1
|
Emir SM, Karaoğlan BS, Kaşmer R, Şirin HB, Sarıyıldız B, Karakaş N. Hunting glioblastoma recurrence: glioma stem cells as retrospective targets. Am J Physiol Cell Physiol 2025; 328:C1045-C1061. [PMID: 39818986 DOI: 10.1152/ajpcell.00344.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/11/2024] [Accepted: 01/07/2025] [Indexed: 01/19/2025]
Abstract
Glioblastoma (GBM) remains one of the most aggressive and treatment-resistant brain malignancies in adults. Standard approaches, including surgical resection followed by adjuvant radio- and chemotherapy with temozolomide (TMZ), provide only transient control, as GBM frequently recurs due to its infiltrative nature and the presence of therapy-resistant subpopulations such as glioma stem cells (GSCs). GSCs, with their quiescent state and robust resistance mechanisms, evade conventional therapies, contributing significantly to relapse. Consequently, current treatment methods for GBM face significant limitations in effectively targeting GSCs. In this review, we emphasize the relationship between GBM recurrence and GSCs, discuss the current limitations, and provide future perspectives to overwhelm the challenges associated with targeting GSCs. Eliminating GSCs may suppress recurrence, achieve durable responses, and improve therapeutic outcomes for patients with GBM.
Collapse
Affiliation(s)
- Sümeyra Mengüç Emir
- Cancer Research Center, Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, Istanbul, Türkiye
| | - Birnur Sinem Karaoğlan
- Cancer Research Center, Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, Istanbul, Türkiye
| | - Ramazan Kaşmer
- Cancer Research Center, Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, Istanbul, Türkiye
| | - Hilal Buse Şirin
- Cancer Research Center, Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, Istanbul, Türkiye
| | - Batuhan Sarıyıldız
- Cancer Research Center, Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, Istanbul, Türkiye
| | - Nihal Karakaş
- Cancer Research Center, Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, Istanbul, Türkiye
- Department of Medical Biology, International School of Medicine, İstanbul Medipol University, Istanbul, Türkiye
| |
Collapse
|
2
|
Editorial Note: Global Gene Expression Analysis of Canine Osteosarcoma Stem Cells Reveals a Novel Role for COX-2 in Tumour Initiation. PLoS One 2024; 19:e0308114. [PMID: 39146314 PMCID: PMC11326644 DOI: 10.1371/journal.pone.0308114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024] Open
|
3
|
Obrador E, Moreno-Murciano P, Oriol-Caballo M, López-Blanch R, Pineda B, Gutiérrez-Arroyo JL, Loras A, Gonzalez-Bonet LG, Martinez-Cadenas C, Estrela JM, Marqués-Torrejón MÁ. Glioblastoma Therapy: Past, Present and Future. Int J Mol Sci 2024; 25:2529. [PMID: 38473776 PMCID: PMC10931797 DOI: 10.3390/ijms25052529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Glioblastoma (GB) stands out as the most prevalent and lethal form of brain cancer. Although great efforts have been made by clinicians and researchers, no significant improvement in survival has been achieved since the Stupp protocol became the standard of care (SOC) in 2005. Despite multimodality treatments, recurrence is almost universal with survival rates under 2 years after diagnosis. Here, we discuss the recent progress in our understanding of GB pathophysiology, in particular, the importance of glioma stem cells (GSCs), the tumor microenvironment conditions, and epigenetic mechanisms involved in GB growth, aggressiveness and recurrence. The discussion on therapeutic strategies first covers the SOC treatment and targeted therapies that have been shown to interfere with different signaling pathways (pRB/CDK4/RB1/P16ink4, TP53/MDM2/P14arf, PI3k/Akt-PTEN, RAS/RAF/MEK, PARP) involved in GB tumorigenesis, pathophysiology, and treatment resistance acquisition. Below, we analyze several immunotherapeutic approaches (i.e., checkpoint inhibitors, vaccines, CAR-modified NK or T cells, oncolytic virotherapy) that have been used in an attempt to enhance the immune response against GB, and thereby avoid recidivism or increase survival of GB patients. Finally, we present treatment attempts made using nanotherapies (nanometric structures having active anti-GB agents such as antibodies, chemotherapeutic/anti-angiogenic drugs or sensitizers, radionuclides, and molecules that target GB cellular receptors or open the blood-brain barrier) and non-ionizing energies (laser interstitial thermal therapy, high/low intensity focused ultrasounds, photodynamic/sonodynamic therapies and electroporation). The aim of this review is to discuss the advances and limitations of the current therapies and to present novel approaches that are under development or following clinical trials.
Collapse
Affiliation(s)
- Elena Obrador
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Paz Moreno-Murciano
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
| | - María Oriol-Caballo
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Rafael López-Blanch
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Begoña Pineda
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Julia Lara Gutiérrez-Arroyo
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Alba Loras
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Luis G. Gonzalez-Bonet
- Department of Neurosurgery, Castellon General University Hospital, 12004 Castellon, Spain;
| | - Conrado Martinez-Cadenas
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - José M. Estrela
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | | |
Collapse
|
4
|
Shikalov A, Koman I, Kogan NM. Targeted Glioma Therapy-Clinical Trials and Future Directions. Pharmaceutics 2024; 16:100. [PMID: 38258110 PMCID: PMC10820492 DOI: 10.3390/pharmaceutics16010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most common type of glioma, with a median survival of 14.6 months post-diagnosis. Understanding the molecular profile of such tumors allowed the development of specific targeted therapies toward GBM, with a major role attributed to tyrosine kinase receptor inhibitors and immune checkpoint inhibitors. Targeted therapeutics are drugs that work by specific binding to GBM-specific or overexpressed markers on the tumor cellular surface and therefore contain a recognition moiety linked to a cytotoxic agent, which produces an antiproliferative effect. In this review, we have summarized the available information on the targeted therapeutics used in clinical trials of GBM and summarized current obstacles and advances in targeted therapy concerning specific targets present in GBM tumor cells, outlined efficacy endpoints for major classes of investigational drugs, and discussed promising strategies towards an increase in drug efficacy in GBM.
Collapse
Affiliation(s)
| | | | - Natalya M. Kogan
- Department of Molecular Biology, Institute of Personalized and Translational Medicine, Ariel University, Ariel 40700, Israel; (A.S.); (I.K.)
| |
Collapse
|
5
|
Yang Z, Zuo Q, Liu R, Wu H, Xiong L, Jia J, Xiang Z. Neoadjuvant chemotherapy followed by concurrent chemoradiotherapy with or without nimotuzumab in the treatment of locally advanced nasopharyngeal carcinoma: a retrospective study. BMC Cancer 2023; 23:1140. [PMID: 37996813 PMCID: PMC10668510 DOI: 10.1186/s12885-023-11608-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023] Open
Abstract
PURPOSE We aimed to investigate the efficacy and side effects of concurrent chemoradiotherapy, with or without nimotuzumab, for the treatment of locally advanced nasopharyngeal carcinoma after neoadjuvant chemotherapy. METHODS This study retrospectively enrolled 109 patients with NPC from our hospital from July 2019 to May 2021.All patients were treated with docetaxel, cisplatin, and fluorouracil(TPF) neoadjuvant chemotherapy for 2 cycles, and concurrent chemoradiotherapy was performed 2 weeks after chemotherapy. According to whether nimotuzumab was added in concurrent chemoradiotherapy, they were divided into the nimotuzumab group and the control group, with 52 cases in the nimotuzumab group and 57 cases in the control group.The efficacy and adverse reactions of the two groups were retrospectively analyzed. RESULTS The objective remission and complete remission rates in the nimotuzumab and control groups were 100% vs 98.2% (p = 1.000), and 92.3% vs 78.9% (p = 0.049), respectively. The 3-year distant metastasis-free survival of the nimotuzumab and control groups was 91.6% and 77.3% (p = 0.047), respectively.The 3-year progression-free survival, locoregional relapse-free survival, and overall survival of the nimotuzumab and control groups were 87.6% vs 75.5% (p = 0.110), 90.5% vs 86.9% (p = 0.566), and 94.5% vs 87.1% (p = 0.295), respectively. In the nimotuzumab group, subgroup analysis showed that patients aged < 60 years (hazard ratio [HR] = 0.350, 95% confidence interval [CI]: 0.131-0.934, p = 0.036) and those with a neutrophil-to-lymphocyte ratio (neutrophil/lymphocyte ratio) ≤ 4 (HR = 0.365, 95% CI: 0.144-0.923, p = 0.033) achieved a better result. Additionally, multivariate analysis demonstrated that neutrophil/lymphocyte ratio was an independent risk factor for disease progression (HR = 7.485, p = 0.012) and distant metastasis (HR = 17.540, p = 0.009).No grade 4 adverse reactions were observed in either group. Grade 3 oral mucosal reactions, as well as pharyngeal and esophageal reactions were slightly higher in the nimotuzumab group than in the control group, but the difference was not statistically significant. No significant differences were observed in the incidence of adverse reactions such as leukopenia, HB reduction, thrombocytopenia between the two groups (P > 0.05). CONCLUSION The concurrent chemoradiotherapy plus nimotuzumab after neoadjuvant chemotherapy for locally advanced nasopharyngeal carcinoma achieved a higher complete remission rate and significantly improved distant metastasis-free survival compared with concurrent chemoradiotherapy alone. Additionally, an increasing trend was observed in progression-free survival, and the incidence of side effects was similar in both groups.
Collapse
Affiliation(s)
- Zhi Yang
- Department of Oncology, People's Hospital of Xiangxi Tujia and Miao Autonomous Prefecture, First Affiliated Hospital of Jishou University, Jishou, 416000, Hunan, China
| | - Quan Zuo
- Department of Oncology, People's Hospital of Xiangxi Tujia and Miao Autonomous Prefecture, First Affiliated Hospital of Jishou University, Jishou, 416000, Hunan, China
| | - Rong Liu
- Department of Oncology, People's Hospital of Xiangxi Tujia and Miao Autonomous Prefecture, First Affiliated Hospital of Jishou University, Jishou, 416000, Hunan, China
| | - Hui Wu
- Department of Oncology, People's Hospital of Xiangxi Tujia and Miao Autonomous Prefecture, First Affiliated Hospital of Jishou University, Jishou, 416000, Hunan, China
| | - Li Xiong
- Department of Oncology, People's Hospital of Xiangxi Tujia and Miao Autonomous Prefecture, First Affiliated Hospital of Jishou University, Jishou, 416000, Hunan, China
| | - Jieqi Jia
- Department of Otolaryngology, People's Hospital of Xiangxi Tujia and Miao Autonomous Prefecture, First Affiliated Hospital of Jishou University, Jishou, 416000, Hunan, China.
| | - Zhibi Xiang
- Department of Oncology, People's Hospital of Xiangxi Tujia and Miao Autonomous Prefecture, First Affiliated Hospital of Jishou University, Jishou, 416000, Hunan, China.
| |
Collapse
|
6
|
José-López R. Chemotherapy for the treatment of intracranial glioma in dogs. Front Vet Sci 2023; 10:1273122. [PMID: 38026627 PMCID: PMC10643662 DOI: 10.3389/fvets.2023.1273122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
Gliomas are the second most common primary brain tumor in dogs and although they are associated with a poor prognosis, limited data are available relating to the efficacy of standard therapeutic options such as surgery, radiation and chemotherapy. Additionally, canine glioma is gaining relevance as a naturally occurring animal model that recapitulates human disease with fidelity. There is an intense comparative research drive to test new therapeutic approaches in dogs and assess if results translate efficiently into human clinical trials to improve the poor outcomes associated with the current standard-of-care. However, the paucity of data and controversy around most appropriate treatment for intracranial gliomas in dogs make comparisons among modalities troublesome. To further inform therapeutic decision-making, client discussion, and future studies evaluating treatment responses, the outcomes of 127 dogs with intracranial glioma, either presumed (n = 49) or histologically confirmed (n = 78), that received chemotherapy as leading or adjuvant treatment are reviewed here. This review highlights the status of current chemotherapeutic approaches to intracranial gliomas in dogs, most notably temozolomide and lomustine; areas of novel treatment currently in development, and difficulties to consensuate and compare different study observations. Finally, suggestions are made to facilitate evidence-based research in the field of canine glioma therapeutics.
Collapse
Affiliation(s)
- Roberto José-López
- Hamilton Specialist Referrals – IVC Evidensia, High Wycombe, United Kingdom
| |
Collapse
|
7
|
Nasrolahi A, Azizidoost S, Radoszkiewicz K, Najafi S, Ghaedrahmati F, Anbiyaee O, Khoshnam SE, Farzaneh M, Uddin S. Signaling pathways governing glioma cancer stem cells behavior. Cell Signal 2023; 101:110493. [PMID: 36228964 DOI: 10.1016/j.cellsig.2022.110493] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/30/2022]
Abstract
Glioma is the most common malignant brain tumor that develops in the glial tissue. Several studies have identified that glioma cancer stem cells (GCSCs) play important roles in tumor-initiating features in malignant gliomas. GCSCs are a small population in the brain that presents an essential role in the metastasis of glioma cells to other organs. These cells can self-renew and differentiate, which are thought to be involved in the pathogenesis of glioma. Therefore, targeting GCSCs might be a novel strategy for the treatment of glioma. Accumulating evidence revealed that several signaling pathways, including Notch, TGF-β, Wnt, STAT3, AKT, and EGFR mediated GCSC growth, proliferation, migration, and invasion. Besides, non-coding RNAs (ncRNAs), including miRNAs, circular RNAs, and long ncRNAs have been found to play pivotal roles in the regulation of GCSC pathogenesis and drug resistance. Therefore, targeting these pathways could open a new avenue for glioma management. In this review, we summarized critical signaling pathways involved in the stimulation or prevention of GCSCs tumorigenesis and invasiveness.
Collapse
Affiliation(s)
- Ava Nasrolahi
- Infectious Ophthalmologic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Klaudia Radoszkiewicz
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, Poland
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Omid Anbiyaee
- Cardiovascular Research Center, Nemazi Hospital, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| |
Collapse
|
8
|
EGFR Mutation in Nasopharyngeal Carcinoma. JOURNAL OF MOLECULAR PATHOLOGY 2022. [DOI: 10.3390/jmp3040017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Nasopharyngeal carcinoma is a malignant tumor of the nasopharynx. However, while radiotherapy is the primary choice of treatment, the treatment may fail due to distant metastasis in most patients at an advanced stage. Treatment agents against some mutations have led to the development of personalized treatment regimens. EGFR is one of the most studied molecules and has played a role in the development of a large number of cancer types. We aimed to demonstrate the EGFR mutation status in nasopharyngeal carcinomas. Twenty-six nasopharyngeal carcinomas were included in the study. EGFR mutation analysis was applied to the cases by the real-time PCR method. The results were evaluated statistically. No EGFR mutation was detected in any of the cases. Although EGFR expression is frequently shown in nasopharyngeal carcinomas immunohistochemically, the same positivity was not shown in genetic analysis. This result shows that the use of anti-EGFR agents in nasopharyngeal carcinoma treatment will not be effective.
Collapse
|
9
|
Yuan JJ, Ding JW, Li JW, Hu RH, Gong D, Hu JL, Zhu KB, Liu Y, Ding YH, Wei JW, Zeng JL, Lu ZB, Yin WH, Ai SF, Zha GH, Zhang ZL, Zou R, Zeng L. Nimotuzumab plus induction chemotherapy followed by radiotherapy/concurrent chemoradiotherapy plus nimotuzumab for locally advanced nasopharyngeal carcinoma: protocol of a multicentre, open-label, single-arm, prospective phase II trial. BMJ Open 2022; 12:e051594. [PMID: 36008072 PMCID: PMC9422822 DOI: 10.1136/bmjopen-2021-051594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2022] Open
Abstract
UNLABELLED Epidermal growth factor receptor (EGFR) is a therapeutic target in nasopharyngeal carcinoma (NPC). The optimal combined modality of optimal combined modality of anti--EGFR monoclonal antibodies, induction chemotherapy (ICT), concurrent chemotherapy and radiotherapy for NPC remains poorly defined. None of previous studies have developed subsequent treatment strategies on the basis of stratification according to the efficacy following ICT plus anti-EGFR mAbs. This study aims to increase treatment intensity for patients with poor efficacy of ICT and reduce treatment toxicity for patients with favourable efficacy of ICT by assessing whether the efficacy of this treatment regimen is non-inferior to ICT plus concurrent chemoradiotherapy (historic controls). INTRODUCTION METHODS AND ANALYSIS: Pathology-confirmed WHO type II/III NPC patients at clinical stage III-IVA (eighth American Joint Committee on Cancer/Union for International Cancer Control staging system) will be included in the study. They will receive ICT plus nimotuzumab (NTZ), followed by radiotherapy plus NTZ or concurrent chemoradiotherapy plus NTZ (stratified based on the efficacy of ICT plus NTZ). The primary endpoint is 3-year failure-free survival rate; while the secondary endpoints are 3-year overall survival rate, distant metastasis-free survival rate and locoregional recurrence-free survival rate, and short-term remission rate of tumour and treatment toxicity. ETHICS AND DISSEMINATION The study protocol has been approved by the Ethics Committee of the Second Affiliated Hospital of Nanchang University. Our findings will be disseminated in a peer-reviewed journal. Implementation strategies are in place to ensure privacy and confidentiality of participants. TRIAL REGISTRATION NUMBER ChiCTR2000041139.
Collapse
Affiliation(s)
- Jing-Jing Yuan
- Department Of Oncology, Nanchang University Second Affiliated Hospital, Nanchang, China
- The First Clinical Medical College, Nanchang University, Nanchang, China
| | - Jian-Wu Ding
- Department Of Oncology, Nanchang University Second Affiliated Hospital, Nanchang, China
- Jiangxi Key Laboratory of Clinical Translational Cancer Research, Nanchang, China
| | - Jin-Wei Li
- Department of Radiotherapy, Ganzhou Cancer Hospital, Ganzhou, China
| | - Rong-Huan Hu
- Department Of Oncology, Nanchang University Second Affiliated Hospital, Nanchang, China
- Jiangxi Key Laboratory of Clinical Translational Cancer Research, Nanchang, China
| | - Dan Gong
- Department Of Oncology, Nanchang University Second Affiliated Hospital, Nanchang, China
- Jiangxi Key Laboratory of Clinical Translational Cancer Research, Nanchang, China
| | - Jia-Li Hu
- Department Of Oncology, Nanchang University Second Affiliated Hospital, Nanchang, China
- Jiangxi Key Laboratory of Clinical Translational Cancer Research, Nanchang, China
| | - Kai-Bin Zhu
- Department Of Oncology, Nanchang University Second Affiliated Hospital, Nanchang, China
- Jiangxi Key Laboratory of Clinical Translational Cancer Research, Nanchang, China
| | - Yan Liu
- Department Of Oncology, Nanchang University Second Affiliated Hospital, Nanchang, China
- Jiangxi Key Laboratory of Clinical Translational Cancer Research, Nanchang, China
| | - Yu-Hai Ding
- Department of Oncology, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| | - Jia-Wang Wei
- Department of Oncology, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| | - Jian-Lun Zeng
- Department of Oncology, Pingxiang People's Hospital, Pingxiang, China
| | - Zhi-Bing Lu
- Department of Oncology, Pingxiang People's Hospital, Pingxiang, China
| | - Wei-Hua Yin
- Department of Oncology, Yichun People's Hospital, Yichun, China
| | - Su-Fen Ai
- Department of Oncology, Yichun People's Hospital, Yichun, China
| | - Guo-Hua Zha
- Department of Oncology, Fuzhou First People's Hospital, Fuzhou, China
| | - Zhi-Lin Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Nanchang University Second Affiliated Hospital, Nanchang, China
| | - Rui Zou
- Department Of Oncology, Nanchang University Second Affiliated Hospital, Nanchang, China
- The First Clinical Medical College, Nanchang University, Nanchang, China
| | - Lei Zeng
- Department Of Oncology, Nanchang University Second Affiliated Hospital, Nanchang, China
- Jiangxi Key Laboratory of Clinical Translational Cancer Research, Nanchang, China
| |
Collapse
|
10
|
Mechanical Properties of the Extracellular Environment of Human Brain Cells Drive the Effectiveness of Drugs in Fighting Central Nervous System Cancers. Brain Sci 2022; 12:brainsci12070927. [PMID: 35884733 PMCID: PMC9313046 DOI: 10.3390/brainsci12070927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 12/04/2022] Open
Abstract
The evaluation of nanomechanical properties of tissues in health and disease is of increasing interest to scientists. It has been confirmed that these properties, determined in part by the composition of the extracellular matrix, significantly affect tissue physiology and the biological behavior of cells, mainly in terms of their adhesion, mobility, or ability to mutate. Importantly, pathophysiological changes that determine disease development within the tissue usually result in significant changes in tissue mechanics that might potentially affect the drug efficacy, which is important from the perspective of development of new therapeutics, since most of the currently used in vitro experimental models for drug testing do not account for these properties. Here, we provide a summary of the current understanding of how the mechanical properties of brain tissue change in pathological conditions, and how the activity of the therapeutic agents is linked to this mechanical state.
Collapse
|
11
|
Tresch NS, Fuchs D, Morandi L, Tonon C, Rohrer Bley C, Nytko KJ. Temozolomide is additive with cytotoxic effect of irradiation in canine glioma cell lines. Vet Med Sci 2021; 7:2124-2134. [PMID: 34477324 PMCID: PMC8604143 DOI: 10.1002/vms3.620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Similar to human glioblastoma patients, glial tumours in dogs have high treatment resistance and a guarded prognosis. In human medicine, the addition of temozolomide to radiotherapy leads to a favourable outcome in vivo as well as a higher antiproliferative effect on tumour cells in vitro. OBJECTIVES The aim of the study was to determine the radio- and temozolomide-sensitivity of three canine glial tumour cell lines and to investigate a potential additive cytotoxic effect in combined treatment. Additionally, we wanted to detect the level of MGMT promoter methylation in these cell lines and to investigate a potential association between MGMT promoter methylation and treatment resistance. METHODS Cells were treated with various concentrations of temozolomide and/or irradiated with 4 and 8 Gy. Radiosensitization by temozolomide was evaluated using proliferation assay and clonogenic assay, and MGMT DNA methylation was investigated using bisulfite next-generation sequencing. RESULTS In all tested canine cell lines, clonogenicity was inhibited significantly in combined treatment compared to radiation alone. All canine glial cell lines tested in this study were found to have high methylation levels of MGMT promoter. CONCLUSIONS Hence, an additive effect of combined treatment in MGMT negative canine glial tumour cell lines in vitro was detected. This motivates to further investigate the association between treatment resistance and MGMT, such as MGMT promoter methylation status.
Collapse
Affiliation(s)
- Nina Simona Tresch
- Division of Radiation OncologyVetsuisse Faculty University of ZurichZurichSwitzerland
- Center for Clinical Studies at the Vetsuisse Faculty of the University of ZurichZurichSwitzerland
| | - Daniel Fuchs
- Division of Radiation OncologyVetsuisse Faculty University of ZurichZurichSwitzerland
- Center for Clinical Studies at the Vetsuisse Faculty of the University of ZurichZurichSwitzerland
| | - Luca Morandi
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBolognaItaly
- Functional and Molecular Neuroimaging UnitIRCCS Istituto delle Scienze Neurologiche di BolognaBolognaItaly
| | - Caterina Tonon
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBolognaItaly
- Functional and Molecular Neuroimaging UnitIRCCS Istituto delle Scienze Neurologiche di BolognaBolognaItaly
| | - Carla Rohrer Bley
- Division of Radiation OncologyVetsuisse Faculty University of ZurichZurichSwitzerland
- Center for Clinical Studies at the Vetsuisse Faculty of the University of ZurichZurichSwitzerland
| | - Katarzyna J. Nytko
- Division of Radiation OncologyVetsuisse Faculty University of ZurichZurichSwitzerland
- Center for Clinical Studies at the Vetsuisse Faculty of the University of ZurichZurichSwitzerland
| |
Collapse
|
12
|
Campos-Sandoval JA, Gómez-García MC, Santos-Jiménez JDL, Matés JM, Alonso FJ, Márquez J. Antioxidant responses related to temozolomide resistance in glioblastoma. Neurochem Int 2021; 149:105136. [PMID: 34274381 DOI: 10.1016/j.neuint.2021.105136] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/20/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
Glioblastoma remains one of the most challenging and devastating cancers, with only a very small proportion of patients achieving 5-year survival. The current standard of care consists of surgery, followed by radiation therapy with concurrent and maintenance chemotherapy with the alkylating agent temozolomide. To date, this drug is the only one that provides a significant survival benefit, albeit modest, as patients end up acquiring resistance to this drug. As a result, tumor progression and recurrence inevitably occur, leading to death. Several factors have been proposed to explain this resistance, including an upregulated antioxidant system to keep the elevated intracellular ROS levels, a hallmark of cancer cells, under control. In this review, we discuss the mechanisms of chemoresistance -including the important role of glioblastoma stem cells-with emphasis on antioxidant defenses and how agents that impair redox balance (i.e.: sulfasalazine, erastin, CB-839, withaferin, resveratrol, curcumin, chloroquine, and hydroxychloroquine) might be advantageous in combined therapies against this type of cancer.
Collapse
Affiliation(s)
- José A Campos-Sandoval
- Departamento de Biología Molecular y Bioquímica, Canceromics Lab. Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain, and Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain.
| | - María C Gómez-García
- Departamento de Biología Molecular y Bioquímica, Canceromics Lab. Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain, and Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Juan de Los Santos-Jiménez
- Departamento de Biología Molecular y Bioquímica, Canceromics Lab. Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain, and Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - José M Matés
- Departamento de Biología Molecular y Bioquímica, Canceromics Lab. Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain, and Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Francisco J Alonso
- Departamento de Biología Molecular y Bioquímica, Canceromics Lab. Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain, and Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Javier Márquez
- Departamento de Biología Molecular y Bioquímica, Canceromics Lab. Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain, and Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| |
Collapse
|
13
|
Liu X, Adorno-Cruz V, Chang YF, Jia Y, Kawaguchi M, Dashzeveg NK, Taftaf R, Ramos EK, Schuster EJ, El-Shennawy L, Patel D, Zhang Y, Cristofanilli M, Liu H. EGFR inhibition blocks cancer stem cell clustering and lung metastasis of triple negative breast cancer. Theranostics 2021; 11:6632-6643. [PMID: 33995681 PMCID: PMC8120216 DOI: 10.7150/thno.57706] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/21/2021] [Indexed: 02/07/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the most aggressive and metastatic breast cancer subtypes lacking targeted therapy. Our recent work demonstrated that circulating tumor cell (CTC) clusters and polyclonal metastasis of TNBC are driven by aggregation of CD44+ cancer stem cells (CSC) and associated with an unfavorable prognosis, such as low overall survival. However, there is no existing therapeutic that can specifically block CTC or CSC cluster formation. Methods: Using patient-derived xenograft (PDX) models, we established an ex vivo tumor cell clustering assay for a pilot screening of blockade antibodies. After identifying EGFR as a target candidate, we modulated the gene expression and inhibited its kinase activity to determine its functional importance in tumor cell clustering and therapeutic inhibition of lung metastasis. We also examined the molecular regulation network of EGFR and a potential connection to CSC marker CD44 and microRNAs, which regulate CTC clustering. Results: We report here that EGFR inhibition successfully blocks circulating CSC (cCSC) clustering and lung metastasis of TNBC. EGFR enhances CD44-mediated tumor cell aggregation and CD44 stabilizes EGFR. Importantly, blocking EGFR by a novel anti-EGFR monoclonal antibody (clone LA1) effectively blocked cell aggregation in vitro and reduced lung metastasis in vivo. Furthermore, our data demonstrated that the tumor suppressor microRNA-30c serves as another negative regulator of cCSC clustering and lung metastasis by targeting CD44 as well as its downstream effector EGFR. Conclusion: Our studies identify a novel anti-EGFR therapeutic strategy to inhibit cCSC aggregation and therefore abolish cCSC cluster-mediated metastasis of TNBC.
Collapse
|
14
|
Alves ALV, Gomes INF, Carloni AC, Rosa MN, da Silva LS, Evangelista AF, Reis RM, Silva VAO. Role of glioblastoma stem cells in cancer therapeutic resistance: a perspective on antineoplastic agents from natural sources and chemical derivatives. Stem Cell Res Ther 2021; 12:206. [PMID: 33762015 PMCID: PMC7992331 DOI: 10.1186/s13287-021-02231-x] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/15/2021] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma (GBM) is the highest-grade form of glioma, as well as one of the most aggressive types of cancer, exhibiting rapid cellular growth and highly invasive behavior. Despite significant advances in diagnosis and therapy in recent decades, the outcomes for high-grade gliomas (WHO grades III-IV) remain unfavorable, with a median overall survival time of 15–18 months. The concept of cancer stem cells (CSCs) has emerged and provided new insight into GBM resistance and management. CSCs can self-renew and initiate tumor growth and are also responsible for tumor cell heterogeneity and the induction of systemic immunosuppression. The idea that GBM resistance could be dependent on innate differences in the sensitivity of clonogenic glial stem cells (GSCs) to chemotherapeutic drugs/radiation prompted the scientific community to rethink the understanding of GBM growth and therapies directed at eliminating these cells or modulating their stemness. This review aims to describe major intrinsic and extrinsic mechanisms that mediate chemoradioresistant GSCs and therapies based on antineoplastic agents from natural sources, derivatives, and synthetics used alone or in synergistic combination with conventional treatment. We will also address ongoing clinical trials focused on these promising targets. Although the development of effective therapy for GBM remains a major challenge in molecular oncology, GSC knowledge can offer new directions for a promising future.
Collapse
Affiliation(s)
- Ana Laura V Alves
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Izabela N F Gomes
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Adriana C Carloni
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Marcela N Rosa
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Luciane S da Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Adriane F Evangelista
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's PT Government Associate Laboratory, 4806-909, Braga, Portugal
| | - Viviane Aline O Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil.
| |
Collapse
|
15
|
Piper K, DePledge L, Karsy M, Cobbs C. Glioma Stem Cells as Immunotherapeutic Targets: Advancements and Challenges. Front Oncol 2021; 11:615704. [PMID: 33718170 PMCID: PMC7945033 DOI: 10.3389/fonc.2021.615704] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/07/2021] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma is the most common and lethal primary brain malignancy. Despite major investments in research into glioblastoma biology and drug development, treatment remains limited and survival has not substantially improved beyond 1-2 years. Cancer stem cells (CSC) or glioma stem cells (GSC) refer to a population of tumor originating cells capable of self-renewal and differentiation. While controversial and challenging to study, evidence suggests that GCSs may result in glioblastoma tumor recurrence and resistance to treatment. Multiple treatment strategies have been suggested at targeting GCSs, including immunotherapy, posttranscriptional regulation, modulation of the tumor microenvironment, and epigenetic modulation. In this review, we discuss recent advances in glioblastoma treatment specifically focused on targeting of GCSs as well as their potential integration into current clinical pathways and trials.
Collapse
Affiliation(s)
- Keenan Piper
- Ben & Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, United States.,Sidney Kimmel Medical College, Philadelphia, PA, United States
| | - Lisa DePledge
- Ben & Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, United States.,University of Washington School of Medicine, Spokane, WA, United States
| | - Michael Karsy
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Charles Cobbs
- Ben & Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, United States
| |
Collapse
|
16
|
Abstract
The Epidermal Growth Factor Receptor (EGFR) is frequently expressed at elevated levels in different forms of cancer and expression often correlates positively with cancer progression and poor prognosis. Different mutant forms of this protein also contribute to cancer heterogeneity. A constitutively active form of EGFR, EGFRvIII is one of the most important variants. EGFR is responsible for the maintenance and functions of cancer stem cells (CSCs), including stemness, metabolism, immunomodulatory-activity, dormancy and therapy-resistance. EGFR regulates these pathways through several signaling cascades, and often cooperates with other RTKs to exert further control. Inhibitors of EGFR have been extensively studied and display some anticancer efficacy. However, CSCs can also acquire resistance to EGFR inhibitors making effective therapy even more difficult. To ameliorate this limitation of EGFR inhibitors when used as single agents, it may be of value to simultaneously combine multiple EGFR inhibitors or use EGFR inhibitors with regulators of other important cancer phenotype regulating molecules, such as STAT3, or involved in important processes such as DNA repair. These combinatorial approaches require further experimental confirmation, but if successful would expand and improve therapeutic outcomes employing EGFR inhibitors as one arm of the therapy.
Collapse
|
17
|
Hira VVV, Breznik B, Vittori M, Loncq de Jong A, Mlakar J, Oostra RJ, Khurshed M, Molenaar RJ, Lah T, Van Noorden CJF. Similarities Between Stem Cell Niches in Glioblastoma and Bone Marrow: Rays of Hope for Novel Treatment Strategies. J Histochem Cytochem 2019; 68:33-57. [PMID: 31566074 DOI: 10.1369/0022155419878416] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma is the most aggressive primary brain tumor. Slowly dividing and therapy-resistant glioblastoma stem cells (GSCs) reside in protective peri-arteriolar niches and are held responsible for glioblastoma recurrence. Recently, we showed similarities between GSC niches and hematopoietic stem cell (HSC) niches in bone marrow. Acute myeloid leukemia (AML) cells hijack HSC niches and are transformed into therapy-resistant leukemic stem cells (LSCs). Current clinical trials are focussed on removal of LSCs out of HSC niches to differentiate and to become sensitized to chemotherapy. In the present study, we elaborated further on these similarities by immunohistochemical analyses of 17 biomarkers in paraffin sections of human glioblastoma and human bone marrow. We found all 17 biomarkers to be expressed both in hypoxic peri-arteriolar HSC niches in bone marrow and hypoxic peri-arteriolar GSC niches in glioblastoma. Our findings implicate that GSC niches are being formed in glioblastoma as a copy of HSC niches in bone marrow. These similarities between HSC niches and GSC niches provide a theoretic basis for the development of novel strategies to force GSCs out of their niches, in a similar manner as in AML, to induce GSC differentiation and proliferation to render them more sensitive to anti-glioblastoma therapies.
Collapse
Affiliation(s)
- Vashendriya V V Hira
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia.,Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC at the Academic Medical Center, Amsterdam, The Netherlands
| | - Barbara Breznik
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Miloš Vittori
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Annique Loncq de Jong
- Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC at the Academic Medical Center, Amsterdam, The Netherlands
| | - Jernej Mlakar
- Institute of Pathology, Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Roelof-Jan Oostra
- Department of Medical Biology, Section Clinical Anatomy and Embryology, Amsterdam UMC at the Academic Medical Center, Amsterdam, The Netherlands
| | - Mohammed Khurshed
- Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC at the Academic Medical Center, Amsterdam, The Netherlands.,Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC at the Academic Medical Center, Amsterdam, The Netherlands
| | - Remco J Molenaar
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia.,Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC at the Academic Medical Center, Amsterdam, The Netherlands.,Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC at the Academic Medical Center, Amsterdam, The Netherlands
| | - Tamara Lah
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Cornelis J F Van Noorden
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia.,Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC at the Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
18
|
Zarco N, Norton E, Quiñones-Hinojosa A, Guerrero-Cázares H. Overlapping migratory mechanisms between neural progenitor cells and brain tumor stem cells. Cell Mol Life Sci 2019; 76:3553-3570. [PMID: 31101934 PMCID: PMC6698208 DOI: 10.1007/s00018-019-03149-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/16/2019] [Accepted: 05/13/2019] [Indexed: 01/18/2023]
Abstract
Neural stem cells present in the subventricular zone (SVZ), the largest neurogenic niche of the mammalian brain, are able to self-renew as well as generate neural progenitor cells (NPCs). NPCs are highly migratory and traverse the rostral migratory stream (RMS) to the olfactory bulb, where they terminally differentiate into mature interneurons. NPCs from the SVZ are some of the few cells in the CNS that migrate long distances during adulthood. The migratory process of NPCs is highly regulated by intracellular pathway activation and signaling from the surrounding microenvironment. It involves modulation of cell volume, cytoskeletal rearrangement, and isolation from compact extracellular matrix. In malignant brain tumors including high-grade gliomas, there are cells called brain tumor stem cells (BTSCs) with similar stem cell characteristics to NPCs but with uncontrolled cell proliferation and contribute to tumor initiation capacity, tumor progression, invasion, and tumor maintenance. These BTSCs are resistant to chemotherapy and radiotherapy, and their presence is believed to lead to tumor recurrence at distal sites from the original tumor location, principally due to their high migratory capacity. BTSCs are able to invade the brain parenchyma by utilizing many of the migratory mechanisms used by NPCs. However, they have an increased ability to infiltrate the tight brain parenchyma and utilize brain structures such as myelin tracts and blood vessels as migratory paths. In this article, we summarize recent findings on the mechanisms of cellular migration that overlap between NPCs and BTSCs. A better understanding of the intersection between NPCs and BTSCs will to provide a better comprehension of the BTSCs' invasive capacity and the molecular mechanisms that govern their migration and eventually lead to the development of new therapies to improve the prognosis of patients with malignant gliomas.
Collapse
Affiliation(s)
- Natanael Zarco
- Department of Neurologic Surgery, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Emily Norton
- Department of Neurologic Surgery, Mayo Clinic, Jacksonville, FL, 32224, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, 32224, USA
| | - Alfredo Quiñones-Hinojosa
- Department of Neurologic Surgery, Mayo Clinic, Jacksonville, FL, 32224, USA
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Hugo Guerrero-Cázares
- Department of Neurologic Surgery, Mayo Clinic, Jacksonville, FL, 32224, USA.
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA.
| |
Collapse
|
19
|
Khamwut A, Jevapatarakul D, Reamtong O, T-Thienprasert NP. In vitro evaluation of anti-epidermoid cancer activity of Acanthus ebracteatus protein hydrolysate and their effects on apoptosis and cellular proteins. Oncol Lett 2019; 18:3128-3136. [PMID: 31452790 PMCID: PMC6704294 DOI: 10.3892/ol.2019.10647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 05/29/2019] [Indexed: 01/20/2023] Open
Abstract
Acanthus ebracteatus Vahl. is commonly consumed with the aim of curing cancer, inflammatory conditions and skin diseases in traditional Thai medicine. It is known to contain various phytochemicals; however, very little is known about the effects of A. ebracteatus protein hydrolysate on cancer cells, including its molecular mechanisms. The present study therefore investigated the anti-cancer activity of A. ebracteatus protein hydrolysates against epidermoid cancer of the skin cell line A431. Their effects on the apoptosis pathway and expression of proteins involved in the regulation of apoptosis, cell proliferation or cell cycle were also investigated. Crude extract of protein hydrolysate, partially purified peptides and purified peptides extracted from the aerial part of A. ebracteatus were administered to the A431 cells. The cytotoxicity effects were then determined using an MTT assay. As a result, A. ebracteatus protein hydrolysate significantly inhibited A431 cells with half inhibitory concentration equals to 425.9 ng protein/ml. By performing Annexin V assay, the partially purified peptides of A. ebracteatus were demonstrated to enhance the apoptosis pathway. Furthermore, western blot analysis revealed that the partially purified peptides of A. ebracteatus increased protein expression levels of RelA (p65) and Cyclin D1 proteins. However, A. ebracteatus did not increase the expression levels of p53-serine 15 phosphorylation (Ser15P).
Collapse
Affiliation(s)
- Ariya Khamwut
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Damita Jevapatarakul
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | | |
Collapse
|
20
|
Brexpiprazole, a Serotonin-Dopamine Activity Modulator, Can Sensitize Glioma Stem Cells to Osimertinib, a Third-Generation EGFR-TKI, via Survivin Reduction. Cancers (Basel) 2019; 11:cancers11070947. [PMID: 31284441 PMCID: PMC6679129 DOI: 10.3390/cancers11070947] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/26/2019] [Accepted: 07/03/2019] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma is a primary brain tumor associated with a poor prognosis due to its high chemoresistance capacity. Cancer stem cells (CSCs) are one of the mechanisms of chemoresistance. Although therapy targeting CSCs is promising, strategies targeting CSCs remain unsuccessful. Abnormal activation of epidermal growth factor receptors (EGFRs) due to amplification, mutation, or both of the EGFR gene is common in glioblastomas. However, glioblastomas are resistant to EGFR tyrosine kinase inhibitors (EGFR-TKIs), and overcoming resistance is essential. Brexpiprazole is a new, safe serotonin-dopamine activity modulator used for schizophrenia and depression that was recently reported to have anti-CSC activity and function as a chemosensitizer. Here, we examined its chemosensitization effects on osimertinib, a third-generation EGFR-TKI with an excellent safety profile, in glioma stem cells (GSCs), which are CSCs of glioblastoma. Brexpiprazole treatment sensitized GSCs to osimertinib and reduced the expression of survivin, an antiapoptotic factor, and the pharmacological and genetic inhibition of survivin mimicked the effects of brexpiprazole. Moreover, co-treatment of brexpiprazole and osimertinib suppressed tumor growth more efficiently than either drug alone without notable toxicity in vivo. This suggests that the combination of brexpiprazole and osimertinib is a potential therapeutic strategy for glioblastoma by chemosensitizing GSCs through the downregulation of survivin expression.
Collapse
|
21
|
Was H, Krol SK, Rotili D, Mai A, Wojtas B, Kaminska B, Maleszewska M. Histone deacetylase inhibitors exert anti-tumor effects on human adherent and stem-like glioma cells. Clin Epigenetics 2019; 11:11. [PMID: 30654849 PMCID: PMC6337817 DOI: 10.1186/s13148-018-0598-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 12/17/2018] [Indexed: 12/29/2022] Open
Abstract
Background The diagnosis of glioblastoma (GBM), a most aggressive primary brain tumor with a median survival of 14.6 months, carries a dismal prognosis. GBMs are characterized by numerous genetic and epigenetic alterations, affecting patient survival and treatment response. Epigenetic mechanisms are deregulated in GBM as a result of aberrant expression/activity of epigenetic enzymes, including histone deacetylases (HDAC) which remove acetyl groups from histones regulating chromatin accessibility. Nevertheless, the impact of class/isoform-selective HDAC inhibitors (HDACi) on glioma cells, including glioma stem cells, had not been systematically determined. Results Comprehensive analysis of the public TCGA dataset revealed the increased expression of HDAC 1, 2, 3, and 7 in malignant gliomas. Knockdown of HDAC 1 and 2 in human GBM cells significantly decreased cell proliferation. We tested the activity of 2 new and 3 previously described HDACi with different class/isoform selectivity on human GBM cells. All tested compounds exerted antiproliferative properties on glioma cells. However, the HDACi 1 and 4 blocked proliferation of glioblastoma cells leading to G2/M growth arrest without affecting astrocyte survival. Moreover, 1 and 4 at low micromolar concentrations displayed cytotoxic and antiproliferative effects on sphere cultures enriched in glioma stem cells. Conclusions We identified two selective HDAC inhibitors that blocked proliferation of glioblastoma cells, but did not affect astrocyte survival. These new and highly effective inhibitors should be considered as promising candidates for further investigation in preclinical GBM models. Electronic supplementary material The online version of this article (10.1186/s13148-018-0598-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Halina Was
- Laboratory of Molecular Neurobiology, Neurobiology Center, The Nencki Institute of Experimental Biology, 3 Pasteur Str, 02-093, Warsaw, Poland.,Laboratory of Molecular Oncology, Military Institute of Medicine, 128 Szaserow Str, 04-141, Warsaw, Poland
| | - Sylwia K Krol
- Laboratory of Molecular Neurobiology, Neurobiology Center, The Nencki Institute of Experimental Biology, 3 Pasteur Str, 02-093, Warsaw, Poland
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Roma, P.le A. Moro 5, 00185, Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Roma, P.le A. Moro 5, 00185, Rome, Italy.,Pasteur Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, 00185, Rome, Italy
| | - Bartosz Wojtas
- Laboratory of Molecular Neurobiology, Neurobiology Center, The Nencki Institute of Experimental Biology, 3 Pasteur Str, 02-093, Warsaw, Poland
| | - Bozena Kaminska
- Laboratory of Molecular Neurobiology, Neurobiology Center, The Nencki Institute of Experimental Biology, 3 Pasteur Str, 02-093, Warsaw, Poland
| | - Marta Maleszewska
- Laboratory of Molecular Neurobiology, Neurobiology Center, The Nencki Institute of Experimental Biology, 3 Pasteur Str, 02-093, Warsaw, Poland.
| |
Collapse
|
22
|
Zhang P, Liu Y, Fu C, Wang C, Duan X, Zou W, Zhao T. Knockdown of long non-coding RNA PCAT1 in glioma stem cells promotes radiation sensitivity. Med Mol Morphol 2018; 52:114-122. [PMID: 30564876 DOI: 10.1007/s00795-018-0209-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/15/2018] [Indexed: 12/18/2022]
Abstract
This study aimed to investigate the function of glioma stem cells (GSCs) and the role of PCAT1. This study dissociated the differences between GSCs and glioma cells in terms of apoptosis rate and γH2AX positive cells levels after radiation. Microarray was carried out to detect that expressed PCAT1, and it was testified by RT-qPCR. After transfection, GSCs were used to investigate the influence of PCAT1 on radiation sensitivity. Sphere-formation capability was first examined. Cell apoptosis rate after radiation of 0 Gy or 6 Gy was analyzed by flow cytometry, and the level of γH2AX positive cells after 6 Gy radiation were compared. CCK8 assay was used to investigate the cell proliferation and RT-qPCR was used to examine miR-129-5p and HMGB1 expression. GSCs exhibited great capability in sphere formation and lower expression in apoptosis and γH2AX positive cells rates after 6 Gy radiation. PCAT1 had higher expression in GSCs. PCAT1 knockdown restrained the sphere-formation ability, increased the apoptosis rate and DNA damage under the treatment of radiation. Moreover, knockdown of PCAT1 inhibited the cell proliferation. In addition, silencing PCAT1 could increase the expression of miR-129-5p and decrease the expression of HMGB1. PCAT1 was overexpressed in GSCs and played a facilitating role in radiation resistance.
Collapse
Affiliation(s)
- Penghai Zhang
- Department of Neurosurgery, Heilongjiang Provincial Hospital, No. 82 Zhongshan Road, Xiangfang District, Harbin, 150030, Heilongjiang, China
| | - Yang Liu
- Department of Neurosurgery, Heilongjiang Provincial Hospital, No. 82 Zhongshan Road, Xiangfang District, Harbin, 150030, Heilongjiang, China
| | - Changyu Fu
- Department of Neurosurgery, The Fourth Affiliated Hospital, Harbin Medical University, No. 37 Yiyuan Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Ce Wang
- Department of Neurosurgery, The Fourth Affiliated Hospital, Harbin Medical University, No. 37 Yiyuan Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Xingbang Duan
- Department of Neurosurgery, The Fourth Affiliated Hospital, Harbin Medical University, No. 37 Yiyuan Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Wenting Zou
- Department of Neurosurgery, Heilongjiang Provincial Hospital, No. 82 Zhongshan Road, Xiangfang District, Harbin, 150030, Heilongjiang, China.
| | - Tianshu Zhao
- Department of Neurosurgery, The Fourth Affiliated Hospital, Harbin Medical University, No. 37 Yiyuan Street, Nangang District, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
23
|
Peng L, Liu ZL, Xu C, Tang LL, Liu X, Lin AH, Sun Y, Chen YP, Ma J. The Efficacy and Safety of Anti-epidermal Growth Factor Receptor Monoclonal Antibodies in Nasopharyngeal Carcinoma: Literature-based Meta-analyses. J Cancer 2018; 9:4510-4520. [PMID: 30519357 PMCID: PMC6277641 DOI: 10.7150/jca.27611] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 09/10/2018] [Indexed: 12/23/2022] Open
Abstract
Background: Anti-epidermal growth factor receptor monoclonal antibodies (anti-EGFR mAbs), such as cetuximab and nimotuzumab have been used in the treatment of nasopharyngeal carcinoma (NPC), yet their efficacy and safety are undetermined. Materials and Methods: We performed two meta-analyses based on systematic searches of PubMed, EMBASE, the Cochrane Library and SinoMed: comparison 1 (standard therapy plus mAbs vs. standard therapy) and comparison 2 (radiotherapy plus concurrent mAbs vs. concurrent chemoradiotherapy) to explore the treatment value of anti-EGFR mAbs in NPC. Primary outcomes were overall survival (OS) and disease-free survival (DFS); secondary outcomes, locoregional recurrence-free survival (LRFS), distant metastasis-free survival (DMFS) and grade 3 and above acute adverse events. Results: Four randomized controlled trials and thirteen observational studies were eligible. Comparison 1 (twelve studies): adding mAbs to standard therapy (radiotherapy or chemoradiotherapy) significantly improved OS (HR, 0.51; 95% CI, 0.39-0.66) and DFS (HR, 0.68; 95% CI, 0.54-0.86), but increased the frequency of skin rashes and mucositis. Comparison 2 (six studies): OS (HR, 1.17; 95% CI, 0.81-1.70) and DFS (HR, 1.16; 95% CI, 0.86-1.57) were not significantly different when mAbs replaced conventional cytotoxic chemotherapy concurrently with radiotherapy, with fewer hematological, gastrointestinal and renal toxicities and more skin rashes in the mAb group. Conclusion: We recommend anti-EGFR mAbs enhance-but should not replace-current treatment paradigms for locoregionally advanced NPC. Further evidence from phase III clinical trials is required.
Collapse
Affiliation(s)
- Liang Peng
- Department of Radiation Oncology, Sun Yat-sen University Cancer Centre; State Key Laboratory of Oncology in South China; Collaborative Innovation Centre of Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Ze-Long Liu
- Department of Medical Oncology, Sun Yat-sen University Cancer Centre; State Key Laboratory of Oncology in South China; Collaborative Innovation Centre of Cancer Medicine, Guangzhou, China
| | - Cheng Xu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Centre; State Key Laboratory of Oncology in South China; Collaborative Innovation Centre of Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Ling-Long Tang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Centre; State Key Laboratory of Oncology in South China; Collaborative Innovation Centre of Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Xu Liu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Centre; State Key Laboratory of Oncology in South China; Collaborative Innovation Centre of Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Ai-Hua Lin
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ying Sun
- Department of Radiation Oncology, Sun Yat-sen University Cancer Centre; State Key Laboratory of Oncology in South China; Collaborative Innovation Centre of Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Yu-Pei Chen
- Department of Radiation Oncology, Sun Yat-sen University Cancer Centre; State Key Laboratory of Oncology in South China; Collaborative Innovation Centre of Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Jun Ma
- Department of Radiation Oncology, Sun Yat-sen University Cancer Centre; State Key Laboratory of Oncology in South China; Collaborative Innovation Centre of Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| |
Collapse
|
24
|
Carbonic Anhydrase IX (CAIX), Cancer, and Radiation Responsiveness. Metabolites 2018; 8:metabo8010013. [PMID: 29439394 PMCID: PMC5874614 DOI: 10.3390/metabo8010013] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 12/23/2022] Open
Abstract
Carbonic anhydrase IX has been under intensive investigation as a therapeutic target in cancer. Studies demonstrate that this enzyme has a key role in pH regulation in cancer cells, allowing these cells to adapt to the adverse conditions of the tumour microenviroment. Novel CAIX inhibitors have shown efficacy in both in vitro and in vivo pre-clinical cancer models, adversely affecting cell viability, tumour formation, migration, invasion, and metastatic growth when used alone. In co-treatments, CAIX inhibitors may enhance the effects of anti-angiogenic drugs or chemotherapy agents. Research suggests that these inhibitors may also increase the response of tumours to radiotherapy. Although many of the anti-tumour effects of CAIX inhibition may be dependent on its role in pH regulation, recent work has shown that CAIX interacts with several of the signalling pathways involved in the cellular response to radiation, suggesting that pH-independent mechanisms may also be an important basis of its role in tumour progression. Here, we discuss these pH-independent interactions in the context of the ability of CAIX to modulate the responsiveness of cancer to radiation.
Collapse
|
25
|
Capodanno Y, Buishand FO, Pang LY, Kirpensteijn J, Mol JA, Argyle DJ. Notch pathway inhibition targets chemoresistant insulinoma cancer stem cells. Endocr Relat Cancer 2018; 25:131-144. [PMID: 29175872 DOI: 10.1530/erc-17-0415] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 11/24/2017] [Indexed: 12/12/2022]
Abstract
Insulinomas (INS) are the most common neuroendocrine pancreatic tumours in humans and dogs. The long-term prognosis for malignant INS is still poor due to a low success rate of the current treatment modalities, particularly chemotherapy. A better understanding of the molecular processes underlying the development and progression of INS is required to develop novel targeted therapies. Cancer stem cells (CSCs) are thought to be critical for the engraftment and chemoresistance of many tumours, including INS. This study was aimed to characterise and target INS CSCs in order to develop novel targeted therapies. Highly invasive and tumourigenic human and canine INS CSC-like cells were successfully isolated. These cells expressed stem cell markers (OCT4, SOX9, SOX2, CD133 and CD34), exhibited greater resistance to 5-fluorouracil (5-FU) and demonstrated a more invasive and tumourigenic phenotype in vivo compared to bulk INS cells. Here, we demonstrated that Notch-signalling-related genes (NOTCH2 and HES1) were overexpressed in INS CSC-like cells. Protein analysis showed an active NOTCH2-HES1 signalling in INS cell lines, especially in cells resistant to 5-FU. Inhibition of the Notch pathway, using a gamma secretase inhibitor (GSI), enhanced the sensitivity of INS CSC-like cells to 5-FU. When used in combination GSI and 5-FU, the clonogenicity in vitro and the tumourigenicity in vivo of INS CSC-like cells were significantly reduced. These findings suggested that the combined strategy of Notch signalling inhibition and 5-FU synergistically attenuated enriched INS CSC populations, providing a rationale for future therapeutic exploitation.
Collapse
Affiliation(s)
- Y Capodanno
- Royal (Dick) School of Veterinary Studies and The Roslin InstituteUniversity of Edinburgh, Midlothian, UK
| | - F O Buishand
- Department of Clinical Sciences of Companion AnimalsFaculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - L Y Pang
- Royal (Dick) School of Veterinary Studies and The Roslin InstituteUniversity of Edinburgh, Midlothian, UK
| | | | - J A Mol
- Department of Clinical Sciences of Companion AnimalsFaculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - D J Argyle
- Royal (Dick) School of Veterinary Studies and The Roslin InstituteUniversity of Edinburgh, Midlothian, UK
| |
Collapse
|