1
|
Cochetti G, Guadagni L, Paladini A, Russo M, La Mura R, Vitale A, Saqer E, Mangione P, Esposito R, Gioè M, Pastore F, De Angelis L, Ricci F, Mearini M, Vannuccini G, Mearini E. Evaluation of Urinary miRNA in Renal Cell Carcinoma: A Systematic Review. Cancers (Basel) 2025; 17:1336. [PMID: 40282512 PMCID: PMC12026426 DOI: 10.3390/cancers17081336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/06/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Background and Objective. The significance of microRNAs (miRNAs) in relation to neoplastic diseases; such as renal carcinoma carcinoma (RCC); has been brought to light by recent studies. Analyzing the main urinary miRNAs implicated in RCC and their potential diagnostic use was the goal of this systematic review of the literature. Methods. This systematic review was performed following the PROSPERO protocol CRD42024550716. Our literature search strategies were deciding which database to include (Pubmed; EMBASE and Clinicaltrial.gov) and composing strings with words related to urinary miRNA in patients with RCC. Key findings and limitations. After screening; 10 papers were included from the 593 records that the systematic review found. No miRNA was investigated in more than one paper by different authors. The miR-210 and let-7 family were the most investigated and resulted upregulated in RCC cases compared to controls. Five papers reported different expression of miRNAs in urine samples before and after surgery: miR-15a; miR-34a-5p; miR-200a-3p; miR-205-5p; miR-210; miR-210-3p; miR-365a-3p and let-7d-5p levels decreased after nephrectomy. Meta-analysis was not performed since the included studies were heterogeneous; in terms of studied miRNA; of the normalizer used during stabilization phase; and histologic type of RCC (clear cell RCC; papillary RCC; unspecified RCC). Conclusions. Considering the variability and heterogeneity of the obtained results; as well as the vastness of the topic; expanding research in this field appears highly promising. To support further advancements; it would be useful to establish a database that consolidates international findings.
Collapse
Affiliation(s)
| | | | - Alessio Paladini
- Urology Clinic, Department of Medicine and Surgery, Santa Maria della Misericordia Hospital, University of Perugia, 06129 Perugia, Italy; (G.C.); (L.G.); (M.R.); (R.L.M.); (E.S.); (P.M.); (R.E.); (M.G.); (F.P.); (L.D.A.); (F.R.); (M.M.); (G.V.); (E.M.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Wu X, Sun G, Fan R, Liu K, Duan C, Mao X, Wu H, Yao X, Li B, Chen K, Zhang Y, Chen Z. CircSP3 encodes SP3-461aa to promote ccRCC progression via stabilizing MYH9 and activating the PI3K-Akt signaling pathway. J Cancer 2024; 15:5876-5896. [PMID: 39440063 PMCID: PMC11493002 DOI: 10.7150/jca.100706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/31/2024] [Indexed: 10/25/2024] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is a primary kidney cancer with high aggressive phenotype and extremely poor prognosis. Accumulating evidence suggests that circular RNAs (circRNAs) play pivotal roles in the occurrence and development of various human cancers. However, the expression, clinical significance and regulatory role of circRNAs in ccRCC remain largely unclear. Here we report that circSP3 to be increased in tissues from ccRCC patients and ccRCC cells, and to positively correlate with ccRCC malignant features. Knockdown of circSP3 inhibits proliferation, triggers apoptosis, and reduces migration and invasion in different ccRCC cells in vitro. Correspondingly, circSP3 overexpression Promote ccRCC tumorigenicity in a mouse xenograft model. Mechanistically, circSP3 could bind with the ribosome to initiate the translation process to encodes a novel 461-amino acid peptide referred to as SP3-461aa, which protects the MYH9 protein from proteasomal degradation. SP3-461aa played a pivotal role in mediating the oncogenic effects of circSP3 by interacting with the MYH9 protein and activating the PI3K-Akt signaling pathway. These findings suggested that circSP3 plays an important role in ccRCC development and could be a potential biomarker for the treatment and prognosis of ccRCC.
Collapse
Affiliation(s)
- Xiaoliang Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
| | - Guoliang Sun
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Ruixin Fan
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430000, China
| | - Kai Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430000, China
| | - Chen Duan
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430000, China
| | - Xiongmin Mao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430000, China
| | - Huahui Wu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430000, China
| | - Xiangyang Yao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430000, China
| | - Bo Li
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430000, China
| | - Ke Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
| | - Yangjun Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430000, China
| | - Zhong Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
| |
Collapse
|
3
|
Krishnan S, Kanthaje S, Rekha PD, Mujeeburahiman M, Ratnacaram CK. Expanding frontiers in liquid biopsy-discovery and validation of circulating biomarkers in renal cell carcinoma and bladder cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 391:135-197. [PMID: 39939075 DOI: 10.1016/bs.ircmb.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Renal cell carcinoma (RCC) and Bladder cancer (BC) are two lethal urological cancers that require diagnosis at their earliest stage causing decreasing survival rates in case of aggressive disease. However, there is no reliable circulating marker in blood or urine for their less or non-invasive diagnosis. Our objective was to review the potential circulating biomarkers, namely proteins, micro-RNA (miRNA), long non-coding RNA (lncRNA), and circulating tumour cells (CTCs) for which we performed a PubMed-based literature search of biomolecules (protein, miRNA, lncRNA and CTCs) found as circulating biomarkers in blood and urine for the early detection of RCC and BC. Among the numerous studies, certain biomolecules represent promising early-stage biomarkers such as proteins (NNMT, LCP1, and NM23A; KIM1), mi-RNAs (5-panel: miR-193a-3p, miR-362, miR-572, miR-378, and miR-28-5p; miR-200a) and lncRNAs (5-panel: LET, PVT1, PANDAR, PTENP1 and linc00963; GIHCG) for RCC. Similarly, proteins (APOA1), miRNAs (7-panel: miR-7-5p, miR-22-3p, miR-29a-3p, miR-126-5p, miR- 200a-3p, miR-375, and miR-423-5p; miRNA 181a, miRNA 30c, and miRNA 570) and lncRNAs (3-panel: MALAT1, MEG3, and SNHG16; exosomal derived 3-panel: PCAT-1, UBC1 and SNHG16; H19) were reported in BC subjects. Notably, the majority of the biomarkers presented for early detection in RCC cases were found in blood, while in urine for BC. Our results reveal that though a plethora of circulating biomarkers show early diagnostic ability, all of them are still bench-only biomarkers and require further validation. Adequate clinical trials/studies testing which of these potential markers individually or in combination, will become clinically applicable still remain elusive.
Collapse
MESH Headings
- Humans
- Carcinoma, Renal Cell/diagnosis
- Carcinoma, Renal Cell/blood
- Carcinoma, Renal Cell/pathology
- Carcinoma, Renal Cell/genetics
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Urinary Bladder Neoplasms/diagnosis
- Urinary Bladder Neoplasms/blood
- Urinary Bladder Neoplasms/pathology
- Liquid Biopsy
- Kidney Neoplasms/diagnosis
- Kidney Neoplasms/blood
- Kidney Neoplasms/pathology
- Kidney Neoplasms/genetics
- Neoplastic Cells, Circulating/metabolism
- Neoplastic Cells, Circulating/pathology
- RNA, Long Noncoding/blood
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- MicroRNAs/blood
- MicroRNAs/metabolism
- MicroRNAs/genetics
Collapse
Affiliation(s)
- Sabareeswaran Krishnan
- Division of Cancer Research and Therapeutics, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangaluru, Karnataka, India; Department of Urology, Yenepoya Medical College Hospital, Deralakatte, Mangaluru, Karnataka, India
| | - Shruthi Kanthaje
- Division of Cancer Research and Therapeutics, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangaluru, Karnataka, India
| | - Punchappady Devasya Rekha
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangaluru, Karnataka, India
| | - M Mujeeburahiman
- Department of Urology, Yenepoya Medical College Hospital, Deralakatte, Mangaluru, Karnataka, India.
| | - Chandrahas Koumar Ratnacaram
- Division of Cancer Research and Therapeutics, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangaluru, Karnataka, India.
| |
Collapse
|
4
|
Razavinia A, Razavinia A, Jamshidi Khalife Lou R, Ghavami M, Shahri F, Tafazoli A, Khalesi B, Hashemi ZS, Khalili S. Exosomes as novel tools for renal cell carcinoma therapy, diagnosis, and prognosis. Heliyon 2024; 10:e32875. [PMID: 38948044 PMCID: PMC11211897 DOI: 10.1016/j.heliyon.2024.e32875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/06/2024] [Accepted: 06/11/2024] [Indexed: 07/02/2024] Open
Abstract
Background Renal Cell Carcinoma (RCC) stands as a formidable challenge within the field of oncology, despite considerable research endeavors. The advanced stages of this malignancy present formidable barriers to effective treatment and management. Objective This review aims to explore the potential of exosomes in addressing the diagnostic and therapeutic challenges associated with RCC. Specifically, it investigates the role of exosomes as biomarkers and therapeutic vehicles in the context of RCC management. Methods For this review article, a comprehensive literature search was conducted using databases such as PubMed, employing relevant keywords to identify research articles pertinent to the objectives of the review. Initially, 200 articles were identified, which underwent screening to remove duplicates and assess relevance based on titles and abstracts, followed by a detailed examination of full texts. From the selected articles, relevant data were extracted and synthesized to address the review's objectives. The conclusions were drawn based on a thorough analysis of the findings. The quality was ensured through independent review and resolution of discrepancies among multiple reviewers. Results Exosomes demonstrate potential as diagnostic tools for early detection, prognosis, and treatment monitoring in RCC. Their ability to deliver various therapeutic agents, such as small interfering RNAs, lncRNAs, chemotherapeutic drugs, and immune-stimulating agents, allows for a personalized approach to RCC management. By leveraging exosome-based technologies, precision and efficacy in treatment strategies can be significantly enhanced. Conclusion Despite the promising advancements enabled by exosomes in the management of RCC, further research is necessary to refine exosome-based technologies and validate their efficacy, safety, and long-term benefits through rigorous clinical trials. Embracing exosomes as integral components of RCC diagnosis and treatment represents a significant step towards improving patient outcomes and addressing the persistent challenges posed by this malignancy in the field of oncology.
Collapse
Affiliation(s)
- Amir Razavinia
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Abazar Razavinia
- Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Roya Jamshidi Khalife Lou
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahlegha Ghavami
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Forouzan Shahri
- Department of Chemistry, Faculty of Sciences, University of Guilan, Iran
| | - Aida Tafazoli
- Department of Bacterial and Virology, Shiraz medical school, Shiraz, Iran
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj 3197619751, Iran
| | - Zahra Sadat Hashemi
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| |
Collapse
|
5
|
Le LNH, Munir J, Kim EB, Ryu S. Kidney Cancer and Potential Use of Urinary Extracellular Vesicles. Oncol Rev 2024; 18:1410450. [PMID: 38846051 PMCID: PMC11153667 DOI: 10.3389/or.2024.1410450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/08/2024] [Indexed: 06/09/2024] Open
Abstract
Kidney cancer is the 14th most common cancer globally. The 5-year relative survival rate of kidney cancer at a localized stage is 92.9% and it declines to 17.4% in metastatic stage. Currently, the most accurate method of its diagnosis is tissue biopsy. However, the invasive and costly nature of biopsies makes it undesirable in many patients. Therefore, novel biomarkers for diagnosis and prognosis should be explored. Urinary extracellular vesicles (uEVs) are small vesicles (50-200 nm) in urine carrying nucleic acids, proteins and lipids as their cargos. These uEVs' cargos can provide non-invasive alternative to monitor kidney health. In this review, we have summarized recent studies investigating potential use of uEVs' cargos as biomarkers in kidney cancer for diagnosis, prognosis and therapeutic intervention.
Collapse
Affiliation(s)
- Linh Nguy-Hoang Le
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Republic of Korea
- Soonchunhyang Institute of Med-Bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| | - Javaria Munir
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Eun-Bit Kim
- Soonchunhyang Institute of Med-Bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| | - Seongho Ryu
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Republic of Korea
- Soonchunhyang Institute of Med-Bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| |
Collapse
|
6
|
Prata F, Basile S, Tedesco F, Ragusa A, Pira M, Iannuzzi A, Fantozzi M, Civitella A, Scarpa RM, Papalia R. Skill Transfer from Laparoscopic Partial Nephrectomy to the Hugo™ RAS System: A Novel Proficiency Score to Assess Surgical Quality during the Learning Curve. J Clin Med 2024; 13:2226. [PMID: 38673499 PMCID: PMC11050920 DOI: 10.3390/jcm13082226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Background/Objectives: The absence of validated tools to assess the skill transfer from laparoscopy to robotic surgery remains an unsolved issue in the context of robot-assisted partial nephrectomy (RAPN). We aimed to describe and validate a novel proficiency score to critically evaluate the surgical quality of RAPN with the Hugo™ RAS System (Medtronic, Minneapolis, MN, USA). Methods: Between October 2022 and September 2023, 27 consecutive patients underwent off-clamp RAPN for localized renal tumors at our institution. To analyze the learning curve (LC), the cohort was chronologically divided into two phases of 6 months each. Proficiency was defined as the achievement of trifecta while maintaining a comparable intraoperative time in the interquartile range of laparoscopic partial nephrectomy performed by the same surgeon. A logistic binary regression model was built to identify predictors of proficiency achievement. Results: A proficiency score was achieved in 14 patients (74.1%). At univariable analysis, number of consecutive procedures > 12 (OR 13.7; 95%CI 2.05-21.1, p = 0.007), pathological tumor size (OR 0.92; 95%CI 0.89-0.99, p = 0.04) and essential blood hypertension (OR 0.16; 95%CI 0.03-0.82, p = 0.02) were found to be predictors of proficiency score. At multivariable analysis, after adjusting for potential confounding factors, number of consecutive procedures > 12 (OR 8.1; 95%CI 1.44-14.6, p = 0.03) was the only independent predictor of proficiency score achievement. Conclusions: Our results showed that the skills of an experienced laparoscopic surgeon are transferrable to the novel Hugo™ RAS System in the context of nephron-sparing surgery. Improved surgical quality may be expected after completing the first 12 consecutive procedures.
Collapse
Affiliation(s)
- Francesco Prata
- Department of Urology, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy; (S.B.); (F.T.); (A.R.); (M.P.); (A.I.); (M.F.); (A.C.); (R.M.S.); (R.P.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Prata F, Ragusa A, Tedesco F, Pira M, Iannuzzi A, Fantozzi M, Civitella A, Scarpa RM, Papalia R. Trifecta Outcomes of Robot-Assisted Partial Nephrectomy Using the New Hugo™ RAS System Versus Laparoscopic Partial Nephrectomy. J Clin Med 2024; 13:2138. [PMID: 38610903 PMCID: PMC11012303 DOI: 10.3390/jcm13072138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
(1) Background: Laparoscopic partial nephrectomy (LPN) is still performed in many referred urological institutions, representing a valid alternative to robot-assisted partial nephrectomy (RAPN). We aimed to compare trifecta outcomes of LPN and RAPN with the Hugo™ RAS System. (2) Methods: Between October 2022 and September 2023, eighty-nine patients underwent minimally invasive partial nephrectomy (group A, RAPN = 27; group B, Laparoscopic PN = 62) for localized renal tumors at our Institution. Continuous variables were presented as median and IQR and compared by means of the Mann-Whitney U test, while categorical variables were presented as frequencies (%) and compared by means of the χ2 test. (3) Results: Group A showed a higher rate of male patients (81.5% vs. 59.7%, p = 0.04) and a higher trend towards larger clinical tumor size (34 vs. 29 mm, p = 0.14). All the other baseline variables were comparable between the two groups (all p > 0.05). Regarding post-operative data, group A displayed a lower operative time (92 vs. 149.5 min, p = 0.005) and a shorter hospital stay (3 vs. 5, p = 0.002). A higher rate of malignant pathology was evidenced in group A (77.8% vs. 58.1%, p = 0.07) as well as a lower trend towards positive surgical margins (3.7% vs. 4.8%, p = 0.82), even if not statistically significant. (4) Conclusions: The rate of trifecta achievement was 92.6% and 82.3% for group A and B (p = 0.10), respectively. In terms of trifecta outcomes, RAPN using the Hugo™ RAS System showed comparable results to LPN performed by the same experienced surgeon.
Collapse
Affiliation(s)
- Francesco Prata
- Department of Urology, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy; (A.R.); (F.T.); (M.P.); (A.I.); (M.F.); (A.C.); (R.M.S.); (R.P.)
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Gupta S, Kanwar SS. Biomarkers in renal cell carcinoma and their targeted therapies: a review. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:941-961. [PMID: 37970211 PMCID: PMC10645469 DOI: 10.37349/etat.2023.00175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/21/2023] [Indexed: 11/17/2023] Open
Abstract
Renal cell carcinoma (RCC) is one of the most life-threatening urinary malignancies displaying poor response to radiotherapy and chemotherapy. Although in the recent past there have been tremendous advancements in using targeted therapies for RCC, despite that it remains the most lethal urogenital cancer with a 5-year survival rate of roughly 76%. Timely diagnosis is still the key to prevent the progression of RCC into metastatic stages as well as to treat it. But due to the lack of definitive and specific diagnostic biomarkers for RCC and its asymptomatic nature in its early stages, it becomes very difficult to diagnose it. Reliable and distinct molecular markers can not only refine the diagnosis but also classifies the tumors into thier sub-types which can escort subsequent management and possible treatment for patients. Potential biomarkers can permit a greater degree of stratification of patients affected by RCC and help tailor novel targeted therapies. The review summarizes the most promising epigenetic [DNA methylation, microRNA (miRNA; miR), and long noncoding RNA (lncRNA)] and protein biomarkers that have been known to be specifically involved in diagnosis, cancer progression, and metastasis of RCC, thereby highlighting their utilization as non-invasive molecular markers in RCC. Also, the rationale and development of novel molecular targeted drugs and immunotherapy drugs [such as tyrosine kinase inhibitors and immune checkpoint inhibitors (ICIs)] as potential RCC therapeutics along with the proposed implication of these biomarkers in predicting response to targeted therapies will be discussed.
Collapse
Affiliation(s)
- Shruti Gupta
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla 171 005, India
| | - Shamsher Singh Kanwar
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla 171 005, India
| |
Collapse
|
9
|
Schiavoni V, Campagna R, Pozzi V, Cecati M, Milanese G, Sartini D, Salvolini E, Galosi AB, Emanuelli M. Recent Advances in the Management of Clear Cell Renal Cell Carcinoma: Novel Biomarkers and Targeted Therapies. Cancers (Basel) 2023; 15:3207. [PMID: 37370817 PMCID: PMC10296504 DOI: 10.3390/cancers15123207] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Renal cell carcinoma (RCC) belongs to a heterogenous cancer group arising from renal tubular epithelial cells. Among RCC subtypes, clear cell renal cell carcinoma (ccRCC) is the most common variant, characterized by high aggressiveness, invasiveness and metastatic potential, features that lead to poor prognosis and high mortality rate. In addition, diagnosis of kidney cancer is incidental in the majority of cases, and this results in a late diagnosis, when the stage of the disease is advanced and the tumor has already metastasized. Furthermore, ccRCC treatment is complicated by its strong resistance to chemo- and radiotherapy. Therefore, there is active ongoing research focused on identifying novel biomarkers which could be useful for assessing a better prognosis, as well as new molecules which could be used for targeted therapy. In this light, several novel targeted therapies have been shown to be effective in prolonging the overall survival of ccRCC patients. Thus, the aim of this review is to analyze the actual state-of-the-art on ccRCC diagnosis, prognosis and therapeutic options, while also reporting the recent advances in novel biomarker discoveries, which could be exploited for a better prognosis or for targeted therapy.
Collapse
Affiliation(s)
- Valentina Schiavoni
- Department of Clinical Sciences, Polytechnic University of Marche, 60020 Ancona, Italy; (V.S.); (R.C.); (V.P.); (M.C.); (G.M.); (A.B.G.); (M.E.)
| | - Roberto Campagna
- Department of Clinical Sciences, Polytechnic University of Marche, 60020 Ancona, Italy; (V.S.); (R.C.); (V.P.); (M.C.); (G.M.); (A.B.G.); (M.E.)
| | - Valentina Pozzi
- Department of Clinical Sciences, Polytechnic University of Marche, 60020 Ancona, Italy; (V.S.); (R.C.); (V.P.); (M.C.); (G.M.); (A.B.G.); (M.E.)
| | - Monia Cecati
- Department of Clinical Sciences, Polytechnic University of Marche, 60020 Ancona, Italy; (V.S.); (R.C.); (V.P.); (M.C.); (G.M.); (A.B.G.); (M.E.)
| | - Giulio Milanese
- Department of Clinical Sciences, Polytechnic University of Marche, 60020 Ancona, Italy; (V.S.); (R.C.); (V.P.); (M.C.); (G.M.); (A.B.G.); (M.E.)
| | - Davide Sartini
- Department of Clinical Sciences, Polytechnic University of Marche, 60020 Ancona, Italy; (V.S.); (R.C.); (V.P.); (M.C.); (G.M.); (A.B.G.); (M.E.)
| | - Eleonora Salvolini
- Department of Clinical Sciences, Polytechnic University of Marche, 60020 Ancona, Italy; (V.S.); (R.C.); (V.P.); (M.C.); (G.M.); (A.B.G.); (M.E.)
| | - Andrea Benedetto Galosi
- Department of Clinical Sciences, Polytechnic University of Marche, 60020 Ancona, Italy; (V.S.); (R.C.); (V.P.); (M.C.); (G.M.); (A.B.G.); (M.E.)
| | - Monica Emanuelli
- Department of Clinical Sciences, Polytechnic University of Marche, 60020 Ancona, Italy; (V.S.); (R.C.); (V.P.); (M.C.); (G.M.); (A.B.G.); (M.E.)
- New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, 60131 Ancona, Italy
| |
Collapse
|
10
|
Fusco P, Fietta A, Esposito MR, Zanella L, Micheli S, Bastianello A, Bova L, Borile G, Germano G, Cimetta E. miR-210-3p enriched extracellular vesicles from hypoxic neuroblastoma cells stimulate migration and invasion of target cells. Cell Biosci 2023; 13:89. [PMID: 37202777 DOI: 10.1186/s13578-023-01045-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/03/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND Tumor hypoxia stimulates release of extracellular vesicles (EVs) that facilitate short- and long-range intercellular communication and metastatization. Albeit hypoxia and EVs release are known features of Neuroblastoma (NB), a metastasis-prone childhood malignancy of the sympathetic nervous system, whether hypoxic EVs can facilitate NB dissemination is unclear. METHODS Here we isolated and characterized EVs from normoxic and hypoxic NB cell culture supernatants and performed microRNA (miRNA) cargo analysis to identify key mediators of EVs biological effects. We then validated if EVs promote pro-metastatic features both in vitro and in an in vivo zebrafish model. RESULTS EVs from NB cells cultured at different oxygen tensions did not differ for type and abundance of surface markers nor for biophysical properties. However, EVs derived from hypoxic NB cells (hEVs) were more potent than their normoxic counterpart in inducing NB cells migration and colony formation. miR-210-3p was the most abundant miRNA in the cargo of hEVs; mechanistically, overexpression of miR-210-3p in normoxic EVs conferred them pro-metastatic features, whereas miR-210-3p silencing suppressed the metastatic ability of hypoxic EVs both in vitro and in vivo. CONCLUSION Our data identify a role for hypoxic EVs and their miR-210-3p cargo enrichment in the cellular and microenvironmental changes favoring NB dissemination.
Collapse
Affiliation(s)
- Pina Fusco
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, 35131, Padua, Italy
- Fondazione Istituto Di Ricerca Pediatrica Città Della Speranza (IRP), Corso Stati Uniti 4, 35127, Padua, Italy
| | - Anna Fietta
- Fondazione Istituto Di Ricerca Pediatrica Città Della Speranza (IRP), Corso Stati Uniti 4, 35127, Padua, Italy
| | - Maria Rosaria Esposito
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, 35131, Padua, Italy
- Fondazione Istituto Di Ricerca Pediatrica Città Della Speranza (IRP), Corso Stati Uniti 4, 35127, Padua, Italy
| | - Luca Zanella
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, 35131, Padua, Italy
- Fondazione Istituto Di Ricerca Pediatrica Città Della Speranza (IRP), Corso Stati Uniti 4, 35127, Padua, Italy
| | - Sara Micheli
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, 35131, Padua, Italy
- Fondazione Istituto Di Ricerca Pediatrica Città Della Speranza (IRP), Corso Stati Uniti 4, 35127, Padua, Italy
| | - Angelica Bastianello
- Fondazione Istituto Di Ricerca Pediatrica Città Della Speranza (IRP), Corso Stati Uniti 4, 35127, Padua, Italy
| | - Lorenzo Bova
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, 35131, Padua, Italy
| | - Giulia Borile
- Fondazione Istituto Di Ricerca Pediatrica Città Della Speranza (IRP), Corso Stati Uniti 4, 35127, Padua, Italy
| | - Giuseppe Germano
- Fondazione Istituto Di Ricerca Pediatrica Città Della Speranza (IRP), Corso Stati Uniti 4, 35127, Padua, Italy
| | - Elisa Cimetta
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, 35131, Padua, Italy.
- Fondazione Istituto Di Ricerca Pediatrica Città Della Speranza (IRP), Corso Stati Uniti 4, 35127, Padua, Italy.
| |
Collapse
|
11
|
Takeda M, Akamatsu S, Kita Y, Goto T, Kobayashi T. The Roles of Extracellular Vesicles in the Progression of Renal Cell Carcinoma and Their Potential for Future Clinical Application. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101611. [PMID: 37242027 DOI: 10.3390/nano13101611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023]
Abstract
Renal cell carcinoma (RCC) is the most common type of kidney cancer and is thought to originate from renal tubular epithelial cells. Extracellular vesicles (EVs) are nanosized lipid bilayer vesicles that are secreted into extracellular spaces by nearly all cell types, including cancer cells and non-cancerous cells. EVs are involved in multiple steps of RCC progression, such as local invasion, host immune modulation, drug resistance, and metastasis. Therefore, EVs secreted from RCC are attracting rapidly increasing attention from researchers. In this review, we highlight the mechanism by which RCC-derived EVs lead to disease progression as well as the potential and challenges related to the clinical implications of EV-based diagnostics and therapeutics.
Collapse
Affiliation(s)
- Masashi Takeda
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Shusuke Akamatsu
- Department of Urology, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan
| | - Yuki Kita
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Takayuki Goto
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Takashi Kobayashi
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
12
|
Costantini M, Filianoti A, Anceschi U, Bove AM, Brassetti A, Ferriero M, Mastroianni R, Misuraca L, Tuderti G, Ciliberto G, Simone G, Torregiani G. Human Urinary Volatilome Analysis in Renal Cancer by Electronic Nose. BIOSENSORS 2023; 13:bios13040427. [PMID: 37185502 PMCID: PMC10136259 DOI: 10.3390/bios13040427] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 05/17/2023]
Abstract
Currently, in clinical practice there are still no useful markers available that are able to diagnose renal cancer in the early stages in the context of population screening. This translates into very high costs for healthcare systems around the world. Analysing urine using an electronic nose (EN) provides volatile organic compounds that can be easily used in the diagnosis of urological diseases. Although no convincing results have been published, some previous studies suggest that dogs trained to sniff urine can recognize different types of tumours (bladder, lung, breast cancer) with different success rates. We therefore hypothesized that urinary volatilome profiling may be able to distinguish patients with renal cancer from healthy controls. A total of 252 individuals, 110 renal patients and 142 healthy controls, were enrolled in this pilot monocentric study. For each participant, we collected, stabilized (at 37 °C) and analysed urine samples using a commercially available electronic nose (Cyranose 320®). Principal component (PCA) analyses, discriminant analysis (CDA) and ROC curves were performed to provide a complete statistical analysis of the sensor responses. The best discriminating principal component groups were identified with univariable ANOVA analysis. The study correctly identified 79/110 patients and 127/142 healthy controls, respectively (specificity 89.4%, sensitivity 71.8%, positive predictive value 84.04%, negative predictive value 80.37%). In order to test the study efficacy, the Cross Validated Accuracy was calculated (CVA 81.7%, p < 0.001). At ROC analysis, the area under the curve was 0.85. The results suggest that urine volatilome profiling by e-Nose seems a promising, accurate and non-invasive diagnostic tool in discriminating patients from controls. The low costs and ease of execution make this test useful in clinical practice.
Collapse
Affiliation(s)
- Manuela Costantini
- Department of Urology, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Alessio Filianoti
- Department of Urology, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy
- Department of Urology, San Filippo Neri Hospital, 00135 Rome, Italy
| | - Umberto Anceschi
- Department of Urology, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Alfredo Maria Bove
- Department of Urology, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Aldo Brassetti
- Department of Urology, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy
| | | | - Riccardo Mastroianni
- Department of Urology, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Leonardo Misuraca
- Department of Urology, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Gabriele Tuderti
- Department of Urology, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Gennaro Ciliberto
- Scientific Direction, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Giuseppe Simone
- Department of Urology, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Giulia Torregiani
- Department of Anesthesiology and Intensive Care Unit, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy
| |
Collapse
|
13
|
Grammatikaki S, Katifelis H, Farooqi AA, Stravodimos K, Karamouzis MV, Souliotis K, Varvaras D, Gazouli M. An Overview of Epigenetics in Clear Cell Renal Cell Carcinoma. In Vivo 2023; 37:1-10. [PMID: 36593023 PMCID: PMC9843790 DOI: 10.21873/invivo.13049] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 01/04/2023]
Abstract
Renal cell carcinoma (RCC) represents a heterogenous group of cancers with complex genetic background and histological varieties, which require various clinical therapies. Clear cell RCC represents the most common form of RCC that accounts for 3 out of 4 RCC cases. Screening methods for RCC lack sensitivity and specificity, and thus biomarkers that will allow early diagnosis are crucial. The impact of epigenetics in the development and progression of cancer, including RCC, is significant. Noncoding RNAs, histone modifications and DNA methylation represent fundamental epigenetic mechanisms and have been proved to be promising biomarkers. MicroRNAs have advantageous properties that facilitate early diagnosis of RCC, while their expression profiles have been assessed in renal cancer samples (tissue, blood, and urine). Current literature reports the up-regulation of mir122, mir1271 and mir15b in RCC specimens, which induces cell proliferation via FOXP-1 and PTEN genes. However, it should be noted that conflicting results are found in urine and serum patient samples. Moreover, promoters of at least 200 genes are methylated in renal cancers leading to epigenetic dysregulation. In this review, we analyze the vast plethora of studies that have evaluated the role of epigenetic mechanisms in RCC patients and their clinical importance.
Collapse
Affiliation(s)
- Stamatiki Grammatikaki
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Hector Katifelis
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Konstantinos Stravodimos
- 1 Department of Urology, National & Kapodistrian University of Athens, Laiko Hospital, Athens, Greece
| | - Michalis V Karamouzis
- Molecular Oncology Unit, Department of Biological Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Kyriakos Souliotis
- School of Social and Education Policy, University of Peloponnese, Corinth, Greece
- Health Policy Institute, Athens, Greece
| | - Dimitrios Varvaras
- Health Policy Institute, Athens, Greece
- Tiberia Hospital-GMV Care & Research, Rome, Italy
| | - Maria Gazouli
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece;
| |
Collapse
|
14
|
Wang Y, Gao Y, Song Y. Microfluidics-Based Urine Biopsy for Cancer Diagnosis: Recent Advances and Future Trends. ChemMedChem 2022; 17:e202200422. [PMID: 36040297 DOI: 10.1002/cmdc.202200422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/23/2022] [Indexed: 11/08/2022]
Abstract
Urine biopsy, allowing for the detection, analysis and monitoring of numerous cancer-associated urinary biomarkers to provide insights into cancer occurrence, progression and metastasis, has emerged as an attractive liquid biopsy strategy with enormous advantages over traditional tissue biopsy, such as noninvasiveness, large sample volume, and simple sampling operation. Microfluidics enables precise manipulation of fluids in a tiny chip and exhibits outstanding performance in urine biopsy owing to its minimization, low cost, high integration, high throughput and low sample consumption. Herein, we review recent advances in microfluidic techniques employed in urine biopsy for cancer detection. After briefly summarizing the major urinary biomarkers used for cancer diagnosis, we provide an overview of the typical microfluidic techniques utilized to develop urine biopsy devices. Some prospects along with the major challenges to be addressed for the future of microfluidic-based urine biopsy are also discussed.
Collapse
Affiliation(s)
- Yanping Wang
- Nanjing University of Science and Technology, Sino-French Engineer School, CHINA
| | - Yanfeng Gao
- Nanjing University, College of Engineering and Applied Sciences, CHINA
| | - Yujun Song
- Nanjing University, Biomedical Engineering, 22 Hankou Road, 210093, Nanjing, CHINA
| |
Collapse
|
15
|
Epidemiology and Prevention of Renal Cell Carcinoma. Cancers (Basel) 2022; 14:cancers14164059. [PMID: 36011051 PMCID: PMC9406474 DOI: 10.3390/cancers14164059] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
With 400,000 diagnosed and 180,000 deaths in 2020, renal cell carcinoma (RCC) accounts for 2.4% of all cancer diagnoses worldwide. The highest disease burden developed countries, primarily in Europe and North America. Incidence is projected to increase in the future as more countries shift to Western lifestyles. Risk factors for RCC include fixed factors such as gender, age, and hereditary diseases, as well as intervening factors such as smoking, obesity, hypertension, diabetes, diet and alcohol, and occupational exposure. Intervening factors in primary prevention, understanding of congenital risk factors and the establishment of early diagnostic tools are important for RCC. This review will discuss RCC epidemiology, risk factors, and biomarkers involved in reducing incidence and improving survival.
Collapse
|
16
|
Dai Z, Luo H, Chen J, Li L. MiR-210-3p accelerates tumor-relevant cell functions of endometrial carcinoma by repressing RUNX1T1. Mutat Res 2022; 825:111793. [PMID: 35963185 DOI: 10.1016/j.mrfmmm.2022.111793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Biological mechanism of miR-210-3p in endometrial carcinoma (EC) remains unclear. Here, our purpose is to study effects of miR-210-3p on malignant progression of EC. METHODS Bioinformatics analysis showed miRNA and mRNA are abnormally expressed in EC tissues. Quantitative real-time fluorescence polymerase chain reaction (qRT-PCR) was utilized to compare miR-210-3p mRNA level in EC cells and tissues. qRT-PCR and western blot were used to measure RUNX1T1 and NCAM1 at mRNA and protein levels, and western blot for p-AKT and AKT proteins related to PI3K/AKT signaling pathway. Furthermore, EC cell behaviors were assayed via Cell Counting Kit-8, cell colony formation assay, wound healing, transwell and flow cytometry experiments. Interaction between RUNX1T1 and miR-210-3p was verified through dual-luciferase assay. Immunohistochemistry was used to analyze RUNX1T1 expression in clinical samples RESULTS: MiR-210-3p was considerably upregulated and RUNX1T1 was significantly under-expressed in EC. Overexpression of miR-210-3p stimulated cell proliferation, migration, invasion, and restrained cell apoptosis in EC. Dual-luciferase assay proved that RUNX1T1 was a target gene of miR-210-3p. The level of RUNX1T1 in EC was downregulated after overexpressing miR-210-3p. Rescue assay showed that overexpression of RUNX1T1 had an inhibitory impact on tumor-relevant cell behaviors, whereas overexpression of miR-210-3p rescued such inhibition. Overexpression of RUNX1T1 reduced p-AKT expression, which was restored with concomitantly overexpressed miR-210-3p. CONCLUSION In general, miR-210-3p behaves as an oncogene in EC by down-regulating the expression of RUNX1T1. This study elucidates a new functional mechanism in EC, and indicates miR-210-3p an underlying target.
Collapse
Affiliation(s)
- Zhuoya Dai
- Department of Obstetrics and Gynecology, The People's Hospital of Bishan District, Bishan, Chongqing 402760, China
| | - Hongqin Luo
- Department of Obstetrics and Gynecology, The People's Hospital of Bishan District, Bishan, Chongqing 402760, China
| | - Jingdong Chen
- Department of Obstetrics and Gynecology, The People's Hospital of Bishan District, Bishan, Chongqing 402760, China
| | - Liang Li
- Department of Obstetrics and Gynecology, The People's Hospital of Bishan District, Bishan, Chongqing 402760, China.
| |
Collapse
|
17
|
Cochetti G, Cari L, Maulà V, Cagnani R, Paladini A, Del Zingaro M, Nocentini G, Mearini E. Validation in an Independent Cohort of MiR-122, MiR-1271, and MiR-15b as Urinary Biomarkers for the Potential Early Diagnosis of Clear Cell Renal Cell Carcinoma. Cancers (Basel) 2022; 14:1112. [PMID: 35267420 PMCID: PMC8909007 DOI: 10.3390/cancers14051112] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/20/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common type of renal cell carcinoma, and the absence of symptoms in the early stages makes metastasis more likely and reduces survival. To aid in the early diagnosis of ccRCC, we recently developed a method based on urinary miR-122-5p, miR-1271-5p, and miR-15b-5p levels and three controls. The study here presented aimed to validate the previously published method through its application on an independent cohort. The expression of miRNAs in urine specimens from 28 ccRCC patients and 28 healthy subjects (HSs) of the same sex and age was evaluated by RT-qPCR. Statistical analyses were performed, including the preparation of receiver operating characteristic (ROC) curves. The mean ccRCC diameter in ccRCC patients was 4.2 ± 2.4 mm. Urinary miRNA levels were higher in patients than in HSs. The data were processed using the previously developed algorithm (7p-urinary score), and the area under the curve (AUC) of the algorithm's ROC curve was 0.81 (p-value = 0.0003), with a sensitivity of 96% and specificity of 65%. Therefore, the 7p-urinary score is a potential tool for the early diagnosis of ccRCC.
Collapse
Affiliation(s)
- Giovanni Cochetti
- Division of Urology Clinic, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy; (G.C.); (V.M.); (R.C.); (A.P.); (M.D.Z.); (E.M.)
| | - Luigi Cari
- Pharmacology Section, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy;
| | - Vincenza Maulà
- Division of Urology Clinic, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy; (G.C.); (V.M.); (R.C.); (A.P.); (M.D.Z.); (E.M.)
| | - Rosy Cagnani
- Division of Urology Clinic, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy; (G.C.); (V.M.); (R.C.); (A.P.); (M.D.Z.); (E.M.)
| | - Alessio Paladini
- Division of Urology Clinic, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy; (G.C.); (V.M.); (R.C.); (A.P.); (M.D.Z.); (E.M.)
| | - Michele Del Zingaro
- Division of Urology Clinic, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy; (G.C.); (V.M.); (R.C.); (A.P.); (M.D.Z.); (E.M.)
| | - Giuseppe Nocentini
- Pharmacology Section, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy;
| | - Ettore Mearini
- Division of Urology Clinic, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy; (G.C.); (V.M.); (R.C.); (A.P.); (M.D.Z.); (E.M.)
| |
Collapse
|
18
|
Peter MR, Zhao F, Jeyapala R, Kamdar S, Xu W, Hawkins C, Evans AJ, Fleshner NE, Finelli A, Bapat B. Investigating Urinary Circular RNA Biomarkers for Improved Detection of Renal Cell Carcinoma. Front Oncol 2022; 11:814228. [PMID: 35174071 PMCID: PMC8841801 DOI: 10.3389/fonc.2021.814228] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/27/2021] [Indexed: 12/22/2022] Open
Abstract
Renal cell carcinomas (RCC) are usually asymptomatic until late stages, posing several challenges for early detection of malignant disease. Non-invasive liquid biopsy biomarkers are emerging as an important diagnostic tool which could aid with routine screening of RCCs. Circular RNAs (circRNAs) are novel non-coding RNAs that play diverse roles in carcinogenesis. They are promising biomarkers due to their stability and ease of detection in small quantities from non-invasive sources such as urine. In this study, we analyzed the expression of various circRNAs that were previously identified in RCC tumors (circEGLN3, circABCB10, circSOD2 and circACAD11) in urinary sediment samples from non-neoplastic controls, patients with benign renal tumors, and clear cell RCC (ccRCC) patients. We observed significantly reduced levels of circEGLN3 and circSOD2 in urine from ccRCC patients compared to healthy controls. We also assessed the linear variant of EGLN3 and found differential expression between patients with benign tumors compared to ccRCC patients. These findings highlight the potential of circRNA markers as non-invasive diagnostic tools to detect malignant RCC.
Collapse
Affiliation(s)
- Madonna R. Peter
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Fang Zhao
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Renu Jeyapala
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Shivani Kamdar
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Wei Xu
- Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Cynthia Hawkins
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, Toronto, ON, Canada
| | - Andrew J. Evans
- Department of Laboratory Medicine, Mackenzie Health, Richmond Hill, ON, Canada
| | - Neil E. Fleshner
- Division of Urology, Department of Surgery, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Antonio Finelli
- Division of Urology, Department of Surgery, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Bharati Bapat
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
- *Correspondence: Bharati Bapat,
| |
Collapse
|
19
|
The Role of Circulating Biomarkers in the Oncological Management of Metastatic Renal Cell Carcinoma: Where Do We Stand Now? Biomedicines 2021; 10:biomedicines10010090. [PMID: 35052770 PMCID: PMC8773056 DOI: 10.3390/biomedicines10010090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/25/2021] [Accepted: 12/29/2021] [Indexed: 01/08/2023] Open
Abstract
Renal cell carcinoma (RCC) is an increasingly common malignancy that can progress to metastatic renal cell carcinoma (mRCC) in approximately one-third of RCC patients. The 5-year survival rate for mRCC is abysmally low, and, at the present time, there are sparingly few if any effective treatments. Current surgical and pharmacological treatments can have a long-lasting impact on renal function, as well. Thus, there is a compelling unmet need to discover novel biomarkers and surveillance methods to improve patient outcomes with more targeted therapies earlier in the course of the disease. Circulating biomarkers, such as circulating tumor DNA, noncoding RNA, proteins, extracellular vesicles, or cancer cells themselves potentially represent a minimally invasive tool to fill this gap and accelerate both diagnosis and treatment. Here, we discuss the clinical relevance of different circulating biomarkers in metastatic renal cell carcinoma by clarifying their potential role as novel biomarkers of response or resistance to treatments but also by guiding clinicians in novel therapeutic approaches.
Collapse
|
20
|
Shi L, Wang M, Li H, You P. MicroRNAs in Body Fluids: A More Promising Biomarker for Clear Cell Renal Cell Carcinoma. Cancer Manag Res 2021; 13:7663-7675. [PMID: 34675663 PMCID: PMC8502019 DOI: 10.2147/cmar.s330881] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/15/2021] [Indexed: 12/24/2022] Open
Abstract
Renal cell carcinoma (RCC) is the second most common cancer of the urinary system, accounting for approximately 10–15% of kidney cancers in the world. Clear cell renal cell carcinoma (ccRCC) is the most common RCC subtype with the highest mortality. Surgical resection or puncture of tumor tissue is still an important clinical treatment and diagnosis of ccRCC, but its high recurrence rate and poor prognosis often lead to the short survival period of patients. Hence, the development of novel molecular biomarkers is of great clinical importance. miRNAs are endogenous non-coding small RNAs with a length of 19–24 nt. A growing number of studies have reported that miRNAs, as proto-oncogenes or tumor suppressor genes, play a key role in the development of ccRCC and might be effective diagnostic and prognostic biomarkers. In addition, miRNAs can also predict the efficacy of treatment drug, thus improving the accuracy of clinical medication. Furthermore, non-invasive detection of miRNAs or extracellular vesicles (EV) in body fluids has better convenience and repeatability, which shows remarkable advantages compared with tissue detection. In this review, we summarized the typical miRNAs reported in recent years and place emphasis on evaluating miRNAs in different body fluids to provide reference for the clinical diagnosis and prognosis of ccRCC in the future.
Collapse
Affiliation(s)
- Lei Shi
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, People's Republic of China
| | - Mengheng Wang
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, People's Republic of China
| | - Haiping Li
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, People's Republic of China
| | - Pengtao You
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
21
|
Scioli MG, Terriaca S, Fiorelli E, Storti G, Fabbri G, Cervelli V, Orlandi A. Extracellular Vesicles and Cancer Stem Cells in Tumor Progression: New Therapeutic Perspectives. Int J Mol Sci 2021; 22:10572. [PMID: 34638913 PMCID: PMC8508599 DOI: 10.3390/ijms221910572] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor burden is a complex microenvironment where different cell populations coexist and have intense cross-talk. Among them, a heterogeneous population of tumor cells with staminal features are grouped under the definition of cancer stem cells (CSCs). CSCs are also considered responsible for tumor progression, drug resistance, and disease relapse. Furthermore, CSCs secrete a wide variety of extracellular vesicles (EVs) with different cargos, including proteins, lipids, ssDNA, dsDNA, mRNA, siRNA, or miRNA. EVs are internalized by other cells, orienting the microenvironment toward a protumorigenic and prometastatic one. Given their importance in tumor growth and metastasis, EVs could be exploited as a new therapeutic target. The inhibition of biogenesis, release, or uptake of EVs could represent an efficacious strategy to impair the cross-talk between CSCs and other cells present in the tumor microenvironment. Moreover, natural or synthetic EVs could represent suitable carriers for drugs or bioactive molecules to target specific cell populations, including CSCs. This review will discuss the role of CSCs and EVs in tumor growth, progression, and metastasis and how they affect drug resistance and disease relapse. Furthermore, we will analyze the potential role of EVs as a target or vehicle of new therapies.
Collapse
Affiliation(s)
- Maria Giovanna Scioli
- Department of Biomedicine and Prevention, Anatomic Pathology Institute, University of Rome Tor Vergata, 00133 Roma, Italy; (M.G.S.); (S.T.); (E.F.); (G.F.)
| | - Sonia Terriaca
- Department of Biomedicine and Prevention, Anatomic Pathology Institute, University of Rome Tor Vergata, 00133 Roma, Italy; (M.G.S.); (S.T.); (E.F.); (G.F.)
| | - Elena Fiorelli
- Department of Biomedicine and Prevention, Anatomic Pathology Institute, University of Rome Tor Vergata, 00133 Roma, Italy; (M.G.S.); (S.T.); (E.F.); (G.F.)
| | - Gabriele Storti
- Plastic and Reconstructive Surgery, Department of Surgical Sciences, University of Rome Tor Vergata, 00133 Roma, Italy; (G.S.); (V.C.)
| | - Giulia Fabbri
- Department of Biomedicine and Prevention, Anatomic Pathology Institute, University of Rome Tor Vergata, 00133 Roma, Italy; (M.G.S.); (S.T.); (E.F.); (G.F.)
| | - Valerio Cervelli
- Plastic and Reconstructive Surgery, Department of Surgical Sciences, University of Rome Tor Vergata, 00133 Roma, Italy; (G.S.); (V.C.)
| | - Augusto Orlandi
- Department of Biomedicine and Prevention, Anatomic Pathology Institute, University of Rome Tor Vergata, 00133 Roma, Italy; (M.G.S.); (S.T.); (E.F.); (G.F.)
| |
Collapse
|
22
|
Epigenetic Biomarkers of Renal Cell Carcinoma for Liquid Biopsy Tests. Int J Mol Sci 2021; 22:ijms22168846. [PMID: 34445557 PMCID: PMC8396354 DOI: 10.3390/ijms22168846] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/06/2021] [Accepted: 08/13/2021] [Indexed: 12/16/2022] Open
Abstract
Renal cell carcinomas (RCC) account for 2–3% of the global cancer burden and are characterized by the highest mortality rate among all genitourinary cancers. However, excluding conventional imagining approaches, there are no reliable diagnostic and prognostic tools available for clinical use at present. Liquid biopsies, such as urine, serum, and plasma, contain a significant amount of tumor-derived nucleic acids, which may serve as non-invasive biomarkers that are particularly useful for early cancer detection, follow-up, and personalization of treatment. Changes in epigenetic phenomena, such as DNA methylation level, expression of microRNAs (miRNAs), and long noncoding RNAs (lncRNAs), are observed early during cancer development and are easily detectable in biofluids when morphological changes are still undetermined by conventional diagnostic tools. Here, we reviewed recent advances made in the development of liquid biopsy-derived DNA methylation-, miRNAs- and lncRNAs-based biomarkers for RCC, with an emphasis on the performance characteristics. In the last two decades, a mass of circulating epigenetic biomarkers of RCC were suggested, however, most of the studies done thus far analyzed biomarkers selected from the literature, used relatively miniature, local, and heterogeneous cohorts, and suffered from a lack of sufficient validations. In summary, for improved translation into the clinical setting, there is considerable demand for the validation of the existing pool of RCC biomarkers and the discovery of novel ones with better performance and clinical utility.
Collapse
|
23
|
Association of Exosomal miR-210 with Signaling Pathways Implicated in Lung Cancer. Genes (Basel) 2021; 12:genes12081248. [PMID: 34440422 PMCID: PMC8392066 DOI: 10.3390/genes12081248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/30/2021] [Accepted: 08/05/2021] [Indexed: 12/27/2022] Open
Abstract
MicroRNA is a class of non-coding RNA involved in post-transcriptional gene regulation. Aberrant expression of miRNAs is well-documented in molecular cancer biology. Extensive research has shown that miR-210 is implicated in the progression of multiple cancers including that of the lung, bladder, colon, and renal cell carcinoma. In recent years, exosomes have been evidenced to facilitate cell–cell communication and signaling through packaging and transporting active biomolecules such as miRNAs and thereby modify the cellular microenvironment favorable for lung cancers. MiRNAs encapsulated inside the lipid bilayer of exosomes are stabilized and transmitted to target cells to exert alterations in the epigenetic landscape. The currently available literature indicates that exosomal miR-210 is involved in the regulation of various lung cancer-related signaling molecules and pathways, including STAT3, TIMP-1, KRAS/BACH2/GATA-3/RIP3, and PI3K/AKT. Here, we highlight major findings and progress on the roles of exosomal miR-210 in lung cancer.
Collapse
|
24
|
Tito C, De Falco E, Rosa P, Iaiza A, Fazi F, Petrozza V, Calogero A. Circulating microRNAs from the Molecular Mechanisms to Clinical Biomarkers: A Focus on the Clear Cell Renal Cell Carcinoma. Genes (Basel) 2021; 12:1154. [PMID: 34440329 PMCID: PMC8391131 DOI: 10.3390/genes12081154] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023] Open
Abstract
microRNAs (miRNAs) are emerging as relevant molecules in cancer development and progression. MiRNAs add a post-transcriptional level of control to the regulation of gene expression. The deregulation of miRNA expression results in changing the molecular circuitry in which miRNAs are involved, leading to alterations of cell fate determination. In this review, we describe the miRNAs that are emerging as innovative molecular biomarkers from liquid biopsies, not only for diagnosis, but also for post-surgery management in cancer. We focus our attention on renal cell carcinoma, in particular highlighting the crucial role of circulating miRNAs in clear cell renal cell carcinoma (ccRCC) management. In addition, the functional deregulation of miRNA expression in ccRCC is also discussed, to underline the contribution of miRNAs to ccRCC development and progression, which may be relevant for the identification and design of innovative clinical strategies against this tumor.
Collapse
Affiliation(s)
- Claudia Tito
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161 Rome, Italy; (C.T.); (A.I.); (F.F.)
| | - Elena De Falco
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (E.D.F.); (P.R.); (V.P.)
- Mediterranea Cardiocentro, 80122 Naples, Italy
| | - Paolo Rosa
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (E.D.F.); (P.R.); (V.P.)
| | - Alessia Iaiza
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161 Rome, Italy; (C.T.); (A.I.); (F.F.)
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161 Rome, Italy; (C.T.); (A.I.); (F.F.)
| | - Vincenzo Petrozza
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (E.D.F.); (P.R.); (V.P.)
| | - Antonella Calogero
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (E.D.F.); (P.R.); (V.P.)
| |
Collapse
|
25
|
A 25-year perspective on evaluation and understanding of biomarkers in urologic cancers. Urol Oncol 2021; 39:602-617. [PMID: 34315659 DOI: 10.1016/j.urolonc.2021.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/15/2022]
Abstract
The past 25 years have witnessed an explosion of investigative attempts to identify clinically useful biomarkers which can have meaningful impacts for patients with urologic cancers. However, in spite of the enormous amount of research aiming to identify markers with the hope of impacting patient care, only a handful have proven to have true clinical utility. Improvements in targeted imaging, pan-omics evaluation, and genetic sequencing at the tissue and single-cell levels have yielded many potential targets for continued biomarker investigation. This article, as one in this series for the 25th Anniversary Issue of Urologic Oncology: Seminars and Original Investigations, serves to give a perspective on our progress and failures over the past quarter-century in our highest volume urologic cancers: prostate, bladder, and kidney cancers.
Collapse
|
26
|
Martínez-González LJ, Sánchez-Conde V, González-Cabezuelo JM, Antunez-Rodríguez A, Andrés-León E, Robles-Fernandez I, Lorente JA, Vázquez-Alonso F, Alvarez-Cubero MJ. Identification of MicroRNAs as Viable Aggressiveness Biomarkers for Prostate Cancer. Biomedicines 2021; 9:biomedicines9060646. [PMID: 34198846 PMCID: PMC8227559 DOI: 10.3390/biomedicines9060646] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/22/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022] Open
Abstract
MiRNAs play a relevant role in PC (prostate cancer) by the regulation in the expression of several pathways’ AR (androgen receptor), cellular cycle, apoptosis, MET (mesenchymal epithelium transition), or metastasis. Here, we report the role of several miRNAs’ expression patterns, such as miR-93-5p, miR-23c, miR-210-3p, miR-221-3p, miR-592, miR-141, miR-375, and miR-130b, with relevance in processes like cell proliferation and MET. Using Trizol® extraction protocol and TaqMan™ specific probes for amplification, we performed miRNAs’ analysis of 159 PC fresh tissues and 60 plasmas from peripheral blood samples. We had clinical data from all samples including PSA, Gleason, TNM, and D’Amico risk. Moreover, a bioinformatic analysis in TCGA (The Cancer Genome Atlas) was included to analyze the effect of the most relevant miRNAs according to aggressiveness in an extensive cohort (n = 531). We found that miR-210-3p, miR-23c, miR-592, and miR-93-5p are the most suitable biomarkers for PC aggressiveness and diagnosis, respectively. In fact, according with our results, miR-93-5p seems the most promising non-invasive biomarker for PC. To sum up, miR-210-3p, miR-23c, miR-592, and miR-93-5p miRNAs are suggested to be potential biomarkers for PC risk stratification that could be included in non-invasive strategies such as liquid biopsy in precision medicine for PC management.
Collapse
Affiliation(s)
- Luis Javier Martínez-González
- GENYO. Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Genomics Unit, PTS Granada-Avenida de la Ilustración, 114-18016 Granada, Spain;
- Correspondence: author: (L.J.M.-G.); (M.J.A.-C.); Tel.: +34-958-715-500 (ext. 108) (L.J.M.-G.); +34-958-248-945 (M.J.A.-C.); Fax: +34-958-637-071 (L.J.M.-G.)
| | - Victor Sánchez-Conde
- Urology Department, Hospital Virgen de las Nieves, 18014 Granada, Spain; (V.S.-C.); (F.V.-A.)
| | | | - Alba Antunez-Rodríguez
- GENYO. Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Genomics Unit, PTS Granada-Avenida de la Ilustración, 114-18016 Granada, Spain;
| | - Eduardo Andrés-León
- Bioinformatics Unit, Institute of Parasitology and Biomedicine “López-Neyra” (IPBLN), Spanish National Research Council (CSIC), 18016 Granada, Spain;
| | - Inmaculada Robles-Fernandez
- GENYO. Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Liquid Biopsy and Cancer Interception Group, PTS Granada, 114-18016 Granada, Spain; (I.R.-F.); (J.A.L.)
| | - Jose Antonio Lorente
- GENYO. Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Liquid Biopsy and Cancer Interception Group, PTS Granada, 114-18016 Granada, Spain; (I.R.-F.); (J.A.L.)
- University of Granada, Legal Medicine and Toxicology Department, Faculty of Medicine, PTS Granada, 18016 Granada, Spain
| | - Fernando Vázquez-Alonso
- Urology Department, Hospital Virgen de las Nieves, 18014 Granada, Spain; (V.S.-C.); (F.V.-A.)
| | - María Jesus Alvarez-Cubero
- GENYO. Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Liquid Biopsy and Cancer Interception Group, PTS Granada, 114-18016 Granada, Spain; (I.R.-F.); (J.A.L.)
- University of Granada, Department of Biochemistry and Molecular Biology III, Faculty of Medicine, PTS Granada, 18016 Granada, Spain
- Nutrition, Diet and Risk Assessment Group, Bio-Health Research Institute (ibs.GRANADA Instituto de Investigación Biosanitaria), 18014 Granada, Spain
- Correspondence: author: (L.J.M.-G.); (M.J.A.-C.); Tel.: +34-958-715-500 (ext. 108) (L.J.M.-G.); +34-958-248-945 (M.J.A.-C.); Fax: +34-958-637-071 (L.J.M.-G.)
| |
Collapse
|
27
|
Bai JC, Huang GY. miR-1825 Accelerates Cell Proliferation and Inhibits Cell Apoptosis of Prostate Cancer via Targeting Suppressor of Cancer Cell Invasion. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Prostate cancer (PC) is one major carcinoma threat to the health of males. microRNAs (miRNAs) are short non-coding transcripts with about 23 nt in length. Booming evidence has verified the various roles of miRNAs in human tumors. miR-1825 was once demonstrated to be highly expressed
in PC, but the potential role of miR-1825 in PC has never been clarified yet. This work aimed to explore the function of miR-1825 and reveal the underlying modulation mechanism in PC. First, miR-1825 was detected to be elevated in PC cells compared with normal prostate cells, as proved by
RT-qPCR. After miR-1825 expression was inhibited, cell proliferation was hindered and cell apoptosis was promoted, which was observed by CCK8, colony formation, TUNEL staining and western blot assays. Bioinformatics tools discovered the targeting of suppressor of cancer cell invasion (SCAI)
by miR-1825, which was further confirmed by luciferase reporter assay. Then the suppression of miR-1825 on SCAI protein expression was verified by western blotting. Eventually, rescue assays were implemented and affirmed the miR-1825/SCAI axis in PC cells. In conclusion, our present research
disclosed the oncogenic role of miR-1825 and the miR-1825/SCAI pathway in PC. These findings gave new clues for the therapy of PC.
Collapse
Affiliation(s)
- Jun-Chao Bai
- Department of Urology, The Fourth Affiliated Hospital Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Guang-Yi Huang
- Department of Urology, The Fourth Affiliated Hospital Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| |
Collapse
|
28
|
Huang G, Li H, Wang J, Peng X, Liu K, Zhao L, Zhang C, Chen X, Lai Y, Ni L. Combination of tumor suppressor miR-20b-5p, miR-30a-5p, and miR-196a-5p as a serum diagnostic panel for renal cell carcinoma. Pathol Res Pract 2020; 216:153152. [PMID: 32823234 DOI: 10.1016/j.prp.2020.153152] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/26/2020] [Accepted: 07/28/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Renal cell carcinoma (RCC) accounts for 3 % of cancer patients. Early detection influences the therapeutic strategy and significantly improves patients' survival rates. Stable existing circulating miRNAs could be a promising diagnostic biomarker. METHODS Previously our team demonstrated the anti-tumor effect of miR-20b-5p, miR-30a-5p and miR-196a-5p in RCC tissue and cell lines. Here, based on 110 RCC patients and 110 health control, we investigated serum expression of these three miRNAs in the testing set and the validation set separately by using quantitative real-time PCR. A three-miRNA panel with high diagnostic efficiency was constructed. Correlations between these miRNAs and clinical parameters were investigated. Additionally, the TCGA dataset and bioinformatic analysis are used for the functional exploration of these miRNAs. RESULTS Serum expression levels of miR-20b-5p, miR-30a-5p were significantly reduced in RCC patients, while miR-196a-5p expression level was up-regulated (p < 0.001). miR-20b-5p, miR-30a-5p and miR-196a-5p had moderate diagnostic ability for RCC (AUC = 0.807, 0.766 and 0.719 in the testing set, respectively). The AUC of the three-miRNA panel was 0.949 in the testing set and 0.938 in the validation set. Specifically, the serum expression level of miR-196a-5p was significantly down-regulated in RCC patients with higher Fuhrman grade (p = 0.051). TCGA dataset analysis showed that the three-miRNA panel probably participated in RCC by targeting ITGA4 and NRP2. CONCLUSION The three-miRNA panel could serve as a promising non-invasive biomarker for RCC detection.
Collapse
Affiliation(s)
- Guocheng Huang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China; Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Huijuan Li
- Department of Urology, Shandong Provincial Hospital, Jinan, Shandong, 250021, China
| | - Jingyao Wang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China
| | - Xiqi Peng
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China; Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Kaihao Liu
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China; Anhui Medical University, Hefei, Anhui, 230032, China
| | - Liwen Zhao
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China; Anhui Medical University, Hefei, Anhui, 230032, China
| | - Chunduo Zhang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China
| | - Xuan Chen
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China; Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Yongqing Lai
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China; Shantou University Medical College, Shantou, Guangdong, 515041, China.
| | - Liangchao Ni
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China; Shantou University Medical College, Shantou, Guangdong, 515041, China.
| |
Collapse
|
29
|
Lakshminarayanan H, Rutishauser D, Schraml P, Moch H, Bolck HA. Liquid Biopsies in Renal Cell Carcinoma-Recent Advances and Promising New Technologies for the Early Detection of Metastatic Disease. Front Oncol 2020; 10:582843. [PMID: 33194717 PMCID: PMC7656014 DOI: 10.3389/fonc.2020.582843] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/29/2020] [Indexed: 12/21/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) displays a highly varying clinical progression, from slow growing localized tumors to very aggressive metastatic disease (mRCC). Almost a third of all patients with ccRCC show metastatic dissemination at presentation while another third develop metastasis during the course of the disease. Survival rates of mRCC patients remain low despite the development of novel targeted treatment regimens. Biomarkers indicating disease progression could help to define its aggressive potential and thus guide patient management. However, molecular markers that can reliably assess metastatic dissemination and disease recurrence in ccRCC have not been recommended for clinical practice to date. Liquid biopsies could provide an attractive and non-invasive method to determine the risk of recurrence or metastatic dissemination during follow-up and thus assist the search for surveillance biomarkers in ccRCC tumors. A wide spectrum of circulating molecules have already shown considerable potential for ccRCC diagnosis and prognostication. In this review, we outline state of the art of the key circulating analytes such as cfDNA, cfRNA, proteins, and exosomes that may serve as biomarkers for the longitudinal monitoring of ccRCC progression to metastasis. Moreover, we address some of the prevailing limitations in the past approaches and present promising adoptable technologies that could help to pursue the implementation of liquid biopsies as a prognostic tool for mRCC.
Collapse
Affiliation(s)
| | | | | | - Holger Moch
- Department of Pathology and Molecular Pathology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Hella A. Bolck
- Department of Pathology and Molecular Pathology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
30
|
Petrozza V, Costantini M, Tito C, Giammusso LM, Sorrentino V, Cacciotti J, Porta N, Iaiza A, Pastore AL, Di Carlo A, Simone G, Carbone A, Gallucci M, Fazi F. Emerging role of secreted miR-210-3p as potential biomarker for clear cell Renal Cell Carcinoma metastasis. Cancer Biomark 2020; 27:181-188. [PMID: 31771042 DOI: 10.3233/cbm-190242] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) are emerging as promising molecules in the diagnosis, prognosis and treatment of urological tumours. Recently, our group performed two independent studies highlighting that miR-210-3p may be a useful biomarker not only for diagnosis but also for post-surgery clear cell Renal Cell Carcinoma (ccRCC) management. OBJECTIVE The aim of this study is to further explore the effectiveness of miRNA as non-invasive biomarker for clinical outcomes and ccRCC response to the treatment. METHODS We analyzed miR-210-3p levels in neoplastic and healthy tissue and in urine specimens collected at surgery and during follow-up of 21 ccRCC patients by RTqPCR. RESULTS Firstly, we confirmed that the expression of miR-210-3p was upregulated in tumor tissues and in urine samples of analyzed cohort. Of note is that miR-210-3p expression was significantly reduced in urine samples from disease-free patients during follow-up (from 3 to 12 months) compared to the baseline levels observed at the time of surgery. In a small subgroup of patients presenting metastatic progression (such as bone, intestinal or lung metastasis), the urine levels of miR-210-3p correlated with responsiveness to the therapy. CONCLUSIONS This pilot study highlights the relevance of secreted miR-210-3p as powerful non-invasive prognostic and predictive biomarker for the evaluation of clinical outcomes and treatment response during ccRCC follow up.
Collapse
Affiliation(s)
- Vincenzo Petrozza
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Pathology Unit ICOT, Latina, Italy.,Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Pathology Unit ICOT, Latina, Italy
| | - Manuela Costantini
- Department of Urology, IRCCS - Regina Elena National Cancer Institute, Rome, Italy.,Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Pathology Unit ICOT, Latina, Italy
| | - Claudia Tito
- Department of Medico Surgical Sciences and Biotechnologies, Sapienza University of Rome, Urology Unit ICOT, Latina, Italy.,Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Pathology Unit ICOT, Latina, Italy
| | - Laura Maria Giammusso
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Section of Histology and Medical Embryology, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Veronica Sorrentino
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Pathology Unit ICOT, Latina, Italy
| | - Jessica Cacciotti
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Pathology Unit ICOT, Latina, Italy
| | - Natale Porta
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Pathology Unit ICOT, Latina, Italy
| | - Alessia Iaiza
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Section of Histology and Medical Embryology, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Antonio Luigi Pastore
- Department of Medico Surgical Sciences and Biotechnologies, Sapienza University of Rome, Urology Unit ICOT, Latina, Italy
| | - Angelina Di Carlo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Giuseppe Simone
- Department of Urology, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Antonio Carbone
- Department of Medico Surgical Sciences and Biotechnologies, Sapienza University of Rome, Urology Unit ICOT, Latina, Italy.,Department of Urology, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Michele Gallucci
- Department of Urology, IRCCS - Regina Elena National Cancer Institute, Rome, Italy.,Department of Urology, Sapienza University of Rome, Rome, Italy.,Department of Urology, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Section of Histology and Medical Embryology, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy.,Department of Urology, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
31
|
Oto J, Plana E, Sánchez-González JV, García-Olaverri J, Fernández-Pardo Á, España F, Martínez-Sarmiento M, Vera-Donoso CD, Navarro S, Medina P. Urinary microRNAs: Looking for a New Tool in Diagnosis, Prognosis, and Monitoring of Renal Cancer. Curr Urol Rep 2020; 21:11. [DOI: 10.1007/s11934-020-0962-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
32
|
Marigliano C, Badia S, Bellini D, Rengo M, Caruso D, Tito C, Miglietta S, Palleschi G, Pastore AL, Carbone A, Fazi F, Petrozza V, Laghi A. Radiogenomics in Clear Cell Renal Cell Carcinoma: Correlations Between Advanced CT Imaging (Texture Analysis) and MicroRNAs Expression. Technol Cancer Res Treat 2020; 18:1533033819878458. [PMID: 31564221 PMCID: PMC6767738 DOI: 10.1177/1533033819878458] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PURPOSE A relevant challenge for the improvement of clear cell renal cell carcinoma management could derive from the identification of novel molecular biomarkers that could greatly improve the diagnosis, prognosis, and treatment choice of these neoplasms. In this study, we investigate whether quantitative parameters obtained from computed tomography texture analysis may correlate with the expression of selected oncogenic microRNAs. METHODS In a retrospective single-center study, multiphasic computed tomography examination (with arterial, portal, and urographic phases) was performed on 20 patients with clear cell renal cell carcinoma and computed tomography texture analysis parameters such as entropy, kurtosis, skewness, mean, and standard deviation of pixel distribution were measured using multiple filter settings. These quantitative data were correlated with the expression of selected microRNAs (miR-21-5p, miR-210-3p, miR-185-5p, miR-221-3p, miR-145-5p). Both the evaluations (microRNAs and computed tomography texture analysis) were performed on matched tumor and normal corticomedullar tissues of the same patients cohort. RESULTS In this pilot study, we evidenced that computed tomography texture analysis has robust parameters (eg, entropy, mean, standard deviation) to distinguish normal from pathological tissues. Moreover, a higher coefficient of determination between entropy and miR-21-5p expression was evidenced in tumor versus normal tissue. Interestingly, entropy and miR-21-5p show promising correlation in clear cell renal cell carcinoma opening to a radiogenomic strategy to improve clear cell renal cell carcinoma management. CONCLUSION In this pilot study, a promising correlation between microRNAs and computed tomography texture analysis has been found in clear cell renal cell carcinoma. A clear cell renal cell carcinoma can benefit from noninvasive evaluation of texture parameters in adjunction to biopsy results. In particular, a promising correlation between entropy and miR-21-5p was found.
Collapse
Affiliation(s)
- Chiara Marigliano
- Department of Radiological, Oncological and Pathological Sciences, University of Rome "Sapienza"-Polo Pontino, ICOT Hospital, Latina, Italy
| | - Stefano Badia
- Department of Radiological, Oncological and Pathological Sciences, University of Rome "Sapienza"-Polo Pontino, ICOT Hospital, Latina, Italy
| | - Davide Bellini
- Department of Radiological, Oncological and Pathological Sciences, University of Rome "Sapienza"-Polo Pontino, ICOT Hospital, Latina, Italy
| | - Marco Rengo
- Department of Radiological, Oncological and Pathological Sciences, University of Rome "Sapienza"-Polo Pontino, ICOT Hospital, Latina, Italy
| | - Damiano Caruso
- Department of Radiological, Oncology and Pathology Sciences, "Sapienza" University of Rome, Italy Radiology Unit, Sant'Andrea University Hospital, Rome, Italy
| | - Claudia Tito
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology & Medical Embryology, "Sapienza" University of Rome, Laboratory Affiliated With Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Selenia Miglietta
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Section of Anatomy, Electron Microscopy Unit, Laboratory "Pietro M. Motta," "Sapienza" University of Rome, Rome, Italy
| | - Giovanni Palleschi
- Department of Medical-Surgical Sciences and Biotechnologies, "Sapienza" University of Rome, Urology Unit ICOT, Latina, Italy
| | - Antonio Luigi Pastore
- Department of Medical-Surgical Sciences and Biotechnologies, "Sapienza" University of Rome, Urology Unit ICOT, Latina, Italy
| | - Antonio Carbone
- Department of Medical-Surgical Sciences and Biotechnologies, "Sapienza" University of Rome, Urology Unit ICOT, Latina, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology & Medical Embryology, "Sapienza" University of Rome, Laboratory Affiliated With Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Vincenzo Petrozza
- Department of Medical-Surgical Sciences and Biotechnologies, "Sapienza" University of Rome, Urology Unit ICOT, Latina, Italy
| | - Andrea Laghi
- Department of Radiological, Oncology and Pathology Sciences, "Sapienza" University of Rome, Italy Radiology Unit, Sant'Andrea University Hospital, Rome, Italy
| |
Collapse
|
33
|
Angel CZ, Lynch SM, Nesbitt H, McKenna MM, Walsh CP, McKenna DJ. miR-210 is induced by hypoxia and regulates neural cell adhesion molecule in prostate cells. J Cell Physiol 2020; 235:6194-6203. [PMID: 31975433 DOI: 10.1002/jcp.29548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022]
Abstract
Hypoxia in prostate tumours has been associated with disease progression and metastasis. MicroRNAs are short noncoding RNA molecules that are important in several cell processes, but their role in hypoxic signalling is still poorly understood. miR-210 has been linked with hypoxic mechanisms, but this relationship has been poorly characterised in prostate cancer. In this report, the link between hypoxia and miR-210 in prostate cancer cells is investigated. Polymerase chain reaction analysis demonstrates that miR-210 is induced by hypoxia in prostate cancer cells using in vitro cell models and an in vivo prostate tumour xenograft model. Analysis of The Cancer Genome Atlas prostate biopsy datasets shows that miR-210 is significantly correlated with Gleason grade and other clinical markers of prostate cancer progression. Neural cell adhesion molecule (NCAM) is identified as a target of miR-210, providing a biological mechanism whereby hypoxia-induced miR-210 expression can contribute to prostate cancer. This study provides evidence that miR-210 is an important regulator of cell response to hypoxic stress and proposes that its regulation of NCAM may play an important role in the pathogenesis of prostate cancer.
Collapse
Affiliation(s)
- Charlotte Zoe Angel
- Genomic Medicine Research Group, Biomedical Sciences Research Institute, Ulster University, Coleraine, UK
| | - Seodhna M Lynch
- Cancer Biology & Therapeutics Laboratory, School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - Heather Nesbitt
- Genomic Medicine Research Group, Biomedical Sciences Research Institute, Ulster University, Coleraine, UK
| | - Michael M McKenna
- Department of Cellular Pathology, Altnagelvin Area Hospital, Western Health & Social Care Trust, Co. Derry, UK
| | - Colum P Walsh
- Genomic Medicine Research Group, Biomedical Sciences Research Institute, Ulster University, Coleraine, UK
| | - Declan J McKenna
- Genomic Medicine Research Group, Biomedical Sciences Research Institute, Ulster University, Coleraine, UK
| |
Collapse
|
34
|
Abstract
MicroRNAs (miRNAs) are endogenous noncoding RNAs, which regulate gene expression on the post-transcriptional level. Since miRNAs are involved in the regulation of apoptosis, cellular proliferation, differentiation, and other important cellular processes, their deregulation is important for the development of a wide range of diseases including cancer. Apart from tissue, specific disease-related miRNA signatures can be found in body fluids as well. Especially for urologic diseases or injuries, urine miRNAs represent a promising group of biomarkers. Despite a large number of studies describing the importance of urinary miRNAs, there is a lack of recommendations for urine management and subsequent miRNA analysis. Thus, in this chapter, we aim to describe the origin and functions of urinary miRNAs and discuss the technical aspects of their detection including the pre-analytical phase principles and new directions in quantification, which could forward urine miRNA into clinical practice.
Collapse
Affiliation(s)
- Jaroslav Juracek
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
35
|
Zhang L, Li H, Yuan M, Li M, Zhang S. Cervical Cancer Cells-Secreted Exosomal microRNA-221-3p Promotes Invasion, Migration and Angiogenesis of Microvascular Endothelial Cells in Cervical Cancer by Down-Regulating MAPK10 Expression. Cancer Manag Res 2019; 11:10307-10319. [PMID: 31849520 PMCID: PMC6910095 DOI: 10.2147/cmar.s221527] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022] Open
Abstract
Purpose Cervical cancer (CC) is recognized as a common cancer with a high risk worldwide. Exosomal microRNAs (miRNAs) have received attention for their increasing potentials in CC therapy. In this study, we identify the involvement of miR-221-3p in CC progression by affecting angiogenesis of microvascular endothelial cells (MVECs). Methods Microarray-based gene expression profiling was conducted to retrieve the differentially expressed genes in CC. The expression patterns of miR-221-3p were measured by RT-qPCR, while Western blot analysis and RT-qPCR were performed to determine the expression of MAPK10 in the CC tissues and cells, followed by verification of the interaction between miR-221-3p and MAPK10 using dual luciferase reporter gene assay. Then the effects of miR-221-3p and MAPK10 on cell activities were assessed through gain- and loss-of-function experiments in CC. Subsequently, the impact of exosomal miR-221-3p on MVEC proliferation, migration, invasion and angiogenesis was examined after exosomal isolation from CC cells and co-cultured with MVECs. Results Gene expression profile showed that MAPK10 might participate in CC with a low expression. Moreover, miR-221-3p was highly expressed and MAPK10 was poorly expressed in CC tissues and cells. It was observed that miR-221-3p targeted MAPK10. Depletion of miR-221-3p blocked the cell proliferation, invasion and migration in CC by up-regulating MAPK10. Moreover, CC cells-derived exosomes carrying miR-221-3p accelerated MVEC proliferation, invasion, migration and angiogenesis in CC by regulating MAPK10. Conclusion CC cells-derived exosomes harboring miR-221-3p enhanced MVEC angiogenesis in CC by decreasing MAPK10.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250012, People's Republic of China
| | - Huihui Li
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250012, People's Republic of China
| | - Ming Yuan
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250012, People's Republic of China
| | - Mingbao Li
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250012, People's Republic of China
| | - Shuquan Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250012, People's Republic of China
| |
Collapse
|
36
|
Barth DA, Slaby O, Klec C, Juracek J, Drula R, Calin GA, Pichler M. Current Concepts of Non-Coding RNAs in the Pathogenesis of Non-Clear Cell Renal Cell Carcinoma. Cancers (Basel) 2019; 11:E1580. [PMID: 31627266 PMCID: PMC6826455 DOI: 10.3390/cancers11101580] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/12/2019] [Accepted: 10/14/2019] [Indexed: 12/18/2022] Open
Abstract
Renal cell carcinoma (RCC) is a relatively rare malignancy of the urinary tract system. RCC is a heterogenous disease in terms of underlying histology and its associated underlying pathobiology, prognosis and treatment schedule. The most prevalent histological RCC subtype is clear-cell renal cell carcinoma (ccRCC), accounting for about 70-80% of all RCCs. Though the pathobiology and treatment schedule for ccRCC are well-established, non-ccRCC subtypes account for 20%-30% of RCC altogether, and their underlying molecular biology and treatment options are poorly defined. The class of non-coding RNAs-molecules that are generally not translated into proteins-are new cancer drivers and suppressors in all types of cancer. Of these, small non-coding microRNAs (miRNAs) contribute to carcinogenesis by regulating posttranscriptional gene silencing. Additionally, a growing body of evidence supports the role of long non-coding RNAs (lncRNAs) in cancer development and progression. Most studies on non-coding RNAs in RCC focus on clear-cell histology, and there is a relatively limited number of studies on non-ccRCC subtypes. The aim of this review is to give an overview of the current knowledge regarding the role of non-coding RNAs (including short and long non-coding RNAs) in non-ccRCC and to highlight possible implications as diagnostic, prognostic and predictive biomarkers.
Collapse
Affiliation(s)
- Dominik A Barth
- Research Unit of Non-Coding RNAs and Genome Editing, Division of Clinical Oncology, Department of Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria.
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic.
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, 62500 Brno, Czech Republic.
| | - Christiane Klec
- Research Unit of Non-Coding RNAs and Genome Editing, Division of Clinical Oncology, Department of Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria.
| | - Jaroslav Juracek
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic.
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, 62500 Brno, Czech Republic.
| | - Rares Drula
- Research Centre for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 40015 Cluj-Napoca, Romania.
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Martin Pichler
- Research Unit of Non-Coding RNAs and Genome Editing, Division of Clinical Oncology, Department of Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria.
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
37
|
Zeuschner P, Linxweiler J, Junker K. Non-coding RNAs as biomarkers in liquid biopsies with a special emphasis on extracellular vesicles in urological malignancies. Expert Rev Mol Diagn 2019; 20:151-167. [DOI: 10.1080/14737159.2019.1665998] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Philip Zeuschner
- Department of Urology and Pediatric Urology, Saarland University, Homburg, Germany
| | - Johannes Linxweiler
- Department of Urology and Pediatric Urology, Saarland University, Homburg, Germany
| | - Kerstin Junker
- Department of Urology and Pediatric Urology, Saarland University, Homburg, Germany
| |
Collapse
|
38
|
Wang P, Dong R, Wang B, Lou Z, Ying J, Xia C, Hu S, Wang W, Sun Q, Zhang P, Ge Q, Xiao L, Chen D, Tong P, Li J, Jin H. Genome-wide microRNA screening reveals miR-582-5p as a mesenchymal stem cell-specific microRNA in subchondral bone of the human knee joint. J Cell Physiol 2019; 234:21877-21888. [PMID: 31049977 PMCID: PMC6767428 DOI: 10.1002/jcp.28751] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 12/22/2022]
Abstract
Emerging evidence suggests that microRNAs (miRNAs) may be pathologically involved in osteoarthritis (OA). Subchondral bone (SCB) sclerosis is accounted for the knee osteoarthritis (KOA) development and progression. In this study, we aimed to screen the miRNA biomarkers of KOA and investigated whether these miRNAs regulate the differentiation potential of mesenchymal stem cells (MSCs) and thus contributing to SCB. We identified 48 miRNAs in the blood samples in KOA patients (n = 5) through microarray expression profiling detection. After validation with larger sample number, we confirmed hsa-miR-582-5p and hsa-miR-424-5p were associated with the pathology of SCB sclerosis. Target genes prediction and pathway analysis were implemented with online databases, indicating these two candidate miRNAs were closely related to the pathways of pluripotency of stem cells and pathology of OA. Surprisingly, mmu-miR-582-5p (homology of hsa-miR-582-5p) was downregulated in osteogenic differentiation and upregulated in adipogenic differentiation of mesenchymal progenitor C3H10T1/2 cells, whereas mmu-mir-322-5p (homology of hsa-miR-424-5p) showed no change through the in vitro study. Supplementing mmu-miR-582-5p mimics blocked osteogenic and induced adipogenic differentiation of C3H10T1/2 cells, whereas silencing of the endogenous mmu-miR-582-5p enhanced osteogenic and repressed adipogenic differentiation. Further mechanism studies showed that mmu-miR-582-5p was directly targeted to Runx2. Mutation of putative mmu-miR-582-5p binding sites in Runx2 3' untranslated region (3'UTR) could abolish the response of the 3'UTR-luciferase construct to mmu-miR-582-5p supplementation. Generally speaking, our data suggest that miR-582-5p is an important biomarker of KOA and is able to regulate osteogenic and adipogenic differentiation of MSCs via targeting Runx2. The study also suggests that miR-582-5p may play a crucial role in SCB sclerosis of human KOA.
Collapse
Affiliation(s)
- Pinger Wang
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.,Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.,Institute of Orthopaedic and Traumatology of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Rui Dong
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.,Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.,Institute of Orthopaedic and Traumatology of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Baoli Wang
- Key Laboratory of Hormones and Development, Ministry of Health, Tianjin Metabolic Diseases Hospital, Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Zhaohuan Lou
- The Pharmaceutical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jun Ying
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Chenjie Xia
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Songfeng Hu
- Department of Orthopaedics, Shaoxing Hospital of Traditional Chinese Medicine, Shaoxing, Zhejiang, China
| | - Weidong Wang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Qi Sun
- Department of Orthopaedic Surgery, Fuyang Orthopaedics and Traumatology Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Peng Zhang
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Qinwen Ge
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Luwei Xiao
- Institute of Orthopaedic and Traumatology of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Di Chen
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Peijian Tong
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.,Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ju Li
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.,Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Hongting Jin
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.,Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.,Institute of Orthopaedic and Traumatology of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
39
|
Fries JWU. MicroRNAs as markers to monitor endothelin-1 signalling and potential treatment in renal disease: Carcinoma - proteinuric damage - toxicity. Biol Cell 2019; 111:169-186. [PMID: 30866090 DOI: 10.1111/boc.201800059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/01/2019] [Accepted: 02/25/2019] [Indexed: 12/11/2022]
Abstract
This review highlights new developments in miRNA as diagnostic and surveillance tools in diseases damaging the renal proximal tubule mediated by endothelin in the field of renal carcinoma, proteinuric kidney disease and tubulotoxicity. A new mechanism in the miRNA regulation of proteins leads to the binding of the miRNA directly to the DNA with premature transcriptional termination and hence the formation of truncated protein isoforms (Mxi2, Vim3). These isoforms are mediated through miRNA15a or miRNA 498, respectively. ET-1 can activate a cytoplasmic complex consisting of NF-κB p65, MAPK p38α, and PKCα. Consequently, PKCα does not transmigrate into the nucleus, which leads to the loss of suppression of a primiRNA15a, maturation of this miRNA in the cytoplasm, tubular secretion and detectability in the urine. This mechanism has been shown in renal cell carcinoma and in proteinuric disease as a biomarker for the activation of the signalling pathway. Similarly, ET-1 induced miRNA 498 transmigrates into the nucleus to form the truncated protein Vim3, which is a biomarker for the benign renal cell tumour, oncocytoma. In tubulotoxicity, ET-1 induced miRNa133a down-regulating multiple-drug-resistant related protein-2, relevant for proteinuric and cisplatin/cyclosporine A toxicity. Current advantages and limitations of miRNAs as urinary biomarkers are discussed.
Collapse
Affiliation(s)
- Jochen W U Fries
- Department of Pathology, University Hospital of Koeln, 50931, Koeln, Germany
| |
Collapse
|
40
|
Zhang X, Sai B, Wang F, Wang L, Wang Y, Zheng L, Li G, Tang J, Xiang J. Hypoxic BMSC-derived exosomal miRNAs promote metastasis of lung cancer cells via STAT3-induced EMT. Mol Cancer 2019; 18:40. [PMID: 30866952 PMCID: PMC6417285 DOI: 10.1186/s12943-019-0959-5] [Citation(s) in RCA: 407] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/20/2019] [Indexed: 02/08/2023] Open
Abstract
Background Metastasis is the main cause of lung cancer mortality. Bone marrow-derived mesenchymal stem cells (BMSCs) are a component of the cancer microenvironment and contribute to cancer progression. Intratumoral hypoxia affects both cancer and stromal cells. Exosomes are recognized as mediators of intercellular communication. Here, we aim to further elucidate the communication between BMSC-derived exosomes and cancer cells in the hypoxic niche. Methods Exosomal miRNA profiling was performed using a microRNA array. Lung cancer cells and an in vivo mouse syngeneic tumor model were used to evaluate the effects of select exosomal microRNAs. Hypoxic BMSC-derived plasma exosomal miRNAs were assessed for their capacity to discriminate between cancer patients and non-cancerous controls and between cancer patients with or without metastasis. Results We demonstrate that exosomes derived from hypoxic BMSCs are taken by neighboring cancer cells and promote cancer cell invasion and EMT. Exosome-mediated transfer of select microRNAs, including miR-193a-3p, miR-210-3p and miR-5100, from BMSCs to epithelial cancer cells activates STAT3 signaling and increases the expression of mesenchymal related molecules. The diagnostic accuracy of individual microRNA showed that plasma exosomal miR-193a-3p can discriminate cancer patients from non-cancerous controls. A panel of these three plasma exosomal microRNAs showed a better diagnostic accuracy to discriminate lung cancer patients with or without metastasis than individual exosomal microRNA. Conclusions Exosome-mediated transfer of miR-193a-3p, miR-210-3p and miR-5100, could promote invasion of lung cancer cells by activating STAT3 signalling-induced EMT. These exosomal miRNAs may be promising noninvasive biomarkers for cancer progression. Electronic supplementary material The online version of this article (10.1186/s12943-019-0959-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xina Zhang
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Buqing Sai
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fan Wang
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lujuan Wang
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuhui Wang
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Leliang Zheng
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jingqun Tang
- Department of Thoracic Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Juanjuan Xiang
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China. .,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China. .,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, 410013, Hunan, China.
| |
Collapse
|
41
|
Feng S, He A, Wang D, Kang B. Diagnostic significance of miR-210 as a potential tumor biomarker of human cancer detection: an updated pooled analysis of 30 articles. Onco Targets Ther 2019; 12:479-493. [PMID: 30666127 PMCID: PMC6331190 DOI: 10.2147/ott.s184564] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A large number of studies have explored the diagnostic value of miR-210 as a potential diagnostic cancer biomarker to detect various cancers in patients. However, the results of its diagnostic accuracy and reliability in individual studies are still inconsistent. Therefore, we conducted this updated pooled analysis to derive a more reliable conclusion of the overall accuracy of miR-210 in cancer detection and diagnosis. A comprehensive literature search was performed using the PubMed, Cochrane Library, Web of Science, China National Knowledge Infrastructure, and Wanfang databases. The quality of all eligible studies was scored according to Quality Assessment of Diagnostic Accuracy Studies-2 guidelines. The bivariate mixed model was applied to pooled sensitivity, specificity, likelihood ratios, and diagnostic ORs. The summary receiver operator characteristic (SROC) curve and the hierarchical SROC models were used to check overall diagnostic performance. Thirty articles with 2,304 patients and 1,673 controls were included in this study. The pooled parameters calculated from all studies are as follows: sensitivity -0.74 (95% CI: 0.68-0.79), specificity -0.79 (95% CI: 0.74-0.83), positive likelihood ratio -3.57 (95% CI: 2.85-4.47), negative likelihood ratio -0.32 (95% CI: 0.26-0.40), diagnostic OR -10.98 (95% CI: 7.55-15.98), SROC -0.84 (95% CI: 0.80-0.87). All of these results revealed that miR-210 had relatively moderate accuracy in distinguishing patients with various cancers from all other individuals. However, well-designed prospective studies with large sample sizes using different groups of the population are urgently warranted to confirm our findings.
Collapse
Affiliation(s)
- Song Feng
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Peking University Shenzhen, Shenzhen 518038, Guangdong, China, ;
| | - Anbang He
- Department of Urology, Peking University First Hospital, The Institute of Urology, Peking University National Urological Cancer Centre, Beijing 100034, China
| | - Deli Wang
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Peking University Shenzhen, Shenzhen 518038, Guangdong, China, ;
| | - Bin Kang
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Peking University Shenzhen, Shenzhen 518038, Guangdong, China, ;
| |
Collapse
|
42
|
Scelo G, Muller DC, Riboli E, Johansson M, Cross AJ, Vineis P, Tsilidis KK, Brennan P, Boeing H, Peeters PHM, Vermeulen RCH, Overvad K, Bueno-de-Mesquita HB, Severi G, Perduca V, Kvaskoff M, Trichopoulou A, La Vecchia C, Karakatsani A, Palli D, Sieri S, Panico S, Weiderpass E, Sandanger TM, Nøst TH, Agudo A, Quirós JR, Rodríguez-Barranco M, Chirlaque MD, Key TJ, Khanna P, Bonventre JV, Sabbisetti VS, Bhatt RS. KIM-1 as a Blood-Based Marker for Early Detection of Kidney Cancer: A Prospective Nested Case-Control Study. Clin Cancer Res 2018; 24:5594-5601. [PMID: 30037816 PMCID: PMC6239904 DOI: 10.1158/1078-0432.ccr-18-1496] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/19/2018] [Accepted: 07/13/2018] [Indexed: 12/12/2022]
Abstract
Purpose: Renal cell carcinoma (RCC) has the potential for cure with surgery when diagnosed at an early stage. Kidney injury molecule-1 (KIM-1) has been shown to be elevated in the plasma of RCC patients. We aimed to test whether plasma KIM-1 could represent a means of detecting RCC prior to clinical diagnosis.Experimental Design: KIM-1 concentrations were measured in prediagnostic plasma from 190 RCC cases and 190 controls nested within a population-based prospective cohort study. Cases had entered the cohort up to 5 years before diagnosis, and controls were matched on cases for date of birth, date at blood donation, sex, and country. We applied conditional logistic regression and flexible parametric survival models to evaluate the association between plasma KIM-1 concentrations and RCC risk and survival.Results: The incidence rate ratio (IRR) of RCC for a doubling in KIM-1 concentration was 1.71 [95% confidence interval (CI), 1.44-2.03, P = 4.1 × 10-23], corresponding to an IRR of 63.3 (95% CI, 16.2-246.9) comparing the 80th to the 20th percentiles of the KIM-1 distribution in this sample. Compared with a risk model including known risk factors of RCC (age, sex, country, body mass index, and tobacco smoking status), a risk model additionally including KIM-1 substantially improved discrimination between cases and controls (area under the receiver-operating characteristic curve of 0.8 compared with 0.7). High plasma KIM-1 concentrations were also associated with poorer survival (P = 0.0053).Conclusions: Plasma KIM-1 concentrations could predict RCC incidence up to 5 years prior to diagnosis and were associated with poorer survival. Clin Cancer Res; 24(22); 5594-601. ©2018 AACR.
Collapse
Affiliation(s)
- Ghislaine Scelo
- International Agency for Research on Cancer (IARC), Lyon, France
| | - David C Muller
- Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom.
| | - Elio Riboli
- Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom
| | | | - Amanda J Cross
- Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom
| | - Paolo Vineis
- Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom
| | - Konstantinos K Tsilidis
- Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Paul Brennan
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Heiner Boeing
- Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Petra H M Peeters
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, the Netherlands
| | - Roel C H Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, the Netherlands
| | - Kim Overvad
- Department of Public Health, Section for Epidemiology, Aarhus University, Denmark
| | - H Bas Bueno-de-Mesquita
- Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom
- Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
- Department of Gastroenterology and Hepatology, University Medical Centre, Utrecht, the Netherlands
- Department of Social & Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Gianluca Severi
- CESP, Faculté de Médecine, Université Paris-Sud, Faculté de médecine, UVSQ, INSERM, Université Paris-Saclay, Villejuif, France
- Gustave Roussy, Villejuif, France
| | - Vittorio Perduca
- CESP, Faculté de Médecine, Université Paris-Sud, Faculté de médecine, UVSQ, INSERM, Université Paris-Saclay, Villejuif, France
- Gustave Roussy, Villejuif, France
- Laboratoire de Mathématiques Appliquées MAP5 (UMR CNRS 8145), Université Paris Descartes, Paris, France
| | - Marina Kvaskoff
- CESP, Faculté de Médecine, Université Paris-Sud, Faculté de médecine, UVSQ, INSERM, Université Paris-Saclay, Villejuif, France
- Gustave Roussy, Villejuif, France
| | | | - Carlo La Vecchia
- Hellenic Health Foundation, Athens, Greece
- Department of Clinical Sciences and Community Health Università degli Studi di Milano, Milan, Italy
| | - Anna Karakatsani
- Hellenic Health Foundation, Athens, Greece
- 2nd Pulmonary Medicine Department, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Haidari, Greece
| | - Domenico Palli
- Cancer Risk Factors and Life-Style Epidemiology Unit, Cancer Research and Prevention Institute, ISPO, Florence, Italy
| | - Sabina Sieri
- Epidemiology and Prevention Unit Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Salvatore Panico
- Dipartimento Di Medicina Clinica e Chirurgia, Federico II University, Naples, Italy
| | - Elisabete Weiderpass
- Department of Community Medicine, Faculty of Health Sciences, University of Tromsø, The Arctic University of Norway, Tromsø, Norway
- Department of Research, Cancer Registry of Norway, Institute of Population-Based Cancer Research, Oslo, Norway
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Genetic Epidemiology Group, Folkhälsan Research Center, Helsinki, Finland
| | - Torkjel M Sandanger
- Department of Community Medicine, Faculty of Health Sciences, University of Tromsø, The Arctic University of Norway, Tromsø, Norway
| | - Therese H Nøst
- Department of Community Medicine, Faculty of Health Sciences, University of Tromsø, The Arctic University of Norway, Tromsø, Norway
| | - Antonio Agudo
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Institut Catatlà d'Oncologia, L'Hospitalet de Llobregat, Spain
| | | | - Miguel Rodríguez-Barranco
- Escuela Andaluza de Salud Pública, Instituto de Investigación Biosanitaria ibs.GRANADA. Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Maria-Dolores Chirlaque
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Murcia, Spain
- Department of Health and Social Sciences, Universidad de Murcia, Murcia, Spain
| | - Timothy J Key
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford
| | - Prateek Khanna
- Department of Medicine, Division of Hematology and Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Joseph V Bonventre
- Brigham and Women's Hospital, Harvard Institutes of Medicine, Boston, Massachusetts
| | - Venkata S Sabbisetti
- Brigham and Women's Hospital, Harvard Institutes of Medicine, Boston, Massachusetts
| | - Rupal S Bhatt
- Department of Medicine, Division of Hematology and Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts.
| |
Collapse
|
43
|
Extracellular miR-224 as a prognostic marker for clear cell renal cell carcinoma. Oncotarget 2017; 8:109877-109888. [PMID: 29299115 PMCID: PMC5746350 DOI: 10.18632/oncotarget.22436] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/27/2017] [Indexed: 12/22/2022] Open
Abstract
Exosome-miRNAs (exo-miR) have recently been identified as modulators of cancer progression and distant metastasis. We previously found that intracellular miR-224 is up-regulated and significantly related to cancer invasion and metastasis in clear cell renal cell carcinoma (ccRCC). We therefore investigated the role of exosome miR-224 in ccRCC and explored the interaction between intra- and extracellular miR-224 in renal cell carcinoma. To validate the method for isolating exosomes from blood samples or cell culture media, we examined exosome morphology using transmission electron microscope (TEM). We investigated the relationship between exo-miR-224 expression and patient prognosis in 108 ccRCC patients. We isolated exosomes from a metastatic renal cancer cell line and tested their effects on a primary renal cancer cell line with several functional analyses. We found that the high expression level exo-miR-224 group has significantly shorter progression-free survival, cancer-specific survival, and overall survival compared with the low expression group. In multivariate analysis, a high level of exo-miR-224 was a significant risk factor related to all prognoses investigated. After adding exosomes from a metastatic RCC cell line to a primary RCC cell line, cell proliferation and invasion were increased while the percentage of apoptotic cells was significantly decreased. Intracellular levels of miR-224 were significantly up-regulated in the primary renal cancer cell line. Extracellular miR-224 in exosomes impacts on patient prognosis and is a potential prognostic biomarker for ccRCC patients.
Collapse
|