivatization. ANAL SCI 2019; 35:427-432. [PMID: 30584182 DOI: 10.2116/analsci.18p483] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Many studies have demonstrated that the dietary supplementation of polyamines, especially spermidine (SPD), prevents age-related diseases. Rice bran is rich in polyamines and their amounts could be increased by fermentation with Aspergillus oryzae (A. oryzae). In this study, we developed a method for the determination of putrescine (PUT), SPD and spermine (SPM) in rice bran samples by liquid chromatography/electrospray ionization-tandem mass spectrometry (LC/ESI-MS/MS) after derivatization with 4-(N,N-dimethylaminosulfonyl)-7-fluoro-2,1,3-benzoxadiazole (DBD-F). The derivatization improved the LC retention and ESI-MS/MS detectability of the polyamines, and consequently enabled precise and accurate quantification. Using this method, we found that the SPD content increased to 158% due to fermentation with A. oryzae, while the content of PUT and SPM decreased. SPD is known as the polyamine playing a central role in cell proliferation and growth, and therefore has health benefits. The fermented rice bran might be a good material for functional foods aimed at SPD supplementation.
Collapse
Affiliation(s)
- Yukiko Horie
- Faculty of Pharmaceutical Sciences, Tokyo University of Science.,Research and Development Division, Koken Co., Ltd
| | - Ayaka Goto
- Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Sumi Tsubuku
- Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Mari Itoh
- Research and Development Division, Koken Co., Ltd
| | | | - Shoujiro Ogawa
- Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Tatsuya Higashi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science
| |
Collapse
|
21
|
Ramos-Molina B, Queipo-Ortuño MI, Lambertos A, Tinahones FJ, Peñafiel R. Dietary and Gut Microbiota Polyamines in Obesity- and Age-Related Diseases. Front Nutr 2019; 6:24. [PMID: 30923709 PMCID: PMC6426781 DOI: 10.3389/fnut.2019.00024] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/20/2019] [Indexed: 12/14/2022] Open
Abstract
The polyamines putrescine, spermidine, and spermine are widely distributed polycationic compounds essential for cellular functions. Intracellular polyamine pools are tightly regulated by a complex regulatory mechanism involving de novo biosynthesis, catabolism, and transport across the plasma membrane. In mammals, both the production of polyamines and their uptake from the extracellular space are controlled by a set of proteins named antizymes and antizyme inhibitors. Dysregulation of polyamine levels has been implicated in a variety of human pathologies, especially cancer. Additionally, decreases in the intracellular and circulating polyamine levels during aging have been reported. The differences in the polyamine content existing among tissues are mainly due to the endogenous polyamine metabolism. In addition, a part of the tissue polyamines has its origin in the diet or their production by the intestinal microbiome. Emerging evidence has suggested that exogenous polyamines (either orally administrated or synthetized by the gut microbiota) are able to induce longevity in mice, and that spermidine supplementation exerts cardioprotective effects in animal models. Furthermore, the administration of either spermidine or spermine has been shown to be effective for improving glucose homeostasis and insulin sensitivity and reducing adiposity and hepatic fat accumulation in diet-induced obesity mouse models. The exogenous addition of agmatine, a cationic molecule produced through arginine decarboxylation by bacteria and plants, also exerts significant effects on glucose metabolism in obese models, as well as cardioprotective effects. In this review, we will discuss some aspects of polyamine metabolism and transport, how diet can affect circulating and local polyamine levels, and how the modulation of either polyamine intake or polyamine production by gut microbiota can be used for potential therapeutic purposes.
Collapse
Affiliation(s)
- Bruno Ramos-Molina
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research of Malaga, University and Malaga, Malaga, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Maria Isabel Queipo-Ortuño
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III (ISCIII), Madrid, Spain.,Department of Medical Oncology, Virgen de la Victoria University Hospital, Institute of Biomedical Research of Malaga, University and Malaga, Malaga, Spain
| | - Ana Lambertos
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Murcia, Spain.,Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Francisco J Tinahones
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research of Malaga, University and Malaga, Malaga, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Rafael Peñafiel
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Murcia, Spain.,Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| |
Collapse
|
22
|
Pietrocola F, Castoldi F, Kepp O, Carmona-Gutierrez D, Madeo F, Kroemer G. Spermidine reduces cancer-related mortality in humans. Autophagy 2018; 15:362-365. [PMID: 30354939 DOI: 10.1080/15548627.2018.1539592] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A recent prospective epidemiological study suggested that an increase in the nutritional uptake of the natural polyamine spermidine is associated with reduced overall and cancer-specific mortality. Here, we speculate through which mechanisms spermidine might exert such oncopreventive effects. Abbreviations: ACLY, ATP citrate lyase; ATG, autophagy-related gene; CoA, coenzyme A; NSCLC, non-small cell lung cancer.
Collapse
Affiliation(s)
- Federico Pietrocola
- a Institute for Research in Biomedicine , Barcelona , Spain.,b INSERM, U1138 , Paris , France
| | - Francesca Castoldi
- b INSERM, U1138 , Paris , France.,c Gustave Roussy Cancer Campus , Villejuif , France.,d Equipe 11 labellisée par la Ligue Nationale contre le Cancer , Centre de Recherche des Cordeliers , Paris , France.,e Université Paris Descartes/Paris V, Sorbonne Paris Cité , Paris , France.,f Metabolomics and Cell Biology Platforms , Gustave Roussy Cancer Campus , Villejuif , France.,g Université Pierre et Marie Curie , Paris , France.,h Faculté de Medecine; Kremlin-Bicetre , Université Paris-Sud/Paris-Saclay , Kremlin Bicêtre , France
| | - Oliver Kepp
- b INSERM, U1138 , Paris , France.,c Gustave Roussy Cancer Campus , Villejuif , France.,d Equipe 11 labellisée par la Ligue Nationale contre le Cancer , Centre de Recherche des Cordeliers , Paris , France.,e Université Paris Descartes/Paris V, Sorbonne Paris Cité , Paris , France.,f Metabolomics and Cell Biology Platforms , Gustave Roussy Cancer Campus , Villejuif , France.,g Université Pierre et Marie Curie , Paris , France.,h Faculté de Medecine; Kremlin-Bicetre , Université Paris-Sud/Paris-Saclay , Kremlin Bicêtre , France
| | - Didac Carmona-Gutierrez
- i Institute of Molecular Biosciences , University of Graz, NAWI Graz , Graz , Austria.,j BioTechMed Graz , Graz , Austria
| | - Frank Madeo
- i Institute of Molecular Biosciences , University of Graz, NAWI Graz , Graz , Austria.,j BioTechMed Graz , Graz , Austria
| | - Guido Kroemer
- b INSERM, U1138 , Paris , France.,c Gustave Roussy Cancer Campus , Villejuif , France.,d Equipe 11 labellisée par la Ligue Nationale contre le Cancer , Centre de Recherche des Cordeliers , Paris , France.,e Université Paris Descartes/Paris V, Sorbonne Paris Cité , Paris , France.,f Metabolomics and Cell Biology Platforms , Gustave Roussy Cancer Campus , Villejuif , France.,g Université Pierre et Marie Curie , Paris , France.,h Faculté de Medecine; Kremlin-Bicetre , Université Paris-Sud/Paris-Saclay , Kremlin Bicêtre , France.,k Pôle de Biologie, Hôpital Européen Georges Pompidou , AP-HP , Paris , France.,l Karolinska Institute, Department of Women's and Children's Health , Karolinska University Hospital , Stockholm , Sweden
| |
Collapse
|
23
|
Ren J, Zhang Y. Targeting Autophagy in Aging and Aging-Related Cardiovascular Diseases. Trends Pharmacol Sci 2018; 39:1064-1076. [PMID: 30458935 DOI: 10.1016/j.tips.2018.10.005] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 09/19/2018] [Accepted: 10/04/2018] [Indexed: 01/19/2023]
Abstract
Aging, an irreversible biological process, serves as an independent risk factor for chronic disease including cancer, pulmonary, neurodegenerative, and cardiovascular diseases. In particular, high morbidity and mortality have been associated with cardiovascular aging, but effective clinical therapeutic remedies are suboptimal for the ever-rising aging population. Recent evidence suggests a unique role for aberrant aggregate clearance and the protein quality control machinery - the process of autophagy - in shortened lifespan, compromised healthspan, and the onset and development of aging-associated cardiovascular diseases. Autophagy degrades and removes long-lived or damaged cellular organelles and proteins, the functions of which decline with advanced aging. Induction of autophagy using rapamycin, resveratrol, nicotinamide derivatives, metformin, urolithin A, or spermidine delays aging, prolongs lifespan, and improves cardiovascular function in aging. Given the ever-rising human lifespan and aging population as well as the prevalence of cardiovascular disease provoked by increased age, it is pertinent to understand the contribution and underlying mechanisms of autophagy and organelle-selective autophagy (e.g., mitophagy) in the regulation of lifespan, healthspan, and cardiovascular aging. Here we dissect the mechanism of action for autophagy failure in aging and discuss the potential rationale of targeting autophagy using pharmacological agents as new avenues in the combating of biological and cardiovascular aging.
Collapse
Affiliation(s)
- Jun Ren
- Department of Cardiology, Fudan University Zhongshan Hospital, Shanghai 200032, China; Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA.
| | - Yingmei Zhang
- Department of Cardiology, Fudan University Zhongshan Hospital, Shanghai 200032, China; Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA.
| |
Collapse
|
24
|
Gurău F, Baldoni S, Prattichizzo F, Espinosa E, Amenta F, Procopio AD, Albertini MC, Bonafè M, Olivieri F. Anti-senescence compounds: A potential nutraceutical approach to healthy aging. Ageing Res Rev 2018; 46:14-31. [PMID: 29742452 DOI: 10.1016/j.arr.2018.05.001] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/02/2018] [Accepted: 05/03/2018] [Indexed: 01/10/2023]
Abstract
The desire of eternal youth seems to be as old as mankind. However, the increasing life expectancy experienced by populations in developed countries also involves a significantly increased incidence of the most common age-related diseases (ARDs). Senescent cells (SCs) have been identified as culprits of organismal aging. Their number rises with age and their senescence-associated secretory phenotype fuels the chronic, pro-inflammatory systemic state (inflammaging) that characterizes aging, impairing the regenerative ability of stem cells and increasing the risk of developing ARDs. A variegated class of molecules, including synthetic senolytic compounds and natural compounds contained in food, have been suggested to possess anti-senescence activity. Senolytics are attracting growing interest, and their safety and reliability as anti-senescence drugs are being assessed in human clinical trials. Notably, since SCs spread inflammation at the systemic level through pro-oxidant and pro-inflammatory signals, foods rich in polyphenols, which exert antioxidant and anti-inflammatory actions, have the potential to be harnessed as "anti-senescence foods" in a nutraceutical approach to healthier aging. We discuss the beneficial effects of polyphenol-rich foods in relation to the Mediterranean diet and the dietary habits of long-lived individuals, and examine their ability to modulate bacterial genera in the gut.
Collapse
Affiliation(s)
- Felicia Gurău
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Simone Baldoni
- School of Medicinal Sciences and Health Products, University of Camerino, Camerino, Italy
| | | | - Emma Espinosa
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Francesco Amenta
- School of Medicinal Sciences and Health Products, University of Camerino, Camerino, Italy
| | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy; Center of Clinical Pathology and Innovative Therapy, INRCA-IRCCS National Institute, Ancona, Italy
| | | | - Massimiliano Bonafè
- DIMES- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, Bologna, Italy; Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Forlì, Italy.
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy; Center of Clinical Pathology and Innovative Therapy, INRCA-IRCCS National Institute, Ancona, Italy.
| |
Collapse
|