1
|
Wang Z, Qiao X, Xue K, Chen Q, Li A. PTOV1 interacts with ZNF449 to promote colorectal cancer development. Commun Biol 2025; 8:489. [PMID: 40133702 PMCID: PMC11937480 DOI: 10.1038/s42003-025-07930-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 03/12/2025] [Indexed: 03/27/2025] Open
Abstract
PTOV1 is recognized to have a significant role in various human cancers, including prostate cancer. However, it remains unclear what its clinical significance and biological role are in colorectal cancer (CRC). TCGA, NCBI/GEO, and Kaplan-Meier plot database mining provided important clues into the function and clinical importance of PTOV1 in CRC. Western blotting, immunohistochemistry, and immunofluorescence were utilized to discover PTOV1 protein levels in CRC cell lines and tissues. To explore the involvement of PTOV1 in the development of CRC and the underlying mechanisms, several in-vitro and in-vivo studies were executed, such as CCK-8 assays, colony formation, transwell assays, qRT-PCR, Co-IP, GST pull-down, immunostaining, and mouse xenograft assays. It was shown that PTOV1 expression level was upregulated in the tissues and cells of human CRC. PTOV1 high-expression level was associated with short survival. ZNF449 interacted with PTOV1 and accelerated CRC development in vitro and in vivo. Through Co-IP and GST pull-down studies, the physical interaction of PTOV1/ZNF449 was demonstrated. Furthermore, PTOV1 directly bound ZNF449, and this complex synergistically promoted the transcription of MYC. In addition, the PTOV1/ZNF449 interaction was disrupted by the TAT- PTOV1 (125-283 aa) protein leading to inhibit the CRC development in a xenografted mouse model. According to these findings, PTOV1 has an essential role in CRC progression, and PTOV1/ZNF449 interaction could be a possible therapeutic target for CRC.
Collapse
Affiliation(s)
- Zhiyong Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinwei Qiao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kaming Xue
- Department of Traditional Chinese Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qianzhi Chen
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Anshu Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Xie SA, Zhang W, Du F, Liu S, Ning TT, Zhang N, Zhang ST, Zhu ST. PTOV1 facilitates colorectal cancer cell proliferation through activating AKT1 signaling pathway. Heliyon 2024; 10:e36017. [PMID: 39229496 PMCID: PMC11369455 DOI: 10.1016/j.heliyon.2024.e36017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/02/2024] [Accepted: 08/07/2024] [Indexed: 09/05/2024] Open
Abstract
Background Colorectal cancer is a predominant contributor to global cancer-related morbidity and mortality. The oncogene PTOV1 has been linked to various human malignancies, yet its specific role in CRC pathogenesis requires further elucidation. Methods Our study used a comprehensive array of authoritative bioinformatics tools, such as TIMER, UCSC Xena, GEO, Human Protein Atlas, UALCAN, CIBERSORTx and others which used to investigate the complex effects of PTOV1 on gene expression profiles, diagnostic and prognostic biomarkers, tumor immunology, signaling pathways, epigenetic alterations, and genetic mutations. Gene expression validation was conducted using Western blot and qRT-PCR. The in vitro proliferative and migratory potentials of CRC cells were evaluated using CCK-8 assays, colony formation, and transwell migration assays, respectively. MSP was applied to assess the methylation status of the PTOV1 promoter region. Results Our results reveal a significant association between increased PTOV1 expression, driven by promoter hypomethylation, and poor patient prognosis in CRC. Elevated PTOV1 levels were positively correlated with the enrichment of diverse immune cell subsets and immune-related molecules within the tumor microenvironment. In vitro assays demonstrated that PTOV1 knockdown markedly reduced CRC cell proliferation, colony formation, and migration, while ectopic PTOV1 expression had the opposite effect. Importantly, PTOV1 was shown to regulate the PI3K-AKT signaling pathway, significantly influencing the phosphorylation of AKT1 and the expression of cell cycle regulators P21 and P27. The pharmacological inhibition of AKT1 phosphorylation using MK2206 effectively counteracted the proliferative effects induced by PTOV1 overexpression. Conclusion The ability of PTOV1 to enhance CRC cell proliferation via modulation of the AKT1 signaling pathway establishes it as a potential therapeutic target and a promising biomarker for prognostic stratification in CRC.
Collapse
Affiliation(s)
- Si-An Xie
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, PR China
- National Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, PR China
| | - Wen Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, PR China
| | - Feng Du
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, PR China
- National Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, PR China
| | - Si Liu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, PR China
- National Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, PR China
| | - Ting-Ting Ning
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, PR China
- National Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, PR China
| | - Nan Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, PR China
- National Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, PR China
| | - Shu-Tian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, PR China
- National Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, PR China
| | - Sheng-Tao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, PR China
- National Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, PR China
| |
Collapse
|
3
|
Mitra Ghosh T, Mazumder S, Davis J, Yadav J, Akinpelu A, Alnaim A, Kumar H, Waliagha R, Church Bird AE, Rais-Bahrami S, Bird RC, Mistriotis P, Mishra A, Yates CC, Mitra AK, Arnold RD. Metronomic Administration of Topotecan Alone and in Combination with Docetaxel Inhibits Epithelial-mesenchymal Transition in Aggressive Variant Prostate Cancers. CANCER RESEARCH COMMUNICATIONS 2023; 3:1286-1311. [PMID: 37476073 PMCID: PMC10355222 DOI: 10.1158/2767-9764.crc-22-0427] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/29/2023] [Accepted: 06/21/2023] [Indexed: 07/22/2023]
Abstract
Prostate cancer is the second leading cause of noncutaneous cancer-related deaths in American men. Androgen deprivation therapy (ADT), radical prostatectomy, and radiotherapy remain the primary treatment for patients with early-stage prostate cancer (castration-sensitive prostate cancer). Following ADT, many patients ultimately develop metastatic castration-resistant prostate cancer (mCRPC). Standard chemotherapy options for CRPC are docetaxel (DTX) and cabazitaxel, which increase median survival, although the development of resistance is common. Cancer stem-like cells possess mesenchymal phenotypes [epithelial-to-mesenchymal transition (EMT)] and play crucial roles in tumor initiation and progression of mCRPC. We have shown that low-dose continuous administration of topotecan (METRO-TOPO) inhibits prostate cancer growth by interfering with key cancer pathway genes. This study utilized bulk and single-cell or whole-transcriptome analysis [(RNA sequencing (RNA-seq) and single-cell RNA sequencing (scRNA-seq)], and we observed greater expression of several EMT markers, including Vimentin, hyaluronan synthase-3, S100 calcium binding protein A6, TGFB1, CD44, CD55, and CD109 in European American and African American aggressive variant prostate cancer (AVPC) subtypes-mCRPC, neuroendocrine variant (NEPC), and taxane-resistant. The taxane-resistant gene FSCN1 was also expressed highly in single-cell subclonal populations in mCRPC. Furthermore, metronomic-topotecan single agent and combinations with DTX downregulated these EMT markers as well as CD44+ and CD44+/CD133+ "stem-like" cell populations. A microfluidic chip-based cell invasion assay revealed that METRO-TOPO treatment as a single agent or in combination with DTX was potentially effective against invasive prostate cancer spread. Our RNA-seq and scRNA-seq analysis were supported by in silico and in vitro studies, suggesting METRO-TOPO combined with DTX may inhibit oncogenic progression by reducing cancer stemness in AVPC through the inhibition of EMT markers and multiple oncogenic factors/pathways. Significance The utilization of metronomic-like dosing regimens of topotecan alone and in combination with DTX resulted in the suppression of makers associated with EMT and stem-like cell populations in AVPC models. The identification of molecular signatures and their potential to serve as novel biomarkers for monitoring treatment efficacy and disease progression response to treatment efficacy and disease progression were achieved using bulk RNA-seq and single-cell-omics methodologies.
Collapse
Affiliation(s)
- Taraswi Mitra Ghosh
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama
- Division of Urology, Department of Surgery, Mass General Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Suman Mazumder
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama
- Center for Pharmacogenomics and Single-Cell Omics (AUPharmGx), Harrison College of Pharmacy, Auburn University, Auburn, Alabama
| | - Joshua Davis
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama
| | - Jyoti Yadav
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Ayuba Akinpelu
- Department of Chemical Engineering, Samuel Ginn College of Engineering, Auburn University, Auburn, Alabama
| | - Ahmed Alnaim
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama
| | - Harish Kumar
- Department of Biology and Canter for Cancer Research, Tuskegee University, Tuskegee, Alabama
| | - Razan Waliagha
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama
| | - Allison E. Church Bird
- Flow Cytometry and High-Speed Cell Sorting Laboratory, Auburn University, Auburn, Alabama
| | - Soroush Rais-Bahrami
- UAB O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama
- Department of Urology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama
- Department of Radiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama
- Department of Pathology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama
| | - R. Curtis Bird
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Panagiotis Mistriotis
- Department of Chemical Engineering, Samuel Ginn College of Engineering, Auburn University, Auburn, Alabama
| | - Amarjit Mishra
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Clayton C. Yates
- Department of Biology and Canter for Cancer Research, Tuskegee University, Tuskegee, Alabama
- UAB O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama
- Department of Pathology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Amit K. Mitra
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama
- Center for Pharmacogenomics and Single-Cell Omics (AUPharmGx), Harrison College of Pharmacy, Auburn University, Auburn, Alabama
- UAB O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama
| | - Robert D. Arnold
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
- UAB O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama
| |
Collapse
|
4
|
Pennington KL, McEwan CM, Woods J, Muir CM, Pramoda Sahankumari AG, Eastmond R, Balasooriya ER, Egbert CM, Kaur S, Heaton T, McCormack KK, Piccolo SR, Kurokawa M, Andersen JL. SGK2, 14-3-3, and HUWE1 Cooperate to Control the Localization, Stability, and Function of the Oncoprotein PTOV1. Mol Cancer Res 2021; 20:231-243. [PMID: 34654719 DOI: 10.1158/1541-7786.mcr-20-1076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 08/20/2021] [Accepted: 10/07/2021] [Indexed: 11/16/2022]
Abstract
PTOV1 is an oncogenic protein, initially identified in prostate cancer, that promotes proliferation, cell motility, and invasiveness. However, the mechanisms that regulate PTOV1 remain unclear. Here, we identify 14-3-3 as a PTOV1 interactor and show that high levels of 14-3-3 expression, like PTOV1, correlate with prostate cancer progression. We discover an SGK2-mediated phosphorylation of PTOV1 at S36, which is required for 14-3-3 binding. Disruption of the PTOV1-14-3-3 interaction results in an accumulation of PTOV1 in the nucleus and a proteasome-dependent reduction in PTOV1 protein levels. We find that loss of 14-3-3 binding leads to an increase in PTOV1 binding to the E3 ubiquitin ligase HUWE1, which promotes proteasomal degradation of PTOV1. Conversely, our data suggest that 14-3-3 stabilizes PTOV1 protein by sequestering PTOV1 in the cytosol and inhibiting its interaction with HUWE1. Finally, our data suggest that stabilization of the 14-3-3-bound form of PTOV1 promotes PTOV1-mediated expression of cJun, which drives cell-cycle progression in cancer. Together, these data provide a mechanism to understand the regulation of the oncoprotein PTOV1. IMPLICATIONS: These findings identify a potentially targetable mechanism that regulates the oncoprotein PTOV1.
Collapse
Affiliation(s)
- Katie L Pennington
- The Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
| | - Colten M McEwan
- The Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah.
| | - James Woods
- The Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
| | - Colin M Muir
- The Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
| | - A G Pramoda Sahankumari
- The Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
| | - Riley Eastmond
- The Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
| | - Eranga R Balasooriya
- The Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
| | - Christina M Egbert
- The Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
| | - Sandeep Kaur
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | - Tyler Heaton
- Department of Biology, Brigham Young University, Provo, Utah
| | - Katherine K McCormack
- The Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
| | | | - Manabu Kurokawa
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | - Joshua L Andersen
- The Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah.
| |
Collapse
|
5
|
Xie C, Lin PJ, Hao J. Eggmanone Effectively Overcomes Prostate Cancer Cell Chemoresistance. Biomedicines 2021; 9:biomedicines9050538. [PMID: 34066000 PMCID: PMC8151738 DOI: 10.3390/biomedicines9050538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/23/2021] [Accepted: 05/10/2021] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer chemoresistance is a major therapeutic problem, and the underlying mechanism is not well understood and effective therapies to overcome this problem are not available. Phosphodiesterase-4 (PDE4), a main intracellular enzyme for cAMP hydrolysis, has been previously shown to involve in the early chemo-sensitive prostate cancer cell proliferation and progression, but its role in the more-advanced chemo-resistant prostate cancer is completely unknown. Here we found that the expression of PDE4 subtype, PDE4D, is highly elevated in the chemo-resistant prostate cancer cells (DU145-TxR and PC3-TxR) in comparison to the chemo-sensitive prostate cancer cells (DU145 and PC3). Inhibition of PDE4D with a potent and selective PDED4 inhibitor, Eggmanone, effectively decreases the invasion and proliferation as well as induces cell death of the chemo-resistant prostate cancer cells (DU145-TxR and PC3-TxR). These results were confirmed by siRNA knockdown of PDE4D. We and colleagues previously reported that Eggmanone can effectively blocked sonic Hedgehog signaling via PDE4D inhibition, and here our study suggests that that Eggmanone downregulated proliferation of the chemo-resistant prostate cancer cells via sonic Hedgehog signaling. In addition, Eggmanone treatment dose-dependently increases docetaxel cytotoxicity to DU145-TxR and PC3-TxR. As cancer stem cells (CSCs) are known to be implicated in cancer chemoresistance, we further examined Eggmanone impacts on CSC-like properties in the chemo-resistant prostate cancer cells. Our study shows that Eggmanone effectively down-regulates the expression of CSCs’ marker genes Nanog and ABC sub-family G member 2 (ABCG2) and attenuates sphere formation in DU145-TxR and PC3-TxR cells. In summary, our work shows that Eggmanone effectively overcomes the chemoresistance of prostate cancer cells presumably through sonic Hedgehog signaling and targeting CSCs, suggesting that Eggmanone may serve as a novel agent for chemo-resistant prostate cancer.
Collapse
Affiliation(s)
- Chen Xie
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Pen-Jen Lin
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Jijun Hao
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA;
- Correspondence: ; Tel.: +1-(909)-469-8686; Fax: +1-909-469-5635
| |
Collapse
|
6
|
Liotti A, La Civita E, Cennamo M, Crocetto F, Ferro M, Guadagno E, Insabato L, Imbimbo C, Palmieri A, Mirone V, Liguoro P, Formisano P, Beguinot F, Terracciano D. Periprostatic adipose tissue promotes prostate cancer resistance to docetaxel by paracrine IGF-1 upregulation of TUBB2B beta-tubulin isoform. Prostate 2021; 81:407-417. [PMID: 33734457 PMCID: PMC8251776 DOI: 10.1002/pros.24117] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/19/2021] [Accepted: 03/05/2021] [Indexed: 12/14/2022]
Abstract
Growing evidence supports the pivotal role played by periprostatic adipose tissue (PPAT) in prostate cancer (PCa) microenvironment. We investigated whether PPAT can affect response to Docetaxel (DCTX) and the mechanisms associated. Conditioned medium was collected from the in vitro differentiated adipocytes isolated from PPAT which was isolated from PCa patients, during radical prostatectomy. Drug efficacy was studied by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide citotoxicity assay. Culture with CM of human PPAT (AdipoCM) promotes DCTX resistance in two different human prostate cancer cell lines (DU145 and PC3) and upregulated the expression of BCL-xL, BCL-2, and TUBB2B. AG1024, a well-known IGF-1 receptor inhibitor, counteracts the decreased response to DCTX observed in presence of AdipoCM and decreased TUBB2B expression, suggesting that a paracrine secretion of IGF-1 by PPAT affect DCTX response of PCa cell. Collectively, our study showed that factors secreted by PPAT elicits DCTX resistance through antiapoptotic proteins and TUBB2B upregulation in androgen independent PCa cell lines. These findings reveal the potential of novel therapeutic strategies targeting adipocyte-released factors and IGF-1 axis to overcome DCTX resistance in patients with PCa.
Collapse
Affiliation(s)
- Antonietta Liotti
- Department of Translational Medical SciencesUniversity of Naples “Federico II”NaplesItaly
| | - Evelina La Civita
- Department of Translational Medical SciencesUniversity of Naples “Federico II”NaplesItaly
| | - Michele Cennamo
- Department of Translational Medical SciencesUniversity of Naples “Federico II”NaplesItaly
| | - Felice Crocetto
- Department of NeurosciencesUniversity of Naples Federico IINaplesItaly
| | - Matteo Ferro
- Department of Urology, European Institute of OncologyIRCCSMilanItaly
| | - Elia Guadagno
- Department of Advanced Biomedical Sciences, Anatomic Pathology Unit, School of MedicineUniversity of Naples Federico IINaplesItaly
| | - Luigi Insabato
- Department of Advanced Biomedical Sciences, Anatomic Pathology Unit, School of MedicineUniversity of Naples Federico IINaplesItaly
| | - Ciro Imbimbo
- Department of NeurosciencesUniversity of Naples Federico IINaplesItaly
| | | | - Vincenzo Mirone
- Department of NeurosciencesUniversity of Naples Federico IINaplesItaly
| | - Pasquale Liguoro
- Department of Translational Medical SciencesUniversity of Naples “Federico II”NaplesItaly
| | - Pietro Formisano
- Department of Translational Medical SciencesUniversity of Naples “Federico II”NaplesItaly
| | - Francesco Beguinot
- Department of Translational Medical SciencesUniversity of Naples “Federico II”NaplesItaly
| | - Daniela Terracciano
- Department of Translational Medical SciencesUniversity of Naples “Federico II”NaplesItaly
| |
Collapse
|
7
|
Wang YA, Sfakianos J, Tewari AK, Cordon-Cardo C, Kyprianou N. Molecular tracing of prostate cancer lethality. Oncogene 2020; 39:7225-7238. [PMID: 33046797 DOI: 10.1038/s41388-020-01496-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/16/2020] [Accepted: 09/28/2020] [Indexed: 01/14/2023]
Abstract
Prostate cancer is diagnosed mostly in men over the age of 50 years, and has favorable 5-year survival rates due to early cancer detection and availability of curative surgical management. However, progression to metastasis and emergence of therapeutic resistance are responsible for the majority of prostate cancer mortalities. Recent advancement in sequencing technologies and computational capabilities have improved the ability to organize and analyze large data, thus enabling the identification of novel biomarkers for survival, metastatic progression and patient prognosis. Large-scale sequencing studies have also uncovered genetic and epigenetic signatures associated with prostate cancer molecular subtypes, supporting the development of personalized targeted-therapies. However, the current state of mainstream prostate cancer management does not take full advantage of the personalized diagnostic and treatment modalities available. This review focuses on interrogating biomarkers of prostate cancer progression, including gene signatures that correspond to the acquisition of tumor lethality and those of predictive and prognostic value in progression to advanced disease, and suggest how we can use our knowledge of biomarkers and molecular subtypes to improve patient treatment and survival outcomes.
Collapse
Affiliation(s)
- Yuanshuo Alice Wang
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - John Sfakianos
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ashutosh K Tewari
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Carlos Cordon-Cardo
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Department of Pathology and Laboratory Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Natasha Kyprianou
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Department of Pathology and Laboratory Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
8
|
STAT3 inhibition with galiellalactone effectively targets the prostate cancer stem-like cell population. Sci Rep 2020; 10:13958. [PMID: 32811873 PMCID: PMC7434889 DOI: 10.1038/s41598-020-70948-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 08/05/2020] [Indexed: 12/17/2022] Open
Abstract
Cancer stem cells (CSCs) are a small subpopulation of quiescent cells with the potential to differentiate into tumor cells. CSCs are involved in tumor initiation and progression and contribute to treatment failure through their intrinsic resistance to chemo- or radiotherapy, thus representing a substantial concern for cancer treatment. Prostate CSCs’ activity has been shown to be regulated by the transcription factor Signal Transducer and Activator of Transcription 3 (STAT3). Here we investigated the effect of galiellalactone (GL), a direct STAT3 inhibitor, on CSCs derived from prostate cancer patients, on docetaxel-resistant spheres with stem cell characteristics, on CSCs obtained from the DU145 cell line in vitro and on DU145 tumors in vivo. We found that GL significantly reduced the viability of docetaxel-resistant and patient-derived spheres. Moreover, CSCs isolated from DU145 cells were sensitive to low concentrations of GL, and the treatment with GL suppressed their viability and their ability to form colonies and spheres. STAT3 inhibition down regulated transcriptional targets of STAT3 in these cells, indicating STAT3 activity in CSCs. Our results indicate that GL can target the prostate stem cell niche in patient-derived cells, in docetaxel-resistant spheres and in an in vitro model. We conclude that GL represents a promising therapeutic approach for prostate cancer patients, as it reduces the viability of prostate cancer-therapy-resistant cells in both CSCs and non-CSC populations.
Collapse
|
9
|
Garcia-Mayea Y, Mir C, Masson F, Paciucci R, LLeonart ME. Insights into new mechanisms and models of cancer stem cell multidrug resistance. Semin Cancer Biol 2020; 60:166-180. [PMID: 31369817 DOI: 10.1016/j.semcancer.2019.07.022] [Citation(s) in RCA: 206] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/24/2022]
Abstract
The acquisition of genetic alterations, clonal evolution, and the tumor microenvironment promote cancer progression, metastasis and therapy resistance. These events correspond to the establishment of the great phenotypic heterogeneity and plasticity of cancer cells that contribute to tumor progression and resistant disease. Targeting resistant cancers is a major challenge in oncology; however, the underlying processes are not yet fully understood. Even though current treatments can reduce tumor size and increase life expectancy, relapse and multidrug resistance (MDR) ultimately remain the second cause of death in developed countries. Recent evidence points toward stem-like phenotypes in cancer cells, promoted by cancer stem cells (CSCs), as the main culprit of cancer relapse, resistance (radiotherapy, hormone therapy, and/or chemotherapy) and metastasis. Many mechanisms have been proposed for CSC resistance, such as drug efflux through ABC transporters, overactivation of the DNA damage response (DDR), apoptosis evasion, prosurvival pathways activation, cell cycle promotion and/or cell metabolic alterations. Nonetheless, targeted therapy toward these specific CSC mechanisms is only partially effective to prevent or abolish resistance, suggesting underlying additional causes for CSC resilience. This article aims to provide an integrated picture of the MDR mechanisms that operate in CSCs' behavior and to propose a novel model of tumor evolution during chemotherapy. Targeting the pathways mentioned here might hold promise and reveal new strategies for future clinical therapeutic approaches.
Collapse
Affiliation(s)
- Y Garcia-Mayea
- Biomedical Research in Cancer Stem Cells, Vall d´Hebron Research Institute (VHIR), Passeig Vall d´Hebron 119-129, 08035 Barcelona, Spain
| | - C Mir
- Biomedical Research in Cancer Stem Cells, Vall d´Hebron Research Institute (VHIR), Passeig Vall d´Hebron 119-129, 08035 Barcelona, Spain
| | - F Masson
- Biomedical Research in Cancer Stem Cells, Vall d´Hebron Research Institute (VHIR), Passeig Vall d´Hebron 119-129, 08035 Barcelona, Spain
| | - R Paciucci
- Clinical Biochemistry Group, Vall d'Hebron Hospital and Vall d´Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d´Hebron 119-129, 08035 Barcelona, Spain
| | - M E LLeonart
- Biomedical Research in Cancer Stem Cells, Vall d´Hebron Research Institute (VHIR), Passeig Vall d´Hebron 119-129, 08035 Barcelona, Spain; Spanish Biomedical Research Network Centre in Oncology, CIBERONC, Spain.
| |
Collapse
|
10
|
Garcia-Mayea Y, Mir C, Muñoz L, Benavente S, Castellvi J, Temprana J, Maggio V, Lorente J, Paciucci R, LLeonart ME. Autophagy inhibition as a promising therapeutic target for laryngeal cancer. Carcinogenesis 2019; 40:1525-1534. [PMID: 31050705 DOI: 10.1093/carcin/bgz080] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 04/25/2019] [Indexed: 12/16/2022] Open
Abstract
To identify the putative relevance of autophagy in laryngeal cancer, we performed an immunohistochemistry study to analyze the expression of the proteins involved in this process, namely, LC3, ATG5 and p62/SQSTM1. Additionally, Prostate tumor-overexpressed gene 1 protein (PTOV1) was included due to its potential relevance in laryngeal cancer. Moreover, as cancer resistance might involve autophagy in some circumstances, we studied the intrinsic drug resistance capacity of primary tumor cultures derived from 13 laryngeal cancer biopsies and their expression levels of LC3, ATG5, p62 and PTOV1. Overall, our results suggest that (i) cytoplasmic p62 and PTOV1 can be considered prognostic markers in laryngeal cancer, (ii) the acquisition of resistance seems to be related to PTOV1 and autophagy-related protein overexpression, (iii) by increasing autophagy, PTOV1 might contribute to resistance in this model and (iv) the expression of autophagy-related proteins could classify a subgroup of laryngeal cancer patients who will benefit from a therapy based upon autophagy inhibition. Our study suggests that autophagy inhibition with hydroxychloroquine could be a promising strategy for laryngeal cancer patients, particularly those patients with high resistance to the CDDP treatment that in addition have autophagy upregulation.
Collapse
Affiliation(s)
- Yoelsis Garcia-Mayea
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d´Hebron, Barcelona, Spain
| | - Cristina Mir
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d´Hebron, Barcelona, Spain
| | - Lisandra Muñoz
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d´Hebron, Barcelona, Spain
| | - Sergi Benavente
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d´Hebron, Barcelona, Spain
| | - Josep Castellvi
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d´Hebron, Barcelona, Spain
| | - Jordi Temprana
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d´Hebron, Barcelona, Spain
| | - Valentina Maggio
- Otorhinolaryngology Department, Hospital Vall d´Hebron (HUVH), Passeig Vall d´Hebron, Barcelona, Spain
| | - Juan Lorente
- Biomedical Research Group of Urology, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d´Hebron, Barcelona, Spain
| | - Rosanna Paciucci
- Otorhinolaryngology Department, Hospital Vall d´Hebron (HUVH), Passeig Vall d´Hebron, Barcelona, Spain
| | - Matilde E LLeonart
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d´Hebron, Barcelona, Spain.,Spanish Biomedical Research Network Centre in Oncology, CIBERONC, Madrid, Spain
| |
Collapse
|
11
|
Caltabiano R, Castrogiovanni P, Barbagallo I, Ravalli S, Szychlinska MA, Favilla V, Schiavo L, Imbesi R, Musumeci G, Di Rosa M. Identification of Novel Markers of Prostate Cancer Progression, Potentially Modulated by Vitamin D. APPLIED SCIENCES 2019; 9:4923. [DOI: 10.3390/app9224923] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Prostate cancer (PCa) is one of the most common cancers in men. The main risk factors associated with the disease include older age, family history of the disease, smoking, alcohol and race. Vitamin D is a pleiotropic hormone whose low levels are associated with several diseases and a risk of cancer. Here, we undertook microarray analysis in order to identify the genes involved in PCa. We analyzed three PCa microarray datasets, overlapped all genes significantly up-regulated, and subsequently intersected the common genes identified with the down-regulated genes transcriptome of LNCaP cells treated with 1α,25(OH)2D3, in order to identify the common genes involved in PCa and potentially modulated by Vitamin D. The analysis yielded 43 genes potentially involved in PCa and significantly modulated by Vitamin D. Noteworthy, our analysis showed that six genes (PRSS8, SOX4, SMYD2, MCCC2, CCNG2 and CD2AP) were significantly modulated. A Pearson correlation analysis showed that five genes out of six (SOX4 was independent), were statistically correlated with the gene expression levels of KLK3, and with the tumor percentage. From the outcome of our investigation, it is possible to conclude that the genes identified by our analysis are associated with the PCa and are potentially modulated by the Vitamin D.
Collapse
Affiliation(s)
- Rosario Caltabiano
- Department G.F. Ingrassia, Section of Anatomic Pathology, University of Catania, 95123 Catania, Italy
| | - Paola Castrogiovanni
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Ignazio Barbagallo
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Silvia Ravalli
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Marta Anna Szychlinska
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Vincenzo Favilla
- Department of Surgery, Urology Section, University of Catania, 95123 Catania, Italy
| | - Luigi Schiavo
- Obesity Unit, CETAC Medical and Research Center, 81100 Caserta, Italy
| | - Rosa Imbesi
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, 95123 Catania, Italy
| |
Collapse
|
12
|
Docetaxel Combined with Thymoquinone Induces Apoptosis in Prostate Cancer Cells via Inhibition of the PI3K/AKT Signaling Pathway. Cancers (Basel) 2019; 11:cancers11091390. [PMID: 31540423 PMCID: PMC6770702 DOI: 10.3390/cancers11091390] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/09/2019] [Accepted: 09/16/2019] [Indexed: 02/06/2023] Open
Abstract
Toxicity and the development of resistance by cancer cells are impediments for docetaxel (DTX), a primary drug for treating prostate cancer (PCa). Since the combination of DTX with natural compounds can increase its effectiveness by reducing its toxic concentrations, we evaluated a combination of thymoquinone (TQ) with DTX and determined its cytotoxicity against PCa cells (DU145 and C4-2B). This combination, in a concentration-dependent manner, resulted in synergistic cytotoxicity and apoptosis in comparison to either DTX or TQ alone. In addition, inhibition of cell survival pathways by PI3K/AKT inhibitors conferred sensitivity of DU145 and C4-2B cells to the combination as compared to the individual drugs. Moreover, the combined drugs (DTX+TQ) with inhibitors of PI3K/AKT increased the expression of pro-apoptotic markers (BAX and BID) along with caspase-3, PARP and decreased expression of the anti-apoptotic marker, BCL-XL. These data show that, for PCa cells, the cytotoxic effect of the DTX and TQ combination correlates with a block of the PI3K/AKT signaling pathway. These findings indicate that the combination of DTX and TQ, by blocking of the PI3K/AKT pathway, will improve the survival rate and quality of life of PCa patients.
Collapse
|
13
|
Wu Z, Liu Z, Jiang X, Mi Z, Meng M, Wang H, Zhao J, Zheng B, Yuan Z. Depleting PTOV1 sensitizes non-small cell lung cancer cells to chemotherapy through attenuating cancer stem cell traits. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:341. [PMID: 31387622 PMCID: PMC6685258 DOI: 10.1186/s13046-019-1349-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/29/2019] [Indexed: 01/06/2023]
Abstract
Background Prostate tumor over expressed gene 1 (PTOV1) has been reported as an oncogene in several human cancers. However, the clinical significance and biological role of PTOV1 remain elusive in non-small cell lung cancer (NSCLC). Methods The Cancer Genome Atlas (TCGA) data and NCBI/GEO data mining, western blotting analysis and immunohistochemistry were employed to characterize the expression of PTOV1 in NSCLC cell lines and tissues. The clinical significance of PTOV1 in NSCLC was studied by immunohistochemistry statistical analysis and Kaplan–Meier Plotter database mining. A series of in-vivo and in-vitro assays, including colony formation, CCK-8 assays, flow cytometry, wound healing, trans-well assay, tumor sphere formation, quantitative PCR, gene set enrichment analysis (GSEA), immunostaining and xenografts tumor model, were performed to demonstrate the effects of PTOV1 on chemosensitivity of NSCLC cells and the underlying mechanisms. Results PTOV1 is overexpressed in NSCLC cell lines and tissues. High PTOV1 level indicates a short survival time and poor response to chemotherapy of NSCLC patients. Depleting PTOV1 increased sensitivity to chemotherapy drugs cisplatin and docetaxel by increasing cell apoptosis, inhibiting cell migration and invasion. Our study verified that depleting PTOV1 attenuated cancer stem cell traits through impairing DKK1/β-catenin signaling to enhance chemosensitivity of NSCLC cells. Conclusion These results suggest that PTOV1 plays an important role in the development and progression of human NSCLC and PTOV1 may serve as a therapeutic target for NSCLC patients. Electronic supplementary material The online version of this article (10.1186/s13046-019-1349-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhiqiang Wu
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Zhuang Liu
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Xiangli Jiang
- Department of Thoracic Medical Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, China
| | - Zeyun Mi
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Tianjin Medical University, Tianjin, 300070, China
| | - Maobin Meng
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Hui Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Jinlin Zhao
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Boyu Zheng
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Zhiyong Yuan
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| |
Collapse
|
14
|
A novel DNA-binding motif in prostate tumor overexpressed-1 (PTOV1) required for the expression of ALDH1A1 and CCNG2 in cancer cells. Cancer Lett 2019; 452:158-167. [PMID: 30922918 DOI: 10.1016/j.canlet.2019.03.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/01/2019] [Accepted: 03/08/2019] [Indexed: 12/26/2022]
Abstract
PTOV1 is a transcription and translation regulator and a promoter of cancer progression. Its overexpression in prostate cancer induces transcription of drug resistance and self-renewal genes, and docetaxel resistance. Here we studied PTOV1 ability to directly activate the transcription of ALDH1A1 and CCNG2 by binding to specific promoter sequences. Chromatin immunoprecipitation and electrophoretic mobility shift assays identified a DNA-binding motif inside the PTOV-A domain with similarities to known AT-hooks that specifically interacts with ALDH1A1 and CCNG2 promoters. Mutation of this AT-hook-like sequence significantly decreased the expression of ALDH1A1 and CCNG2 promoted by PTOV1. Immunohistochemistry revealed the association of PTOV1 with mitotic chromosomes in high grade prostate, colon, bladder, and breast carcinomas. Overexpression of PTOV1, ALDH1A1, and CCNG2 significantly correlated with poor prognosis in prostate carcinomas and with shorter relapse-free survival in colon carcinoma. The previously described interaction with translation complexes and its direct binding to ALDH1A1 and CCNG2 promoters found here reveal the PTOV1 capacity to modulate the expression of critical genes at multiple levels in aggressive cancers. Remarkably, the AT-hook motifs in PTOV1 open possibilities for selective targeting its nuclear and/or cytoplasmic activities.
Collapse
|
15
|
Machioka K, Izumi K, Kadono Y, Iwamoto H, Naito R, Makino T, Kadomoto S, Natsagdorj A, Keller ET, Zhang J, Mizokami A. Establishment and characterization of two cabazitaxel-resistant prostate cancer cell lines. Oncotarget 2018; 9:16185-16196. [PMID: 29662635 PMCID: PMC5882326 DOI: 10.18632/oncotarget.24609] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/26/2018] [Indexed: 12/21/2022] Open
Abstract
Once castration-resistant prostate cancer (CRPC) become resistant for cabazitaxel treatment, the patients are obliged to best supportive care. Therefore, the elucidation of the mechanism of the cabazitaxel-resistance and the conquest are important themes to improve the prognosis of the patients. Then we tried to establish cabazitaxel-resistant CRPC cell lines and characterized them. We established two cabazitaxel-resistant cell lines, PC-3-TxR/CxR and DU145-TxR/CxR from PC-3-TxR and DU145-TxR cell lines previously we established. PC-3-TxR/CxR and DU145-TxR/CxR cells became resistant for cabazitaxel by 11.8-fold and 4.4-fold, respectively. The TxR/CxR cells showed cabazitaxel-resistant using SCID mice in vivo. Although expression of multi-drug resistance gene 1 (MDR1) was up-regulated in DU145-TxR compared with DU145 cells, it was not up-regulated in DU145-TxR/CxR cells any more. In contrast, expression of MDR1 gene was up-regulated in PC-3-TxR compared with PC-3 cells and it was further up-regulated in PC-3-TxR/CxR compared with PC-3-TxR cells. Comparison of cDNA microarray between PC-3-TxR and PC-3-TxR/CxR cells or between DU145-TxR and DU145-TxR/CxR cells revealed that many genes were up-regulated or down-regulated. Finally, knockdown of MDR1 recovered the sensitivity to cabazitaxel not only in PC-3-TxR/CxR cells but also DU145-TxR/CxR cells. Together, regulation of MDR1 gene is important for conquest of the cabazitaxel-resistance.
Collapse
Affiliation(s)
- Kazuaki Machioka
- Department of Integrative Cancer Therapy and Urology, Graduate School of Medical Science, Kanazawa University, Kanazawa, 920-8640, Japan
| | - Kouji Izumi
- Department of Integrative Cancer Therapy and Urology, Graduate School of Medical Science, Kanazawa University, Kanazawa, 920-8640, Japan
| | - Yoshifumi Kadono
- Department of Integrative Cancer Therapy and Urology, Graduate School of Medical Science, Kanazawa University, Kanazawa, 920-8640, Japan
| | - Hiroaki Iwamoto
- Department of Integrative Cancer Therapy and Urology, Graduate School of Medical Science, Kanazawa University, Kanazawa, 920-8640, Japan
| | - Renato Naito
- Department of Integrative Cancer Therapy and Urology, Graduate School of Medical Science, Kanazawa University, Kanazawa, 920-8640, Japan
| | - Tomoyuki Makino
- Department of Integrative Cancer Therapy and Urology, Graduate School of Medical Science, Kanazawa University, Kanazawa, 920-8640, Japan
| | - Suguru Kadomoto
- Department of Integrative Cancer Therapy and Urology, Graduate School of Medical Science, Kanazawa University, Kanazawa, 920-8640, Japan
| | - Ariunbold Natsagdorj
- Department of Integrative Cancer Therapy and Urology, Graduate School of Medical Science, Kanazawa University, Kanazawa, 920-8640, Japan
| | - Evan T Keller
- Department of Urology, School of Medicine and Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jian Zhang
- Center for Translational Medicine, Guangxi Medical University, Medical Science Research Building, Nanning, Guangxi, 530021, P. R. China
| | - Atsushi Mizokami
- Department of Integrative Cancer Therapy and Urology, Graduate School of Medical Science, Kanazawa University, Kanazawa, 920-8640, Japan
| |
Collapse
|