1
|
Jahn J, Ehlen QT, Kaplan L, Best TM, Meng Z, Huang CY. Interplay of Glucose Metabolism and Hippo Pathway in Chondrocytes: Pathophysiology and Therapeutic Targets. Bioengineering (Basel) 2024; 11:972. [PMID: 39451348 PMCID: PMC11505586 DOI: 10.3390/bioengineering11100972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
In this review, we explore the intricate relationship between glucose metabolism and mechanotransduction pathways, with a specific focus on the role of the Hippo signaling pathway in chondrocyte pathophysiology. Glucose metabolism is a vital element in maintaining proper chondrocyte function, but it has also been implicated in the pathogenesis of osteoarthritis (OA) via the induction of pro-inflammatory signaling pathways and the establishment of an intracellular environment conducive to OA. Alternatively, mechanotransduction pathways such as the Hippo pathway possess the capacity to respond to mechanical stimuli and have an integral role in maintaining chondrocyte homeostasis. However, these mechanotransduction pathways can be dysregulated and potentially contribute to the progression of OA. We discussed how alterations in glucose levels may modulate the Hippo pathway components via a variety of mechanisms. Characterizing the interaction between glucose metabolism and the Hippo pathway highlights the necessity of balancing both metabolic and mechanical signaling to maintain chondrocyte health and optimal functionality. Furthermore, this review demonstrates the scarcity of the literature on the relationship between glucose metabolism and mechanotransduction and provides a summary of current research dedicated to this specific area of study. Ultimately, increased research into this topic may elucidate novel mechanisms and relationships integrating mechanotransduction and glucose metabolism. Through this review we hope to inspire future research into this topic to develop innovative treatments for addressing the clinical challenges of OA.
Collapse
Affiliation(s)
- Jacob Jahn
- University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.J.); (Q.T.E.); (L.K.); (T.M.B.); (Z.M.)
| | - Quinn T. Ehlen
- University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.J.); (Q.T.E.); (L.K.); (T.M.B.); (Z.M.)
| | - Lee Kaplan
- University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.J.); (Q.T.E.); (L.K.); (T.M.B.); (Z.M.)
- Department of Orthopedics, University of Miami, Miami, FL 33136, USA
- UHealth Sports Medicine Institute, University of Miami, Miami, FL 33136, USA
| | - Thomas M. Best
- University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.J.); (Q.T.E.); (L.K.); (T.M.B.); (Z.M.)
- Department of Orthopedics, University of Miami, Miami, FL 33136, USA
- UHealth Sports Medicine Institute, University of Miami, Miami, FL 33136, USA
| | - Zhipeng Meng
- University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.J.); (Q.T.E.); (L.K.); (T.M.B.); (Z.M.)
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Chun-Yuh Huang
- UHealth Sports Medicine Institute, University of Miami, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, USA
| |
Collapse
|
2
|
Kahleova H, Znayenko-Miller T, Motoa G, Eng E, Prevost A, Uribarri J, Holubkov R, Barnard ND. Dietary advanced glycation end-products and their associations with body weight on a Mediterranean diet and low-fat vegan diet: a randomized, cross-over trial. Front Nutr 2024; 11:1426642. [PMID: 39176029 PMCID: PMC11340516 DOI: 10.3389/fnut.2024.1426642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/15/2024] [Indexed: 08/24/2024] Open
Abstract
Objective Evidence suggests that changes in dietary advanced glycation end-products (AGEs) may influence body weight, but the effects of different dietary patterns remain to be explored.The aim of this study was to compare the effects of a Mediterranean and a low-fat vegan diet on dietary AGEs and test their association with body weight. Materials and methods In this randomized cross-over trial, 62 overweight adults were assigned to a Mediterranean or a low-fat vegan diet for 16-week periods in random order, separated by a 4-week washout. Body weight was the primary outcome. Three-day diet records were analyzed using the Nutrition Data System for Research software and dietary AGEs were estimated, using an established database. Statistical approaches appropriate for crossover trials were implemented. Results Dietary AGEs decreased by 73%, that is, by 9,413 kilounits AGE/day (95% -10,869 to -7,957); p < 0.001, compared with no change on the Mediterranean diet (treatment effect -10,303 kilounits AGE/day [95% CI -13,090 to -7,516]; p < 0.001). The participants lost 6.0 kg on average on the vegan diet, compared with no change on the Mediterranean diet (treatment effect -6.0 kg [95% CI -7.5 to -4.5]; p < 0.001). Changes in dietary AGEs correlated with changes in body weight (r = +0.47; p < 0.001) and remained significant after adjustment for total energy intake (r = +0.39; p = 0.003). Conclusion Dietary AGEs did not change on the Mediterranean diet but decreased on a low-fat vegan diet, and this decrease was associated with changes in body weight, independent of energy intake. Clinical trial registration https://clinicaltrials.gov/, identifier NCT03698955.
Collapse
Affiliation(s)
- Hana Kahleova
- Physicians Committee for Responsible Medicine, Washington, DC, United States
| | | | - Giulianna Motoa
- Physicians Committee for Responsible Medicine, Washington, DC, United States
| | - Emma Eng
- Physicians Committee for Responsible Medicine, Washington, DC, United States
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Alex Prevost
- Physicians Committee for Responsible Medicine, Washington, DC, United States
| | - Jaime Uribarri
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Richard Holubkov
- School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Neal D. Barnard
- Physicians Committee for Responsible Medicine, Washington, DC, United States
- Adjunct Faculty, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| |
Collapse
|
3
|
Michalani MLE, Passarelli M, Machado UF. Nuclear Factor-Kappa-B Mediates the Advanced Glycation End Product-Induced Repression of Slc2a4 Gene Expression in 3T3-L1 Adipocytes. Int J Mol Sci 2024; 25:8242. [PMID: 39125811 PMCID: PMC11311564 DOI: 10.3390/ijms25158242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Advanced glycated end products (AGEs) are cytotoxic compounds that are mainly increased in diabetes mellitus (DM), kidney failure, inflammation, and in response to the ingestion of AGE-rich diets. AGEs can also impair glycemic homeostasis by decreasing the expression of the Slc2a4 (solute carrier family 2 member 4) gene and its GLUT4 (solute carrier family 2, facilitated glucose transporter member 4) protein in muscle. However, the mechanisms underlying AGE's effect on adipocytes have not been demonstrated yet. This study investigated the effects of AGEs upon Slc2a4/GLUT4 expression in 3T3-L1 adipocytes, as well as the potential role of NFKB (nuclear factor NF-kappa-B) activity in the effects observed. Adipocytes were cultured in the presence of control albumin (CA) or advanced glycated albumin (GA) at concentrations of 0.4, 3.6, and 5.4 mg/mL for 24 h or 72 h. Slc2a4, Rela, and Nfkb1mRNAs were measured by RT-qPCR, GLUT4, IKKA/B, and p50/p65 NFKB subunits using Western blotting, and p50/p65 binding into the Slc2a4 promoter was analyzed by chromatin immunoprecipitation (ChIP) assay. GA at 0.4 mg/mL increased Slc2a4/GLUT4 expression after 24 h and 72 h (from 50% to 100%), but at 5.4 mg/mL, Slc2a4/GLUT4 expression decreased at 72 h (by 50%). Rela and Nfkb1 expression increased after 24 h at all concentrations, but this effect was not observed at 72 h. Furthermore, 5.4 mg/mL of GA increased the p50/p65 nuclear content and binding into Slc2a4 at 72 h. In summary, this study reveals AGE-induced and NFKB-mediated repression of Slc2a4/GLUT4 expression. This can compromise the adipocyte glucose utilization, contributing not only to the worsening of glycemic control in DM subjects but also the impairment of glycemic homeostasis in non-DM subjects under the high intake of AGE-rich foods.
Collapse
Affiliation(s)
- Maria Luiza Estimo Michalani
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil;
| | - Marisa Passarelli
- Laboratório de Lípides (LIM-10) do HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-000, SP, Brazil
- Programa de Pós-Graduação em Medicina, Universidade Nove de Julho (UNINOVE), São Paulo 01525-000, SP, Brazil
| | - Ubiratan Fabres Machado
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil;
| |
Collapse
|
4
|
Lauko K, Nesterowicz M, Trocka D, Dańkowska K, Żendzian-Piotrowska M, Zalewska A, Maciejczyk M. Novel Properties of Old Propranolol-Assessment of Antiglycation Activity through In Vitro and In Silico Approaches. ACS OMEGA 2024; 9:27559-27577. [PMID: 38947802 PMCID: PMC11209686 DOI: 10.1021/acsomega.4c03025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/01/2024] [Accepted: 06/06/2024] [Indexed: 07/02/2024]
Abstract
Hypertension has earned the "silent killer" nickname since it may lead to a number of comorbidities, including diabetes and cardiovascular diseases. Oxidative stress and protein glycation play vital roles in the pathogenesis of hypertension. Several studies have shown that they profoundly account for vascular dysfunction, endothelial damage, and disruption of blood pressure regulatory mechanisms. Of particular note are advanced glycation end products (AGEs). AGEs alter vascular tissues' functional and mechanical properties by binding to receptors for advanced glycation end products (RAGE), stimulating inflammation and free radical-mediated pathways. Propranolol, a nonselective beta-adrenergic receptor antagonist, is one of the most commonly used drugs to treat hypertension and cardiovascular diseases. Our study is the first to analyze propranolol's effects on protein glycoxidation through in vitro and in silico approaches. Bovine serum albumin (BSA) was utilized to evaluate glycoxidation inhibition by propranolol. Propranolol (1 mM) and BSA (0.09 mM) were incubated with different glycating (0.5 M glucose, fructose, and galactose for 6 days and 2.5 mM glyoxal and methylglyoxal for 12 h) or oxidizing agents (chloramine T for 1 h). Biomarkers of protein glycation (Amadori products (APs), β-amyloid (βA), and advanced glycation end products (AGEs)), protein glycoxidation (dityrosine (DT), kynurenine (KYN), and N-formylkynurenine (NFK)), protein oxidation (protein carbonyls (PCs), and advanced oxidation protein products (AOPPs)) were measured by means of colorimetric and fluorimetric methods. The scavenging of reactive oxygen species (hydrogen peroxide, hydroxyl radical, and nitric oxide) and the antioxidant capacity (2,2-diphenyl-1-picrylhydrazyl radical and ferrous ion chelating (FIC) assays)) of propranolol were also evaluated. Additionally, in silico docking was performed to showcase propranolol's interaction with BSA, glycosides, and AGE/RAGE pathway proteins. The products of protein glycation (↓APs, ↓βA, ↓AGEs), glycoxidation (↓DT, ↓KYN, ↓NFK), and oxidation (↓PCs, ↓AOPPs) prominently decreased in the BSA samples with both glycating/oxidizing factors and propranolol. The antiglycoxidant properties of propranolol were similar to those of aminoguanidine, a known protein oxidation inhibitor, and captopril, which is an established antioxidant. Propranolol showed a potent antioxidant activity in the FIC and H2O2 scavenging assays, comparable to aminoguanidine and captopril. In silico analysis indicated propranolol's antiglycative properties during its interaction with BSA, glycosidases, and AGE/RAGE pathway proteins. Our results confirm that propranolol may decrease protein oxidation and glycoxidation in vitro. Additional studies on human and animal models are vital for in vivo verification of propranolol's antiglycation activity, as this discovery might hold the key to the prevention of diabetic complications among cardiology-burdened patients.
Collapse
Affiliation(s)
- Kamil
Klaudiusz Lauko
- ‘Biochemistry
of Civilisation Diseases’ Students’ Scientific Club
at the Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, 2c Mickiewicza Street, Bialystok 15-233, Poland
| | - Miłosz Nesterowicz
- ‘Biochemistry
of Civilisation Diseases’ Students’ Scientific Club
at the Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, 2c Mickiewicza Street, Bialystok 15-233, Poland
| | - Daria Trocka
- ‘Biochemistry
of Civilisation Diseases’ Students’ Scientific Club
at the Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, 2c Mickiewicza Street, Bialystok 15-233, Poland
| | - Karolina Dańkowska
- ‘Biochemistry
of Civilisation Diseases’ Students’ Scientific Club
at the Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, 2c Mickiewicza Street, Bialystok 15-233, Poland
| | - Małgorzata Żendzian-Piotrowska
- Department of Hygiene, Epidemiology and
Ergonomics, Medical University of Bialystok, 2c Mickiewicza Street, Bialystok 15-233, Poland
| | - Anna Zalewska
- Independent Laboratory of Experimental
Dentistry, Medical University of Bialystok, 24a M. Sklodowskiej-Curie Street , Bialystok 15-274, Poland
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and
Ergonomics, Medical University of Bialystok, 2c Mickiewicza Street, Bialystok 15-233, Poland
| |
Collapse
|
5
|
Woodbury SM, Swanson WB, Mishina Y. Mechanobiology-informed biomaterial and tissue engineering strategies for influencing skeletal stem and progenitor cell fate. Front Physiol 2023; 14:1220555. [PMID: 37520820 PMCID: PMC10373313 DOI: 10.3389/fphys.2023.1220555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/05/2023] [Indexed: 08/01/2023] Open
Abstract
Skeletal stem and progenitor cells (SSPCs) are the multi-potent, self-renewing cell lineages that form the hematopoietic environment and adventitial structures of the skeletal tissues. Skeletal tissues are responsible for a diverse range of physiological functions because of the extensive differentiation potential of SSPCs. The differentiation fates of SSPCs are shaped by the physical properties of their surrounding microenvironment and the mechanical loading forces exerted on them within the skeletal system. In this context, the present review first highlights important biomolecules involved with the mechanobiology of how SSPCs sense and transduce these physical signals. The review then shifts focus towards how the static and dynamic physical properties of microenvironments direct the biological fates of SSPCs, specifically within biomaterial and tissue engineering systems. Biomaterial constructs possess designable, quantifiable physical properties that enable the growth of cells in controlled physical environments both in-vitro and in-vivo. The utilization of biomaterials in tissue engineering systems provides a valuable platform for controllably directing the fates of SSPCs with physical signals as a tool for mechanobiology investigations and as a template for guiding skeletal tissue regeneration. It is paramount to study this mechanobiology and account for these mechanics-mediated behaviors to develop next-generation tissue engineering therapies that synergistically combine physical and chemical signals to direct cell fate. Ultimately, taking advantage of the evolved mechanobiology of SSPCs with customizable biomaterial constructs presents a powerful method to predictably guide bone and skeletal organ regeneration.
Collapse
Affiliation(s)
- Seth M. Woodbury
- Yuji Mishina Laboratory, University of Michigan School of Dentistry, Department of Biologic and Materials Science & Prosthodontics, Ann Arbor, MI, United States
- University of Michigan College of Literature, Science, and Arts, Department of Chemistry, Ann Arbor, MI, United States
- University of Michigan College of Literature, Science, and Arts, Department of Physics, Ann Arbor, MI, United States
| | - W. Benton Swanson
- Yuji Mishina Laboratory, University of Michigan School of Dentistry, Department of Biologic and Materials Science & Prosthodontics, Ann Arbor, MI, United States
| | - Yuji Mishina
- Yuji Mishina Laboratory, University of Michigan School of Dentistry, Department of Biologic and Materials Science & Prosthodontics, Ann Arbor, MI, United States
| |
Collapse
|
6
|
Gutowska K, Czajkowski K, Kuryłowicz A. Receptor for the Advanced Glycation End Products ( RAGE) Pathway in Adipose Tissue Metabolism. Int J Mol Sci 2023; 24:10982. [PMID: 37446161 DOI: 10.3390/ijms241310982] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Advanced glycation end products (AGEs) are mediators in the process of cellular dysfunction in response to hyperglycemia. Numerous data indicate that the accumulation of AGEs in the extracellular matrix plays a key role in the development of obesity-related adipose tissue dysfunction. Through binding of their membrane receptor (RAGE), AGEs affect numerous intracellular pathways and impair adipocyte differentiation, metabolism, and secretory activity. Therefore, inhibiting the production and accumulation of AGEs, as well as interfering with the metabolic pathways they activate, may be a promising therapeutic strategy for restoring normal adipose tissue function and, thus, combating obesity-related comorbidities. This narrative review summarizes data on the involvement of the RAGE pathway in adipose tissue dysfunction in obesity and the development of its metabolic complications. The paper begins with a brief review of AGE synthesis and the RAGE signaling pathway. The effect of the RAGE pathway on adipose tissue development and activity is then presented. Next, data from animal and human studies on the involvement of the RAGE pathway in obesity, diabetes, and cardiovascular diseases are summarized. Finally, therapeutic perspectives based on interference with the RAGE pathway are discussed.
Collapse
Affiliation(s)
- Klaudia Gutowska
- II Faculty and Clinic of Obstetrics and Gynaecology, Medical University of Warsaw, 00-315 Warsaw, Poland
- Doctoral School, Medical University of Warsaw, Zwirki i Wigury 81, 02-091 Warsaw, Poland
| | - Krzysztof Czajkowski
- II Faculty and Clinic of Obstetrics and Gynaecology, Medical University of Warsaw, 00-315 Warsaw, Poland
| | - Alina Kuryłowicz
- Department of Human Epigenetics, Mossakowski Medical Research Centre PAS, 02-106 Warsaw, Poland
- Department of General Medicine and Geriatric Cardiology, Medical Centre of Postgraduate Education, 00-401 Warsaw, Poland
| |
Collapse
|
7
|
Qu L, Jiao B. The Interplay between Immune and Metabolic Pathways in Kidney Disease. Cells 2023; 12:1584. [PMID: 37371054 PMCID: PMC10296595 DOI: 10.3390/cells12121584] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Kidney disease is a significant health problem worldwide, affecting an estimated 10% of the global population. Kidney disease encompasses a diverse group of disorders that vary in their underlying pathophysiology, clinical presentation, and outcomes. These disorders include acute kidney injury (AKI), chronic kidney disease (CKD), glomerulonephritis, nephrotic syndrome, polycystic kidney disease, diabetic kidney disease, and many others. Despite their distinct etiologies, these disorders share a common feature of immune system dysregulation and metabolic disturbances. The immune system and metabolic pathways are intimately connected and interact to modulate the pathogenesis of kidney diseases. The dysregulation of immune responses in kidney diseases includes a complex interplay between various immune cell types, including resident and infiltrating immune cells, cytokines, chemokines, and complement factors. These immune factors can trigger and perpetuate kidney inflammation, causing renal tissue injury and progressive fibrosis. In addition, metabolic pathways play critical roles in the pathogenesis of kidney diseases, including glucose and lipid metabolism, oxidative stress, mitochondrial dysfunction, and altered nutrient sensing. Dysregulation of these metabolic pathways contributes to the progression of kidney disease by inducing renal tubular injury, apoptosis, and fibrosis. Recent studies have provided insights into the intricate interplay between immune and metabolic pathways in kidney diseases, revealing novel therapeutic targets for the prevention and treatment of kidney diseases. Potential therapeutic strategies include modulating immune responses through targeting key immune factors or inhibiting pro-inflammatory signaling pathways, improving mitochondrial function, and targeting nutrient-sensing pathways, such as mTOR, AMPK, and SIRT1. This review highlights the importance of the interplay between immune and metabolic pathways in kidney diseases and the potential therapeutic implications of targeting these pathways.
Collapse
Affiliation(s)
- Lili Qu
- Division of Nephrology, Department of Medicine, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030-1405, USA
| | - Baihai Jiao
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030-1405, USA
| |
Collapse
|
8
|
Mao Z, Baker JR, Takeuchi M, Hyogo H, Tjønneland A, Eriksen AK, Severi G, Rothwell J, Laouali N, Katzke V, Kaaks R, Schulze MB, Palli D, Sieri S, de Magistris MS, Tumino R, Sacerdote C, Derksen JWG, Gram IT, Skeie G, Sandanger TM, Quirós JR, Crous-Bou M, Sánchez MJ, Amiano P, Colorado-Yohar SM, Guevara M, Harlid S, Johansson I, Perez-Cornago A, Freisling H, Gunter M, Weiderpass E, Heath AK, Aglago E, Jenab M, Fedirko V. Prediagnostic serum glyceraldehyde-derived advanced glycation end products and mortality among colorectal cancer patients. Int J Cancer 2023; 152:2257-2268. [PMID: 36715363 DOI: 10.1002/ijc.34449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 01/31/2023]
Abstract
Glyceraldehyde-derived advanced glycation end products (glycer-AGEs) could contribute to colorectal cancer development and progression due to their pro-oxidative and pro-inflammatory properties. However, the association of glycer-AGEs with mortality after colorectal cancer diagnosis has not been previously investigated. Circulating glycer-AGEs were measured by competitive ELISA. Multivariable Cox proportional hazards models were used to calculate hazard ratios (HRs) and corresponding 95% confidence intervals (CIs) for associations of circulating glycer-AGEs concentrations with CRC-specific and all-cause mortality among 1034 colorectal cancer (CRC) cases identified within the European Prospective Investigation into Cancer and Nutrition (EPIC) study between 1993 and 2013. During a mean of 48 months of follow-up, 529 participants died (409 from CRC). Glycer-AGEs were statistically significantly positively associated with CRC-specific (HRQ5 vs Q1 = 1.53, 95% CI: 1.04-2.25, Ptrend = .002) and all-cause (HRQ5 vs Q1 = 1.62, 95% CI: 1.16-2.26, Ptrend < .001) mortality among individuals with CRC. There was suggestion of a stronger association between glycer-AGEs and CRC-specific mortality among patients with distal colon cancer (per SD increment: HRproximal colon = 1.02, 95% CI: 0.74-1.42; HRdistal colon = 1.51, 95% CI: 1.20-1.91; Peffect modification = .02). The highest HR was observed among CRC cases in the highest body mass index (BMI) and glycer-AGEs category relative to lowest BMI and glycer-AGEs category for both CRC-specific (HR = 1.78, 95% CI: 1.02-3.01) and all-cause mortality (HR = 2.15, 95% CI: 1.33-3.47), although no statistically significant effect modification was observed. Our study found that prediagnostic circulating glycer-AGEs are positively associated with CRC-specific and all-cause mortality among individuals with CRC. Further investigations in other populations and stratifying by tumor location and BMI are warranted.
Collapse
Affiliation(s)
- Ziling Mao
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jacqueline Roshelli Baker
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Masayoshi Takeuchi
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| | - Hideyuki Hyogo
- Department of Gastroenterology and Metabolism, Hiroshima University Hospital, Hiroshima, Japan
- Lifecare Clinic Hiroshima, Hiroshima, Japan
| | - Anne Tjønneland
- Danish Cancer Society Research Center, Diet, Cancer and Health, Copenhagen, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | | | - Gianluca Severi
- UVSQ, Inserm, Centre for Epidemiology and Population Health (U1018), Exposome and Heredity Team, Université Paris-Saclay, Villejuif, France
- Department of Statistics, Computer Science Applications, "G. Parenti" University of Florence, Florence, Italy
| | - Joseph Rothwell
- UVSQ, Inserm, Centre for Epidemiology and Population Health (U1018), Exposome and Heredity Team, Université Paris-Saclay, Villejuif, France
| | - Nasser Laouali
- UVSQ, Inserm, Centre for Epidemiology and Population Health (U1018), Exposome and Heredity Team, Université Paris-Saclay, Villejuif, France
| | - Verena Katzke
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Domenico Palli
- Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network - ISPRO, Florence, Italy
| | - Sabina Sieri
- Epidemiology and Prevention Unit, Fondazione IRCCS, Istituto Nazionale dei Tumori di Milano Via Venezian, Milan, Italy
| | | | - Rosario Tumino
- Hyblean Association for Epidemiological Research, AIRE ONLUS, Ragusa, Italy
| | - Carlotta Sacerdote
- Unit of Cancer Epidemiology, Città della Salute e della Scienza University-Hospital, Turin, Italy
| | - Jeroen W G Derksen
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Inger T Gram
- Department of Community Medicine, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Guri Skeie
- Department of Community Medicine, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Torkjel M Sandanger
- Department of Community Medicine, UiT-The Arctic University of Norway, Tromsø, Norway
| | | | - Marta Crous-Bou
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO) - Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Maria-Jose Sánchez
- Escuela Andaluza de Salud Pública (EASP), Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Granada, Granada, Spain
| | - Pilar Amiano
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Ministry of Health of the Basque Government, Sub Directorate for Public Health and Addictions of Gipuzkoa, San Sebastian, Spain
- Epidemiology of Chronic and Communicable Diseases Group, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Sandra M Colorado-Yohar
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain
- Research Group on Demography and Health, National Faculty of Public Health, University of Antioquia, Medellín, Colombia
| | - Marcela Guevara
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Navarra Public Health Institute, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Sophia Harlid
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | | | - Aurora Perez-Cornago
- Cancer Epidemiology Unit (CEU), Nuffield Department of Population Health, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Heinz Freisling
- Section of Nutrition and Metabolism, Nutritional Epidemiology Group, International Agency for Research on Cancer, World Health Organization (IARC-WHO), Lyon, France
| | - Marc Gunter
- Section of Nutrition and Metabolism, Nutritional Epidemiology Group, International Agency for Research on Cancer, World Health Organization (IARC-WHO), Lyon, France
| | - Elisabete Weiderpass
- Office of the Director, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Alicia K Heath
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Elom Aglago
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Mazda Jenab
- Section of Nutrition and Metabolism, Nutritional Epidemiology Group, International Agency for Research on Cancer, World Health Organization (IARC-WHO), Lyon, France
| | - Veronika Fedirko
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
- MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
9
|
Çıtar Dazıroğlu ME, Acar Tek N. The Effect on Inflammation of Adherence to the Mediterranean Diet in Polycystic Ovary Syndrome. Curr Nutr Rep 2023; 12:191-202. [PMID: 36719550 DOI: 10.1007/s13668-023-00451-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2022] [Indexed: 02/01/2023]
Abstract
PURPOSE OF REVIEW Polycystic ovary syndrome (PCOS), which is common in women of reproductive age worldwide, is a syndrome that reduces the lifelong quality of life and poses a significant risk for various diseases. PCOS is a combination of symptoms of hyperandrogenism, oligo-anovulation, and polycystic ovarian morphology (PCOM). In PCOS, which is characterized by chronic low-grade inflammation, some inflammatory cytokines are increased. This review aimed to explain possible mechanisms of inflammation in PCOS and the effects of Mediterranean diet components on reducing this inflammation. RECENT FINDINGS Although the exact mechanisms of inflammation in PCOS are not yet fully known, it is stated that it is mediated by obesity, insulin resistance, and high androgen concentration. This inflammatory state negatively impacts the risk of future health problems and the quality of life of PCOS. Therefore, strategies to reduce inflammation are thought to be important. Dietary adjustments have important effects in reducing this inflammation and preventing disease. At this point, the Mediterranean diet, which has been proven to have a protective effect against many diseases, draws attention. Among the components of the Mediterranean diet, especially omega-3, antioxidants and dietary fiber may contribute to the reduction of inflammation through different mechanisms. PCOS is characterized by chronic low-grade inflammation, which increases women's risk of health problems, both now and in the future. Reducing inflammation is therefore extremely important, and it can be achieved with adherence to the Mediterranean diet. Inflammation pathways and the effect of the components of the Mediterranean diet in PCOS. AGE, advanced glycation end products; NF-κB, nuclear factor kappa-B. Obesity, insulin resistance, and hyperandrogenism may cause inflammation in PCOS through different mechanisms. Antioxidants, omega-3, and dietary fiber, which are the main components of the Mediterranean diet, may be effective in reducing this inflammation in PCOS. (Created with BioRender.com).
Collapse
Affiliation(s)
- Merve Esra Çıtar Dazıroğlu
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Emek, Ankara, Turkey.
| | - Nilüfer Acar Tek
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Emek, Ankara, Turkey
| |
Collapse
|
10
|
Wróblewski A, Strycharz J, Świderska E, Balcerczyk A, Szemraj J, Drzewoski J, Śliwińska A. Chronic and Transient Hyperglycemia Induces Changes in the Expression Patterns of IL6 and ADIPOQ Genes and Their Associated Epigenetic Modifications in Differentiating Human Visceral Adipocytes. Int J Mol Sci 2021; 22:ijms22136964. [PMID: 34203452 PMCID: PMC8268546 DOI: 10.3390/ijms22136964] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Adipokines secreted by hypertrophic visceral adipose tissue (VAT) instigate low-grade inflammation, followed by hyperglycemia (HG)-related metabolic disorders. The latter may develop with the participation of epigenetic modifications. Our aim was to assess how HG influences selected epigenetic modifications and the expression of interleukin 6 (IL-6) and adiponectin (APN; gene symbol ADIPOQ) during the adipogenesis of human visceral preadipocytes (HPA-v). Adipocytes (Ads) were chronically or transiently HG-treated during three stages of adipogenesis (proliferation, differentiation, maturation). We measured adipokine mRNA, protein, proven or predicted microRNA expression (RT-qPCR and ELISA), and enrichment of H3K9/14ac, H3K4me3, and H3K9me3 at gene promoter regions (chromatin immunoprecipitation). In chronic HG, we detected different expression patterns of the studied adipokines at the mRNA and protein levels. Chronic and transient HG-induced changes in miRNA (miR-26a-5p, miR-26b-5p, let-7d-5p, let-7e-5p, miR-365a-3p, miR-146a-5p) were mostly convergent to altered IL-6 transcription. Alterations in histone marks at the IL6 promoter were also in agreement with IL-6 mRNA. The open chromatin marks at the ADIPOQ promoter mostly reflected the APN transcription during NG adipogenesis, while, in the differentiation stage, HG-induced changes in all studied marks were in line with APN mRNA levels. In summary, HG dysregulated adipokine expression, promoting inflammation. Epigenetic changes coexisted with altered expression of adipokines, especially for IL-6; therefore, epigenetic marks induced by transient HG may act as epi-memory in Ads. Such changes in the epigenome and expression of adipokines could be instrumental in the development of inflammation and metabolic deregulation of VAT.
Collapse
Affiliation(s)
- Adam Wróblewski
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (J.S.); (E.Ś.); (J.S.)
- Correspondence: (A.W.); (A.Ś.)
| | - Justyna Strycharz
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (J.S.); (E.Ś.); (J.S.)
| | - Ewa Świderska
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (J.S.); (E.Ś.); (J.S.)
| | - Aneta Balcerczyk
- Department of Molecular Biophysics, University of Lodz, 90-236 Lodz, Poland;
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (J.S.); (E.Ś.); (J.S.)
| | - Józef Drzewoski
- Central Teaching Hospital of the Medical University of Lodz, 92-213 Lodz, Poland;
| | - Agnieszka Śliwińska
- Department of Nucleic Acids Biochemistry, Medical University of Lodz, 92-213 Lodz, Poland
- Correspondence: (A.W.); (A.Ś.)
| |
Collapse
|
11
|
Tubular transcriptional co-activator with PDZ-binding motif protects against ischemic acute kidney injury. Clin Sci (Lond) 2021; 134:1593-1612. [PMID: 32558891 DOI: 10.1042/cs20200223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/03/2020] [Accepted: 06/19/2020] [Indexed: 11/17/2022]
Abstract
Transcriptional co-activator with PDZ-binding motif (TAZ) is a key downstream effector of the Hippo tumor-suppressor pathway. The functions of TAZ in the kidney, especially in tubular epithelial cells, are not well-known. To elucidate the adaptive expression, protective effects on kidney injury, and signaling pathways of TAZ in response to acute kidney injury (AKI), we used in vitro (hypoxia-treated human renal proximal tubular epithelial cells [RPTECs]) and in vivo (mouse ischemia-reperfusion injury [IRI]) models of ischemic AKI. After ischemic AKI, TAZ was up-regulated in RPTECs and the renal cortex or tubules. Up-regulation of TAZ in RPTECs subjected to hypoxia was controlled by IκB kinase (IKK)/nuclear factor κ-light-chain-enhancer of activated B cell (NF-κB) signaling. TAZ overexpression attenuated hypoxic and oxidative injury, inhibited apoptosis and activation of p38 and c-Jun N-terminal kinase (JNK) proteins, and promoted wound healing in an RPTEC monolayer. However, TAZ knockdown aggravated hypoxic injury, apoptosis, and activation of p38 and JNK signaling, delayed wound closure of an RPTEC monolayer, and promoted G0/G1 phase cell-cycle arrest. Chloroquine and verteporfin treatment produced similar results to TAZ overexpression and knockdown in RPTECs, respectively. Compared with vehicle-treated mice, chloroquine treatment increased TAZ in the renal cortex and tubules, improved renal function, and attenuated tubular injury and tubular apoptosis after renal IRI, whereas TAZ siRNA and verteporfin decreased TAZ in the renal cortex and tubules, deteriorated renal failure and tubular injury, and aggravated tubular apoptosis. Our findings indicate the renoprotective role of tubular TAZ in ischemic AKI. Drugs augmenting (e.g., chloroquine) or suppressing (e.g., verteporfin) TAZ in the kidney might be beneficial or deleterious to patients with AKI.
Collapse
|
12
|
Ye C, Duan J, Zhang X, Yao L, Song Y, Wang G, Li Q, Wang B, Ai D, Wang C, Zhu Y. Cold-induced Yes-associated-protein expression through miR-429 mediates the browning of white adipose tissue. SCIENCE CHINA-LIFE SCIENCES 2020; 64:404-418. [PMID: 32804340 DOI: 10.1007/s11427-020-1779-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
Abstract
Targeting the white-to-brown fat conversion is important for developing potential strategies to counteract metabolic diseases; yet the mechanisms are not fully understood. Yes-associated-protein (YAP), a transcription co-activator, was demonstrated to regulate adipose tissue functions; however, its effects on browning of subcutaneous white adipose tissue (sWAT) are unclear. We demonstrated that YAP was highly expressed in cold-induced beige fat. Mechanistically, YAP was found as a target gene of miR-429, which downregulated YAP expression in vivo and in vitro. In addition, miR-429 level was decreased in cold-induced beige fat. Additionally, pharmacological inhibition of the interaction between YAP and transcriptional enhanced associate domains by verteporfin dampened the browning of sWAT. Although adipose tissue-specific YAP overexpression increased energy expenditure with increased basal uncoupling protein 1 expression, it had no additional effects on the browning of sWAT in young mice. However, we found age-related impairment of sWAT browning along with decreased YAP expression. Under these circumstances, YAP overexpression significantly improved the impaired WAT browning in middle-aged mice. In conclusion, YAP as a regulator of sWAT browning, was upregulated by lowering miR-429 level in cold-induced beige fat. Targeting the miR-429-YAP pathway could be exploited for therapeutic strategies for age-related impairment of sWAT browning.
Collapse
Affiliation(s)
- Chenji Ye
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Tianjin, 300070, China
| | - Jinjie Duan
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Tianjin, 300070, China
| | - Xuejiao Zhang
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Tianjin, 300070, China
| | - Liu Yao
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Tianjin, 300070, China
| | - Yayue Song
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Tianjin, 300070, China
| | - Guangyan Wang
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Tianjin, 300070, China
| | - Qi Li
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Tianjin, 300070, China
| | - Biqing Wang
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Tianjin, 300070, China
| | - Ding Ai
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Tianjin, 300070, China
| | - Chunjiong Wang
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Tianjin, 300070, China. .,Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, 300070, China.
| | - Yi Zhu
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
13
|
Heng BC, Zhang X, Aubel D, Bai Y, Li X, Wei Y, Fussenegger M, Deng X. Role of YAP/TAZ in Cell Lineage Fate Determination and Related Signaling Pathways. Front Cell Dev Biol 2020; 8:735. [PMID: 32850847 PMCID: PMC7406690 DOI: 10.3389/fcell.2020.00735] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
The penultimate effectors of the Hippo signaling pathways YAP and TAZ, are transcriptional co-activator proteins that play key roles in many diverse biological processes, ranging from cell proliferation, tumorigenesis, mechanosensing and cell lineage fate determination, to wound healing and regeneration. In this review, we discuss the regulatory mechanisms by which YAP/TAZ control stem/progenitor cell differentiation into the various major lineages that are of interest to tissue engineering and regenerative medicine applications. Of particular interest is the key role of YAP/TAZ in maintaining the delicate balance between quiescence, self-renewal, proliferation and differentiation of endogenous adult stem cells within various tissues/organs during early development, normal homeostasis and regeneration/healing. Finally, we will consider how increasing knowledge of YAP/TAZ signaling might influence the trajectory of future progress in regenerative medicine.
Collapse
Affiliation(s)
- Boon C. Heng
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
- Faculty of Science and Technology, Sunway University, Subang Jaya, Malaysia
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, China
| | - Dominique Aubel
- IUTA Department Genie Biologique, Universite Claude Bernard Lyon 1, Villeurbanne, France
| | - Yunyang Bai
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xiaochan Li
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yan Wei
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH-Zürich, Basel, Switzerland
| | - Xuliang Deng
- National Engineering Laboratory for Digital and Material Technology of Stomatology, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, China
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
14
|
Strieder-Barboza C, Baker NA, Flesher CG, Karmakar M, Neeley CK, Polsinelli D, Dimick JB, Finks JF, Ghaferi AA, Varban OA, Lumeng CN, O'Rourke RW. Advanced glycation end-products regulate extracellular matrix-adipocyte metabolic crosstalk in diabetes. Sci Rep 2019; 9:19748. [PMID: 31875018 PMCID: PMC6930305 DOI: 10.1038/s41598-019-56242-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/07/2019] [Indexed: 12/28/2022] Open
Abstract
The adipose tissue extracellular matrix (ECM) regulates adipocyte cellular metabolism and is altered in obesity and type 2 diabetes, but mechanisms underlying ECM-adipocyte metabolic crosstalk are poorly defined. Advanced glycation end-product (AGE) formation is increased in diabetes. AGE alter tissue function via direct effects on ECM and by binding scavenger receptors on multiple cell types and signaling through Rho GTPases. Our goal was to determine the role and underlying mechanisms of AGE in regulating human ECM-adipocyte metabolic crosstalk. Visceral adipocytes from diabetic and non-diabetic humans with obesity were studied in 2D and 3D-ECM culture systems. AGE is increased in adipose tissue from diabetic compared to non-diabetic subjects. Glycated collagen 1 and AGE-modified ECM regulate adipocyte glucose uptake and expression of AGE scavenger receptors and Rho signaling mediators, including the DIAPH1 gene, which encodes the human Diaphanous 1 protein (hDia1). Notably, inhibition of hDia1, but not scavenger receptors RAGE or CD36, attenuated AGE-ECM inhibition of adipocyte glucose uptake. These data demonstrate that AGE-modification of ECM contributes to adipocyte insulin resistance in human diabetes, and implicate hDia1 as a potential mediator of AGE-ECM-adipocyte metabolic crosstalk.
Collapse
Affiliation(s)
- Clarissa Strieder-Barboza
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Nicki A Baker
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Carmen G Flesher
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Monita Karmakar
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Christopher K Neeley
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Dominic Polsinelli
- Undergraduate Research Opportunity Program, University of Michigan, Ann Arbor, MI, USA
| | - Justin B Dimick
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jonathan F Finks
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Amir A Ghaferi
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Oliver A Varban
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Carey N Lumeng
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, USA
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
- Graduate Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Robert W O'Rourke
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Surgery, Ann Arbor Veterans Affairs Healthcare System, Ann Arbor, MI, USA.
| |
Collapse
|
15
|
Yu M, Zang D, Xu Y, Meng J, Qian S. Protective effect of ISO‑1 against advanced glycation end product aggravation of PC12 cell injury induced by Aβ1‑40. Mol Med Rep 2019; 20:2135-2142. [PMID: 31322215 PMCID: PMC6691208 DOI: 10.3892/mmr.2019.10483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/24/2019] [Indexed: 12/15/2022] Open
Abstract
Advanced glycation end products (AGEs) are important pathogenic substances involved in diabetes mellitus (DM) and its complications. AGEs also serve important roles in promoting the development of Alzheimer's disease (AD). Macrophage migration inhibitory factor (MIF), an inflammatory stimulant and a pathogenic factor involved in DM, was previously reported to be present at increased levels in the cerebrospinal fluid of patients with AD and mild cognitive impairment compared with age-matched healthy controls. By investigating the association between AGEs and MIF, and the effects of neuroinflammation on AD, the present study aimed to increase understanding of the specific molecular mechanisms involved in the pathogenesis of DM and AD, and the connection between these diseases. PC12 cells were cultured in vitro; the levels of MIF mRNA and protein were determined using reverse transcription-quantitative (RT-q)PCR and western blot analyses. The optimal concentrations of AGEs and amyloid β 1–40 (Aβ1–40) were also determined in the cell model of AD using Cell Counting Kit-8 and MTT assays. Cell numbers and morphological changes were observed following the treatment of Aβ1–40-stimulated PC12 cells with AGEs and the MIF inhibitor (S,R)-3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid methyl ester (ISO-1). The mRNA expression levels of interleukin (IL)-1β, IL-6, tumor necrosis factor-α (TNF-α) and MIF were determined via RT-qPCR analysis. The results showed that the levels of MIF mRNA and protein were significantly increased in cells treated with AGEs compared with the control group. In the AD model group, the inhibition of PC12 cell growth was significantly increased, and the mRNA expression levels of IL-1β, IL-6, TNF-α and MIF were also increased. Compared with treatment with AGEs alone, the combination of AGEs treatment with ISO-1 significantly improved the survival rate and resulted in the reduced expression of inflammatory mediators in the AD cell model. Thus, ISO-1 reduced AGEs-mediated damage in the AD cell model. This may be a consequence of AGEs-mediated MIF expression promoting neuritis in the AD cell model, whereas ISO-1 decreased the expression of neuroinflammatory mediators.
Collapse
Affiliation(s)
- Ming Yu
- Department of Neurology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, P.R. China
| | - Demei Zang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212000, P.R. China
| | - Yuhao Xu
- Department of Neurology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, P.R. China
| | - Jie Meng
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212000, P.R. China
| | - Shengnan Qian
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212000, P.R. China
| |
Collapse
|
16
|
Rozengurt E, Eibl G. Central role of Yes-associated protein and WW-domain-containing transcriptional co-activator with PDZ-binding motif in pancreatic cancer development. World J Gastroenterol 2019; 25:1797-1816. [PMID: 31057295 PMCID: PMC6478619 DOI: 10.3748/wjg.v25.i15.1797] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/20/2019] [Accepted: 03/25/2019] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a deadly disease with no efficacious treatment options. PDAC incidence is projected to increase, which may be caused at least partially by the obesity epidemic. Significantly enhanced efforts to prevent or intercept this cancer are clearly warranted. Oncogenic KRAS mutations are recognized initiating events in PDAC development, however, they are not entirely sufficient for the development of fully invasive PDAC. Additional genetic alterations and/or environmental, nutritional, and metabolic signals, as present in obesity, type-2 diabetes mellitus, and inflammation, are required for full PDAC formation. We hypothesize that oncogenic KRAS increases the intensity and duration of the growth-promoting signaling network. Recent exciting studies from different laboratories indicate that the activity of the transcriptional co-activators Yes-associated protein (YAP) and WW-domain-containing transcriptional co-activator with PDZ-binding motif (TAZ) play a critical role in the promotion and maintenance of PDAC operating as key downstream target of KRAS signaling. While initially thought to be primarily an effector of the tumor-suppressive Hippo pathway, more recent studies revealed that YAP/TAZ subcellular localization and co-transcriptional activity is regulated by multiple upstream signals. Overall, YAP has emerged as a central node of transcriptional convergence in growth-promoting signaling in PDAC cells. Indeed, YAP expression is an independent unfavorable prognostic marker for overall survival of PDAC. In what follows, we will review studies implicating YAP/TAZ in pancreatic cancer development and consider different approaches to target these transcriptional regulators.
Collapse
Affiliation(s)
- Enrique Rozengurt
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, United States
- CURE: Digestive Diseases Research Center, Los Angeles, CA 90095, United States
| | - Guido Eibl
- Department of Surgery, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, United States
- CURE: Digestive Diseases Research Center, Los Angeles, CA 90095, United States
| |
Collapse
|