1
|
Wang Y, Chen Z, Liu Q, Lv Y. LncTCONS_00058568 is involved in the pathophysiologic processes mediated by P2X7R in the lower thoracic spinal cord after acute kidney injury. FASEB J 2024; 38:e23563. [PMID: 38498358 DOI: 10.1096/fj.202301622rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/25/2024] [Accepted: 03/05/2024] [Indexed: 03/20/2024]
Abstract
Acute kidney injury (AKI), a prevalent clinical syndrome, involves the participation of the nervous system in neuroimmune regulation. However, the intricate molecular mechanism that governs renal function regulation by the central nervous system (CNS) is complex and remains incompletely understood. In the present study, we found that the upregulated expression of lncTCONS_00058568 in lower thoracic spinal cord significantly ameliorated AKI-induced renal tissue injury, kidney morphology, inflammation and apoptosis, and suppressed renal sympathetic nerve activity. Mechanistically, the purinergic ionotropic P2X7 receptor (P2X7R) was overexpressed in AKI rats, whereas lncTCONS_00058568 was able to suppress the upregulation of P2X7R. In addition, RNA sequencing data revealed differentially expressed genes associated with nervous system inflammatory responses after lncTCONS_00058568 was overexpressed in AKI rats. Finally, the overexpression of lncTCONS_00058568 inhibited the activation of PI3K/Akt and NF-κB signaling pathways in spinal cord. Taken together, the results from the present study show that lncTCONS_00058568 overexpression prevented renal injury probably by inhibiting sympathetic nerve activity mediated by P2X7R in the lower spinal cord subsequent to I/R-AKI.
Collapse
Affiliation(s)
- Yiru Wang
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Chen
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingquan Liu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongman Lv
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Goleij P, Sanaye PM, Rezaee A, Tabari MAK, Arefnezhad R, Motedayyen H. RNA therapeutics for kidney injury. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 204:69-95. [PMID: 38458744 DOI: 10.1016/bs.pmbts.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
RNA therapy involves utilizing RNA-based molecules to control biological pathways, aiming to cure specific diseases. As our understanding of RNA functions and their roles has expanded, the application of RNA therapies has broadened to target various therapeutic points. This approach holds promise for treating a range of diseases, including kidney diseases. Therapeutic RNA can be employed to target specific genes or pathways implicated in the development of kidney conditions, such as inflammation, fibrosis, and oxidative stress. This review highlights the therapeutic potential of RNA-based therapies across different types of kidney diseases, encompassing infection, inflammation, nephrotoxicity, and ischemia/reperfusion injury. Furthermore, studies have pinpointed the specific kidney cells involved in RNA therapy. To address challenges hindering the potential impact of RNA-based drugs on their targets, nanotechnology is integrated, and RNA-loaded vehicles with ligands are explored for more efficient outcomes.
Collapse
Affiliation(s)
- Pouya Goleij
- Department of Genetics, Sana Institute of Higher Education, Sari, Iran; USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Khazeei Tabari
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran; USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Reza Arefnezhad
- Coenzyme R Research Institute, Tehran, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Hossein Motedayyen
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
3
|
Zhong M, Fan G, An Z, Chen C, Dong L. Research progress on long non-coding RNAs for spinal cord injury. J Orthop Surg Res 2023; 18:520. [PMID: 37480035 PMCID: PMC10362720 DOI: 10.1186/s13018-023-03989-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/09/2023] [Indexed: 07/23/2023] Open
Abstract
Spinal cord injury is a complex central nervous system disease with an unsatisfactory prognosis, often accompanied by multiple pathological processes. However, the underlying mechanisms of action of this disease are unclear, and there are no suitable targeted therapeutic options. Long non-coding RNA mediates a variety of neurological diseases and regulates various biological processes, including apoptosis and autophagy, inflammatory response, microenvironment, and oxidative stress. It is known that long non-coding RNAs have significant differences in gene expression in spinal cord injury. To further understand the mechanism of long non-coding RNA action in spinal cord injury and develop preventive and therapeutic strategies regarding spinal cord injury, this review outlines the current status of research between long non-coding RNAs and spinal cord injury and potential long non-coding RNAs targeting spinal cord injury.
Collapse
Affiliation(s)
- Musen Zhong
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Guangya Fan
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhongcheng An
- Orthopedic Traumatology II, The Sceond Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Chen Chen
- Orthopedic Traumatology II, The Sceond Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Liqiang Dong
- Orthopedic Traumatology II, The Sceond Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
4
|
Li Y, Zhang J, Zhai P, Hu C, Suo J, Wang J, Liu C, Peng Z. The potential biomarker TIFA regulates pyroptosis in sepsis-induced acute kidney injury. Int Immunopharmacol 2023; 115:109580. [PMID: 36586274 DOI: 10.1016/j.intimp.2022.109580] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/31/2022]
Abstract
Sepsis is the leading cause of acute kidney injury (AKI), and specific treatment options for septic AKI are very limited. Here, we used bulk RNA sequencing of a septic model of AKI to characterize the mRNA profile during AKI. The differentially expressed genes (DEGs) mainly participate in the inflammatory response and metabolic processes. Analysis of comprehensive mRNA-seq datasets revealed sepsis-induced AKI-specific cohorts of expressed genes, and six DEGs were tested in urine from septic patients with/without AKI. TRAF-interacting protein with forkhead-associated domain (TIFA) and fatty acid synthase (FASN) were differentially expressed in the urine from the sepsis-induced AKI group. Furthermore, we found that TIFA expression was significantly upregulated in mouse kidney tissue following cecal ligation and puncture (CLP). We sought to investigate its role in lipopolysaccharide (LPS) (TLR4 ligand)- and oligodeoxynucleotides (ODN) (TLR9 ligand)-treated human kidney cells and mouse. TIFA was located in Lotus tetragonolobus lectin (LTL) positive renal cells in kidney tissue, which was stained by immunofluorescence. Exposure of HK-2 cells to LPS and ODN caused disruption of the mitochondrial transmembrane potential. The results of transmission electron microscope (TEM) showed that mitochondrial damages were improved in TIFA-knockdown group. Moreover, knockdown of TIFA resulted in a decrease in the percentage of annexin V-positive and PI-negative cells after ODN treatment. The protein of NLRP3, Caspase-1 and GSDMD were also decreased when si-TIFA was transferred into HK-2 cells following LPS and ODN treatment. Activation of TIFA enhanced the expression of IL-1β and IL18. These results indicated that TIFA induced pyroptosis by activating the mitochondrial damage. Our study provides a detailed transcriptomic description of the renal cellular responses after sepsis. Our study suggest that TIFA is involved in pyroptosis by activating the mitochondrial damage and may be a therapeutic target to treat sepsis-induced kidney injury.
Collapse
Affiliation(s)
- Yiming Li
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Jing Zhang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Pan Zhai
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Chang Hu
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Jinmeng Suo
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Jing Wang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Chang Liu
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Zhiyong Peng
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China; Center of Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
5
|
Zhou X, Shen S, Cao L, Li X. Long Non-Coding RNA X-Inactive Specific Transcript (LncRNA Xist) Improves the Repair of Nerve Function in Spinal Cord Injury Models via Targeting CXC Motif Chemokine Receptor 4 (CXCR4) in Bone Mesenchymal Stem Cells (BMSCs). J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study assessed the effect of lncRNA Xist on the repair of neural function in spinal cord injury (SCI) model. Rat SCI model was established and assigned into blank group, Mock siRNA group and Xist siRNA group followed by analysis of the differentiation of BMSCs and rats’ neural
functional recovery. The volume of mineralized nodule and quantity of LD in Xist siRNA group was significantly higher than control group and Mock siRNA group (P < 0.05). The expression of RUNX2, ALP, OCN, lncRNA Xist, and CXCR4 in Xist siRNA group was also significantly increased
compared to other two groups (P < 0.05) along with elevated cell proliferation rate in Xist siRNA group. However, no differences of above parameters were found between control group and Mock siRNA group (P > 0.05). In conclusion, lncRNA Xist promotes the repair of rats’
neurological function and the adilpogenesis and osteogenesis differentiation of BMSCs via targeting CXCR4 in SCI model, indicating that it might be a novel target for treating SCI.
Collapse
Affiliation(s)
- Xinhua Zhou
- Department of Orthopaedics, Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, Huzhou, Zhejiang Province 313000, China
| | - Shiyun Shen
- Department of Orthopaedics, Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, Huzhou, Zhejiang Province 313000, China
| | - Liwen Cao
- Operating Room, Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, Huzhou, Zhejiang Province 313000, China
| | - Xia Li
- Operating Room, Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, Huzhou, Zhejiang Province 313000, China
| |
Collapse
|
6
|
Yang L, Wang B, Ma L, Fu P. An Update of Long-Noncoding RNAs in Acute Kidney Injury. Front Physiol 2022; 13:849403. [PMID: 35350698 PMCID: PMC8957988 DOI: 10.3389/fphys.2022.849403] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/15/2022] [Indexed: 02/05/2023] Open
Abstract
Acute kidney injury (AKI) is a global public health concern with high morbidity, mortality, and medical costs. Despite advances in medicine, effective therapeutic regimens for AKI remain limited. Long non-coding RNAs (lncRNAs) are a subtype of non-coding RNAs, which longer than 200 nucleotides and perform extremely diverse functions in biological processes. Recently, lncRNAs have emerged as promising biomarkers and key mediators to AKI. Meanwhile, existing research reveals that the aberrant expression of lncRNAs has been linked to major pathological processes in AKI, including the inflammatory response, cell proliferation, and apoptosis, via forming the lncRNA/microRNA/target gene regulatory axis. Following a comprehensive and systematic search of the available literature, 87 relevant papers spanning the years 2005 to 2021 were identified. This review aims to provide and update an overview of lncRNAs in AKI, and further shed light on their potential utility as AKI biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Lina Yang
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| | - Bo Wang
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| | - Liang Ma
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| | - Ping Fu
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
7
|
The Preventive Effect of Cardiac Sympathetic Denervation Induced by 6-OHDA on Myocardial Ischemia-Reperfusion Injury: The Changes of lncRNA/circRNAs-miRNA-mRNA Network of the Upper Thoracic Spinal Cord in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2492286. [PMID: 34880964 PMCID: PMC8648479 DOI: 10.1155/2021/2492286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/13/2021] [Indexed: 02/07/2023]
Abstract
In this study, we investigated whether chemical 6-hydroxydopamine (6-OHDA) stimuli caused cardiac sympathetic denervation (SD), and we analyzed gene expression profiles to determine the changes in the lncRNA/circRNAs-miRNA-mRNA network in the affected spinal cord segments to identify putative target genes and molecular pathways in rats with myocardial ischemia–reperfusion injury (MIRI). Our results showed that cardiac sympathetic denervation induced by 6-OHDA alleviated MIRI. Compared with the ischemia reperfusion (IR, MIRI model) group, there were 148 upregulated and 51 downregulated mRNAs, 165 upregulated and 168 downregulated lncRNAs, 70 upregulated and 52 downregulated circRNAs, and 12 upregulated and 11 downregulated miRNAs in the upper thoracic spinal cord of the SD-IR group. Furthermore, we found that the differential genes related to cellular components were mainly enriched in extracellular and cortical cytoskeleton, and molecular functions were mainly enriched in chemokine activity. Pathway analysis showed that the differentially expressed genes were mainly related to the interaction of cytokines and cytokine receptors, sodium ion reabsorption, cysteine and methionine metabolism, mucoglycan biosynthesis, cGMP-PKG signaling pathway, and MAPK signaling pathway. In conclusion, the lncRNA/circRNAs-miRNA-mRNA networks in the upper thoracic spinal cord play an important role in the preventive effect of cardiac sympathetic denervation induced by 6-OHDA on MIRI, which offers new insights into the pathogenesis of MIRI and provides new targets for MIRI.
Collapse
|
8
|
Dong X, Cao R, Li Q, Yin L. The Long Noncoding RNA-H19 Mediates the Progression of Fibrosis from Acute Kidney Injury to Chronic Kidney Disease by Regulating the miR-196a/Wnt/β-Catenin Signaling. Nephron Clin Pract 2021; 146:209-219. [PMID: 34818249 DOI: 10.1159/000518756] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/26/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Long noncoding RNAs (lncRNAs) have been reported to be involved in the occurrence and development of various diseases. This study was to investigate the role of lncRNA-H19 in the transition from acute kidney injury (AKI) to chronic kidney disease (CKD) and its underlying mechanism. METHODS Bilateral renal pedicle ischemia-reperfusion injury (IRI) was used to establish the IRI-AKI model in C57BL/6 mice. The expression levels of lncRNA-H19, miR-196a-5p, α-SMA, collagen I, Wnt1, and β-catenin in mouse kidney tissues and fibroblasts were determined by quantitative real-time PCR and Western blotting. The degree of renal fibrosis was evaluated by hematoxylin and eosin staining. The interaction between lncRNA-H19 and miR-196a-5p was verified by bioinformatics analysis and luciferase reporter assay. Immunohistochemistry and immunofluorescence were used to evaluate the expression of α-SMA and collagen I in kidney tissues and fibroblasts of mice. RESULTS lncRNA-H19 is upregulated, and miR-196a-5p is downregulated in kidney tissues of IRI mice. Moreover, miR-196a-5p is a direct target of lncRNA-H19. lncRNA-H19 overexpression promotes kidney fibrosis and activates fibroblasts during AKI-CKD development, while miR-196a-5p overexpression reversed these effects in vitro. Furthermore, lncRNA-H19 overexpression significantly upregulates Wnt1 and β-catenin expression in kidney tissues and fibroblasts of IRI mice, while miR-196a-5p overexpression downregulates Wnt1 and β-catenin expression in kidney tissues and fibroblasts of IRI mice. CONCLUSION lncRNA-H19 induces kidney fibrosis during AKI-CKD by regulating the miR-196a-5p/Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Xiangnan Dong
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, Guangdong, China
| | - Rui Cao
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangdong, China
| | - Qiang Li
- Dongguan Hospital of Tradition Chinese Medicine, Affiliated to Guangzhou University of Chinese Medicine, Dongguan, China
| | - Lianghong Yin
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, Guangdong, China
| |
Collapse
|
9
|
Glucose Metabolic Alteration of Cerebral Cortical Subareas in Rats with Renal Ischemia/Reperfusion Based on Small-Animal Positron Emission Tomography. Curr Med Sci 2021; 41:961-965. [PMID: 34669118 DOI: 10.1007/s11596-021-2450-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/31/2021] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To investigate glucose metabolic alterations in cerebral cortical subareas using 18F-labeled glucose derivative fluorodeoxyglucose (FDG) micro-positron emission tomography (PET) scanning in a rat renal ischemia/reperfusion (RIR) model. METHODS Small-animal PET imaging in vivo was performed with 18F-labeled FDG as a PET tracer to identify glucose metabolic alterations in cerebral cortical subregions using a rat model of RIR. RESULTS We found that the average standardized uptake value (SUVaverage) of the cerebral cortical subareas in the RIR group was significantly increased compared to the sham group (P<0.05). We also found that glucose uptake in different cortical subregions including the left auditory cortex, right medial prefrontal cortex, right para cortex, left retrosplenial cortex, right retrosplenial cortex, and right visual cortex was significantly increased in the RIR group (P<0.05), but there was no significant difference in the SUVaverage of right auditory cortex, left medial prefrontal cortex, left para cortex, and left visual cortex between the two groups. CONCLUSION The 18F-FDG PET data suggests that RIR causes a profound shift in the metabolic machinery of cerebral cortex subregions.
Collapse
|
10
|
Li ZX, Li YJ, Wang Q, He ZG, Feng MH, Xiang HB. Characterization of novel lncRNAs in upper thoracic spinal cords of rats with myocardial ischemia-reperfusion injuries. Exp Ther Med 2021; 21:352. [PMID: 33732325 PMCID: PMC7903382 DOI: 10.3892/etm.2021.9783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 08/19/2020] [Indexed: 12/15/2022] Open
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is a significant problem in clinical cardiology, and refers to a more serious myocardial injury caused by blood recanalization after a period of myocardial ischemia, as compared with injury caused by vascular occlusion. The spinal cord, as the primary afferent and efferent center of cardiac sensory and sympathetic nerve fibres, has received increased attention in recent years with regards to the regulation of MIRIs. Previous studies have revealed that MIRI has a strong correlation with the abnormal expression of long non-coding (lnc)RNAs in the myocardium; however, there are limited reports on the effects of the altered expression of lncRNAs in the spinal cord following MIRI. To investigate the expression patterns of lncRNAs in the spinal cord after MIRI and their potential role in the early stage of reperfusion, a MIRI model was established in rats. After 30 min of myocardial ischemia and 2 h of reperfusion, the upper thoracic spinal cord tissues were immediately dissected and isolated. lncRNAs and mRNAs in spinal cord tissues were screened using transcriptome sequencing technology, and the expression of several highly deregulated mRNAs, including Frs3, Zfp52, Dnajc6, Nedd4l, Tep1, Myef2, Tgfbr1, Fgf12, Mef2c, Tfdp1 and lncRNA, including ENSRNOT00000080713, ENSRNOT00000090564, ENSRNOT00000082588, ENSRNOT00000091080, ENSRNOT00000091570, ENSRNOT00000087777, ENSRNOT00000082061, ENSRNOT00000091108, ENSRNOT00000087028, ENSRNOT00000086475, were further validated via reverse transcription-quantitative PCR. The number of altered expressed lncRNAs was 126, among which there were 41 upregulated probe sets and 85 downregulated sets. A total of 470 mRNAs were differentially expressed, in which 231 probe sets were upregulated and 239 were downregulated. Gene Ontology analysis indicated that dysregulated transcripts related to biological processes were mainly associated with ‘cell-cell signaling’. Moreover, pathway analysis demonstrated significant changes in the ‘PI3K/Akt signaling pathway’ and the ‘p53 signaling pathway’. Thus, the altered expression of lncRNAs in the spinal cord may be of considerable importance in the process of MIRI. The present results could provide an insight into the potential roles and mechanism of lncRNAs during the early stage of reperfusion.
Collapse
Affiliation(s)
- Zhi-Xiao Li
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yu-Juan Li
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Qian Wang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhi-Gang He
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Mao-Hui Feng
- Department of Gastrointestinal Surgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, P.R. China.,The Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Clinical Cancer Study Center of Hubei Provence, Key Laboratory of Tumor Biological Behavior of Hubei Provence, Wuhan, Hubei 430071, P.R. China
| | - Hong-Bing Xiang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
11
|
Ding L, Fu WJ, Di HY, Zhang XM, Lei YT, Chen KZ, Wang T, Wu HF. Expression of long non-coding RNAs in complete transection spinal cord injury: a transcriptomic analysis. Neural Regen Res 2020; 15:1560-1567. [PMID: 31997824 PMCID: PMC7059563 DOI: 10.4103/1673-5374.274348] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are abundantly expressed in the central nervous system and exert a critical role in gene regulation via multiple biological processes. To uncover the functional significance and molecular mechanisms of lncRNAs in spinal cord injury (SCI), the expression signatures of lncRNAs were profiled using RNA sequencing (RNA-seq) technology in a Sprague-Dawley rat model of the 10th thoracic vertebra complete transection SCI. Results showed that 116 of 14,802 detected lncRNAs were differentially expressed, among which 16—including eight up-regulated (H19, Vof16, Hmox2-ps1, LOC100910973, Ybx1-ps3, Nnat, Gcgr, LOC680254) and eight down-regulated (Rmrp, Terc, Ngrn, Ppp2r2b, Cox6a2, Rpl37a-ps1, LOC360231, Rpph1)—demonstrated fold changes > 2 in response to transection SCI. A subset of these RNA-seq results was validated by quantitative real-time PCR. The levels of 821 mRNAs were also significantly altered post-SCI; 592 mRNAs were up-regulated and 229 mRNAs were down-regulated by more than 2-fold. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that differentially expressed mRNAs were related to GO biological processes and molecular functions such as injury and inflammation response, wound repair, and apoptosis, and were significantly enriched in 15 KEGG pathways, including cell phagocytosis, tumor necrosis factor alpha pathway, and leukocyte migration. Our results reveal the expression profiles of lncRNAs and mRNAs in the rat spinal cord of a complete transection model, and these differentially expressed lncRNAs and mRNAs represent potential novel targets for SCI treatment. We suggest that lncRNAs may play an important role in the early immuno-inflammatory response after spinal cord injury. This study was approved by the Administration Committee of Experimental Animals, Guangdong Province, China.
Collapse
Affiliation(s)
- Lu Ding
- Institute of Stem Cells and Regenerative Medicine, Department of Physiology, Guangdong Medical University, Dongguan, Guangdong Province; Scientific Research Center, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong Province, China
| | - Wen-Jin Fu
- Clinical Laboratory, Houjie Hospital of Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Hong-Yan Di
- Department of Neurology, Dalingshan Hospital, Dongguan, Guangdong Province, China
| | - Xiao-Min Zhang
- Institute of Stem Cells and Regenerative Medicine, Department of Physiology, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Yu-Tian Lei
- Department of Hand & Foot Surgery, Houjie Hospital of Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Kang-Zhen Chen
- Institute of Stem Cells and Regenerative Medicine, Department of Physiology, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Tao Wang
- Department of Surgery, the Third Hospital of Guangdong Medical University (Longjiang Hospital of Shunde District), Foshan, Guangdong Province, China
| | - Hong-Fu Wu
- Institute of Stem Cells and Regenerative Medicine, Department of Physiology, Guangdong Medical University, Dongguan, Guangdong Province, China
| |
Collapse
|
12
|
Wang Q, Li ZX, Li YJ, He ZG, Chen YL, Feng MH, Li SY, Wu DZ, Xiang HB. Identification of lncRNA and mRNA expression profiles in rat spinal cords at various time‑points following cardiac ischemia/reperfusion. Int J Mol Med 2019; 43:2361-2375. [PMID: 30942426 PMCID: PMC6488167 DOI: 10.3892/ijmm.2019.4151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 03/20/2019] [Indexed: 12/21/2022] Open
Abstract
The identification of the expression patterns of long non-coding RNAs (lncRNAs) and mRNAs in the spinal cord under normal and cardiac ischemia/reperfusion (I/R) conditions is essential for understanding the genetic mechanisms underlying the pathogenesis of cardiac I/R injury. The present study used high-throughput RNA sequencing to investigate differential gene and lncRNA expression patterns in the spinal cords of rats during I/R-induced cardiac injury. Male Sprague Dawley rats were assigned to the following groups: i) Control; ii) 2 h (2 h post-reperfusion); and iii) 0.5 h (0.5 h post-reperfusion). Further mRNA/lncRNA microarray analysis revealed that the expression profiles of lncRNA and mRNA in the spinal cords differed markedly between the control and 2 h groups, and in total 7,980 differentially expressed (>2-fold) lncRNAs (234 upregulated, 7,746 downregulated) and 3,428 mRNAs (767 upregulated, 2,661 downregulated) were identified. Reverse transcription-quantitative polymerase chain reaction analysis was performed to determine the expression patterns of several lncRNAs. The results indicated that the expression levels of lncRNA NONRATT025386 were significantly upregulated in the 2 and 0.5 h groups when compared with those in the control group, whereas the expression levels of NONRATT016113, NONRATT018298 and NONRATT018300 were elevated in the 2 h group compared with those in the control group; however, there was no statistically significant difference between the 0.5 h and control groups. Furthermore, the expression of lncRNA NONRATT002188 was significantly downregulated in the 0.5 and 2 h groups when compared with the control group. The present study determined the expression pattern of lncRNAs and mRNAs in rat spinal cords during cardiac I/R. It was suggested that lncRNAs and mRNAs from spinal cords may be novel therapeutic targets for the treatment of I/R-induced cardiac injury.
Collapse
Affiliation(s)
- Qian Wang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhi-Xiao Li
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yu-Juan Li
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhi-Gang He
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Ying-Le Chen
- Department of Anesthesiology, The First Affiliated Quanzhou Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Mao-Hui Feng
- Department of Oncology, Wuhan Peritoneal Cancer Clinical Medical Research Center, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, Wuhan, Hubei 430071, P.R. China
| | - Shun-Yuan Li
- Department of Anesthesiology, The First Affiliated Quanzhou Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Duo-Zhi Wu
- Department of Anesthesiology, People's Hospital of Hainan Province, Haikou, Hainan 570311, P.R. China
| | - Hong-Bing Xiang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
13
|
Tian X, Ji Y, Liang Y, Zhang J, Guan L, Wang C. LINC00520 targeting miR-27b-3p regulates OSMR expression level to promote acute kidney injury development through the PI3K/AKT signaling pathway. J Cell Physiol 2019; 234:14221-14233. [PMID: 30684280 DOI: 10.1002/jcp.28118] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/11/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND Acute kidney injury (AKI) shows several kinds of disorders, which acutely harm the kidney. However, the current medical methods have limited therapeutic effects. The present study aimed to find out the molecular mechanism of AKI pathogenesis, which may provide new insights for future therapy. METHODS Bioinformatic analysis was conducted using the R language (AT&T BellLaboratories, University of Auckland, New Zealand) to acquire the differentially expressed long noncoding RNAs (lncRNAs) and messenger RNAs (mRNAs) in AKI. The expression levels of RNAs and related proteins in tissues and cells were detected by quantitative real-time PCR (qRT-PCR) and western blot. Dual-luciferase reporter gene assays were performed to verify the target relationship between microRNA (miRNA) and lncRNA as well as miRNA and mRNA. Flow cytometry and tunnel assay were used to detect the cell apoptotic rate in AKI. RESULTS LINC00520, miR-27b-3p, and OSMR form an axis to regulate AKI. Knockdown of LINC00520 reduced acute renal injury both in vitro and in vivo. LINC00520 activated the PI3K/AKT pathway to aggravate renal ischemia/reperfusion injury, while upregulation of miR-27b-3p or downregulation of OSMR could accelerate the recovery of AKI. CONCLUSION Overexpression of LINC00520 contributes to the aggravation of AKI by targeting miR-27b-3p/ OSMR.
Collapse
Affiliation(s)
- Xinghan Tian
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,Department of Critical Care Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Yongqiang Ji
- Department of Nephrology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Yafeng Liang
- Department of Critical Care Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Jing Zhang
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Lina Guan
- Department of Neurology Intensive Care Unit, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Chunting Wang
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| |
Collapse
|
14
|
Cao Y, Gao X, Yang Y, Ye Z, Wang E, Dong Z. Changing expression profiles of long non-coding RNAs, mRNAs and circular RNAs in ethylene glycol-induced kidney calculi rats. BMC Genomics 2018; 19:660. [PMID: 30200873 PMCID: PMC6131827 DOI: 10.1186/s12864-018-5052-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/31/2018] [Indexed: 11/22/2022] Open
Abstract
Background To explore long non-coding RNA (lncRNA), mRNA and circular RNA (circRNA) expression profiles and their biological functions in the pathogenesis of kidney stones in ethylene glycol-induced urolithiasis rats. Results The expression of 1440 lncRNAs, 2455 mRNAs and 145 circRNAs was altered in the kidneys of urolithiasis rats. GO and KEGG biological pathway analysis were performed to predict the functions of differentially expressed lncRNAs, circRNAs and co-expressed potential targeting genes. Co-expression networks of lncRNA-mRNA and circRNA-miRNA were constructed based on correlation analysis between differentially expressed RNAs. mRNAs coexpressed with lncRNAs were involved in many kidney diseases, e.g., Ephb6 was associated with the reabsorption ability of the kidney. Arl5b was associated with the dynamic changes in the podocyte foot process in podocyte injury. miRNAs co-expressed with circRNAs, such as rno-miR-138-5p and rno-miR-672-5p, have been proven to be functional in hypercalciuria urolithiasis. Conclusion The expression profile provided a systematic perspective on the potential functions of lncRNAs and circRNAs in the pathogenesis of kidney stones. Differentially expressed lncRNAs and circRNAs might serve as treatment targets for kidney stones. Electronic supplementary material The online version of this article (10.1186/s12864-018-5052-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yanan Cao
- Department of Anesthesiology, Xiangya Hospital, Central South University, Xiangya Road 87#, Changsha, Hunan, 410008, People's Republic of China
| | - Xiaowei Gao
- Department of Anesthesiology, Xiangya Hospital, Central South University, Xiangya Road 87#, Changsha, Hunan, 410008, People's Republic of China
| | - Yue Yang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Xiangya Road 87#, Changsha, Hunan, 410008, People's Republic of China
| | - Zhi Ye
- Department of Anesthesiology, Xiangya Hospital, Central South University, Xiangya Road 87#, Changsha, Hunan, 410008, People's Republic of China
| | - E Wang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Xiangya Road 87#, Changsha, Hunan, 410008, People's Republic of China
| | - Zhitao Dong
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China.
| |
Collapse
|
15
|
Yang R, Liu S, Wen J, Xue L, Zhang Y, Yan D, Wang G, Liu Z. Inhibition of maternally expressed gene 3 attenuated lipopolysaccharide-induced apoptosis through sponging miR-21 in renal tubular epithelial cells. J Cell Biochem 2018; 119:7800-7806. [PMID: 29923218 DOI: 10.1002/jcb.27163] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/18/2018] [Indexed: 12/20/2022]
Abstract
Acute kidney injury (AKI) results in retention of waste products and dysregulation of extracellular volume and electrolytes, thus leading to a variety of complications. Recent advances in long noncoding RNAs suggested their close relationship with disease progression. In the current study, we investigated the role and mechanism of maternally expressed gene 3 (MEG3) on AKI pathogenesis. Real-time polymerase chain reaction found that the expression of MEG3 was significantly increased in both kidney tissues and TKPTS cells induced by lipopolysaccharide (LPS). Western blot assay showed that the expression of apoptosis regulator Bcl-2 was increased in MEG3-inhibited TKPTS cells. Flow cytometry assay confirmed that LPS-induced apoptosis was significantly attenuated after transfection of si-MEG3. The RNAhybrid informatics algorithm predicted that there was a strong binding capacity between miR-21 and MEG3. Luciferase reporter assay confirmed that MEG3 could function as a competing endogenous RNA of miR-21. The antiapoptotic effect of si-MEG3 could be neutralized by a miR-21 inhibitor, demonstrated by the decreased expression of Bcl-2 and flow cytometry results. Further investigation showed that programmed cell death protein 4 (PDCD4), a validated target of miR-21, was highly expressed in both injured kidney tissues and LPS-stimulated TKPTS cells. Meanwhile, the protein expression of PDCD4 was significantly reduced by inhibition of MEG3, but retrieved by coinhibition of MEG3 and miR-21. In conclusion, our results demonstrated that inhibition of MEG3 could attenuate LPS-induced apoptosis in TKPTS cells by regulating the miR-21/PDCD4 pathway, suggesting that the MEG3/miR-21/PDCD4 axis could be developed as a potential therapeutic target of AKI.
Collapse
Affiliation(s)
- Ru Yang
- Department of Rheumatology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Suxuan Liu
- Department of Cardiovascular Surgery, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Jian Wen
- Department of Rheumatology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Leixi Xue
- Department of Rheumatology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yi Zhang
- Department of Rheumatology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Dong Yan
- Department of Rheumatology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Guokun Wang
- Department of Cardiovascular Surgery, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Zhichun Liu
- Department of Rheumatology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
16
|
Wang Q, Li ZX, Liu BW, He ZG, Liu C, Chen M, Liu SG, Wu WZ, Xiang HB. Altered expression of differential gene and lncRNA in the lower thoracic spinal cord on different time courses of experimental obstructive jaundice model accompanied with altered peripheral nociception in rats. Oncotarget 2017; 8:106098-106112. [PMID: 29285317 PMCID: PMC5739704 DOI: 10.18632/oncotarget.22532] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/28/2017] [Indexed: 12/17/2022] Open
Abstract
The spinal origin of jaundice-induced altered peripheral nociceptive response poorly understood. In the current study, we aimed to first validate rats with bile duct ligation (BDL) as a jaundice model accompanied by altered peripheral nociceptive response, and then to analyze differential gene and lncRNA expression patterns in the lower thoracic spinal cord on different time courses after BDL operation by using high-throughput RNA sequencing. The differentially expressed genes (DEGs) identified using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis, followed by clustering analysis, Gene Ontology analysis and pathway analysis. As a result, a total of 2033 lncRNAs were differentially expressed 28d after BDL, in which 1545 probe sets were up-regulated and 488 probe sets were down-regulated, whereas a total of 2800 mRNAs were differentially expressed, in which 1548 probe sets were up-regulated and 1252 probe sets were down-regulated. The RNAseq data of select mRNAs and lncRNAs was validated by RT-qPCR. 28d after BDL, the expressions of lncRNA NONRATT002335 and NONRATT018085 were significantly up-regulated whereas the expression of lncRNA NONRATT025415, NONRATT025388 and NONRATT025409 was significantly down-regulated. 14d after BDL, the expressions of lncRNA NONRATT002335 and NONRATT018085 were significantly up-regulated; the expression of lncRNA NONRATT025415, NONRATT025388 and NONRATT025409 was significantly down-regulated. In conclusion, the present study showed that jaundice accompanied with decreased peripheral nociception involved in the changes of gene and lncRNA expression profiles in spinal cord. These findings extend current understanding of spinal mechanism for obstructive jaundice accompanied by decreased peripheral nociception.
Collapse
Affiliation(s)
- Qian Wang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Zhi-Xiao Li
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Bao-Wen Liu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Zhi-Gang He
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Cheng Liu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Min Chen
- Department of Anesthesiology, Hubei Maternal and Child Health Hospital, Wuhan, P.R. China
| | - San-Guang Liu
- Department of Hepatobiliary Surgery, The Second Hospital, Hebei Medical University, Shijiazhuang, P.R. China
| | - Wei-Zhong Wu
- Department of General Surgery, The Second Hospital, Hebei Medical University, Shijiazhuang, P.R. China
| | - Hong-Bing Xiang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| |
Collapse
|