1
|
Baek EB, Hwang YH, Hong EJ, Won YS, Kwun HJ. Ixeris polycephala Extract Alleviates Progression of Benign Prostatic Hyperplasia via Modification of Proliferation, Apoptosis, and Inflammation. Pharmaceuticals (Basel) 2024; 17:1032. [PMID: 39204137 PMCID: PMC11357589 DOI: 10.3390/ph17081032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024] Open
Abstract
Benign prostatic hyperplasia (BPH) is a urogenital disorder that is common in aging men. Ixeris polycephala (IP) is used in traditional medicine and contains pharmacologically active compounds. However, the effect for BPH progression has not been elucidated. We herein examined the protective potential of IP extract on a testosterone-induced model of BPH in rats. To generate the BPH model, daily subcutaneous administration of testosterone was applied for 4 weeks. During this period, the rats were also administered a daily oral gavage of IP (150 mg/kg), finasteride (positive control), or vehicle. Testosterone treatment was associated with a significantly higher prostate-to-body weight ratio, serum dihydrotestosterone (DHT) level, and prostatic gene expression of 5α-reductase compared to untreated controls. Notably, IP plus testosterone co-treatment was associated with decreased epithelial thickness, down-regulation of proliferating cell nuclear antigen (PCNA) and cyclin D1, and upregulation of pro-apoptotic signaling molecules. IP co-treatment also down-regulated pro-inflammatory cytokines, cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS) and decreased inflammatory cell infiltration compared to the levels seen in the testosterone-induced BPH. IP appears to protect rats against the progression of testosterone-induced BPH by alleviating prostate cell growth and inflammatory responses, and thus may have potential for clinical use against BPH progression.
Collapse
Affiliation(s)
- Eun-Bok Baek
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Youn-Hwan Hwang
- Herbal Medicine Research Division, Korean Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Eun-Ju Hong
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Young-Suk Won
- Laboratory Animal Resource Center, Korean Research Institute of Bioscience and Biotechnology, Chungbuk 34141, Republic of Korea
| | - Hyo-Jung Kwun
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
2
|
Kang JW, He JP, Liu YN, Zhang Y, Song SS, Xu QX, Wei SW, Lu L, Meng XQ, Xu L, Guo B, Su RW. Aberrant activated Notch1 promotes prostate enlargement driven by androgen signaling via disrupting mitochondrial function in mouse. Cell Mol Life Sci 2024; 81:155. [PMID: 38538986 PMCID: PMC10973062 DOI: 10.1007/s00018-024-05143-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/20/2023] [Accepted: 01/03/2024] [Indexed: 04/02/2024]
Abstract
The prostate is a vital accessory gonad in the mammalian male reproductive system. With the ever-increasing proportion of the population over 60 years of age worldwide, the incidence of prostate diseases, such as benign prostatic hyperplasia (BPH) and prostate cancer (PCa), is on the rise and is gradually becoming a significant medical problem globally. The notch signaling pathway is essential in regulating prostate early development. However, the potential regulatory mechanism of Notch signaling in prostatic enlargement and hyperplasia remains unclear. In this study, we proved that overactivation of Notch1 signaling in mouse prostatic epithelial cells (OEx) led to prostatic enlargement via enhancing proliferation and inhibiting apoptosis of prostatic epithelial cells. Further study showed that N1ICD/RBPJ directly up-regulated the androgen receptor (AR) and enhanced prostatic sensitivity to androgens. Hyper-proliferation was not found in orchidectomized OEx mice without androgen supply but was observed after Dihydrotestosterone (DHT) supplementation. Our data showed that the number of mitochondrion in prostatic epithelial cells of OEx mice was increased, but the mitochondrial function was impaired, and the essential activity of the mitochondrial respiratory electron transport chain was significantly weakened. Disordered mitochondrial number and metabolic function further resulted in excessive accumulation of reactive oxygen species (ROS). Importantly, anti-oxidant N-Acetyl-L-Cysteine (NAC) therapy could alleviate prostatic hyperplasia caused by the over-activation of Notch1 signaling. Furthermore, we observed the incremental Notch signaling activity in progenitor-like club cells in the scRNA-seq data set of human BPH patients. Moreover, the increased number of TROP2+ progenitors and Club cells was also confirmed in our OEx mice. In conclusion, our study revealed that over-activated Notch1 signaling induces prostatic enlargement by increasing androgen receptor sensitivity, disrupting cellular mitochondrial metabolism, increasing ROS, and a higher number of progenitor cells, all of which can be effectively rescued by NAC treatment.
Collapse
Affiliation(s)
- Jin-Wen Kang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Jia-Peng He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Ying-Nan Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Yu Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Shan-Shan Song
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Qi-Xin Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Shu-Wen Wei
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Lei Lu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Xiang-Qi Meng
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Lin Xu
- College of Sports and Human Science, Harbin Sport University, Harbin, PR China.
| | - Bin Guo
- College of Veterinary Medicine, Jilin University, Changchun, PR China.
| | - Ren-Wei Su
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China.
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, PR China.
| |
Collapse
|
3
|
A X, Huayu M, Li Z, Su S. In vivo pharmacokinetic study of vanillic acid in monocrotaline-induced pulmonary arterial hypertension rats and its tissue distribution. Biomed Chromatogr 2024; 38:e5793. [PMID: 38037526 DOI: 10.1002/bmc.5793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 12/02/2023]
Abstract
Vanillic acid (VA) is a bioactive chemical present in many food plants and fruits. It has been shown to have a protective effect on pulmonary tissues in monocrotaline-induced pulmonary arterial hypertension, as well as an intervention effect on right ventricular remodeling. The purpose of this study was to develop and test a reliable method for assessing VA utilizing ultra-performance liquid chromatography-high resolution mass spectrometry using caffeic acid as the internal standard. Across diverse substrates, the correlation coefficient for VA ranged from 0.9992 to 0.9995. The method's intraday precision was <13.53% (RSD), and its accuracy (RE) ranged from -9.88 to 4.35%. The precision across days was <13.69% (RSD), while the accuracy ranged from 2.16 to 10.94% (RE). The extraction recoveries ranged from 80.30 to 118.81%, with a lower limit of quantification of 20 ng/mL. The approach was successfully applied to pharmacokinetic and tissue distribution studies of VA in rat plasma after gavage administration, and the pharmacokinetic parameters of VA in the plasma of the monocrotaline-induced pulmonary arterial hypertension were significantly different from those of the control group.
Collapse
Affiliation(s)
- Xuxia A
- Medical College of Qinghai University, Xining, China
- Xining Customs Technical Center, Key Laboratory of Food Safety Research in Qinghai Province, Xining, Qinghai, China
| | - Meiduo Huayu
- Research Center for High Altitude Medicine, Key Laboratory for High Altitude Medicine (Ministry of Education), Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, Qinghai, China
| | - Zhanqiang Li
- Medical College of Qinghai University, Xining, China
- Research Center for High Altitude Medicine, Key Laboratory for High Altitude Medicine (Ministry of Education), Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, Qinghai, China
| | - Shanshan Su
- Xining Customs Technical Center, Key Laboratory of Food Safety Research in Qinghai Province, Xining, Qinghai, China
| |
Collapse
|
4
|
Abdel Fattah S, Ibrahim MEED, El-Din SS, Emam HS, Algaleel WAA. Possible therapeutic role of zinc oxide nanoparticles versus vanillic acid in testosterone-induced benign prostatic hyperplasia in adult albino rat: A histological, immunohistochemical and biochemical study. Life Sci 2023; 334:122190. [PMID: 37866805 DOI: 10.1016/j.lfs.2023.122190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND The search for alternative therapies for treatment of Benign prostatic hyperplasia (BPH) has been increasingly studied to avoid the common adverse effects of the usual regimens. Therefore, this study aimed at delineating possible mechanisms of benign prostatic hyperplasia (BPH) and possible therapeutic role of zinc oxide nanoparticles (ZnO-NPs) versus vanillic acid. METHODS Forty rats were divided into five groups: control, sham control, Testosterone-induced BPH, BPH and Zn-NPs, and BPH and vanillic acid. Light microscopic, immune-histochemical; PCNA, Bcl-2, Bax, caspase-3, p-Akt and p-mTOR, histomorphometric analysis, MDA/SOD and GPx and were done. Gene expression of p-Akt, p-mTOR and survivin were evaluated. RESULTS Application of zinc oxide nanoparticles as well as vanillic acid significantly reduced prostatic index, epithelial thickness, stromal collagen fibers, expression of PCNA, Bcl2, p-Akt, p-mTOR and MDA tissue level (p < 0.05). Whereas expression of Bax and caspase 3, and tissue levels of SOD and GPx were significantly increased in groups treated with Zno-Nps and vanillic acid compared to that of BPH group. Zinc oxide nanoparticles showed a better effect than vanillic acid in alleviating BPH. CONCLUSION These findings suggested that ZnO-NPs as well as VA ameliorated the histolo-pathological and biochemical effects of induced BPH, moreover they improved the proapoptotic and antioxidant parameters which ere induced in BPH. It is recommended to search for new agents to prevent the development and progression of BPH.
Collapse
Affiliation(s)
- Shereen Abdel Fattah
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Egypt
| | | | - Shimaa Saad El-Din
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Egypt.
| | - Hadeel Sayed Emam
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Egypt
| | | |
Collapse
|
5
|
Abstract
Han N, Zhang B, Wei X, Yu L. The inhibitory function of icariin in cell model of benign prostatic hyperplasia by upregulation of miR-7. BioFactors. 2023;49:203. https://doi.org/10.1002/biof.1591 This article, published online on 29 November 2019 in Wiley Online Library, has been retracted by agreement between the International Union of Biochemistry and Molecular Biology, the Editor in Chief (Dr. Angelo Azzi), and Wiley Periodicals LLC. The retraction has been agreed following an investigation based on allegations raised by a third party. Evidence for image manipulation was found in figures 1, 3, 4, 5, 6, and 7. As a result, the conclusions of this article are considered to be invalid.
Collapse
|
6
|
Guo J, Huang X, Dou L, Yan M, Shen T, Tang W, Li J. Aging and aging-related diseases: from molecular mechanisms to interventions and treatments. Signal Transduct Target Ther 2022; 7:391. [PMID: 36522308 PMCID: PMC9755275 DOI: 10.1038/s41392-022-01251-0] [Citation(s) in RCA: 558] [Impact Index Per Article: 186.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 12/23/2022] Open
Abstract
Aging is a gradual and irreversible pathophysiological process. It presents with declines in tissue and cell functions and significant increases in the risks of various aging-related diseases, including neurodegenerative diseases, cardiovascular diseases, metabolic diseases, musculoskeletal diseases, and immune system diseases. Although the development of modern medicine has promoted human health and greatly extended life expectancy, with the aging of society, a variety of chronic diseases have gradually become the most important causes of disability and death in elderly individuals. Current research on aging focuses on elucidating how various endogenous and exogenous stresses (such as genomic instability, telomere dysfunction, epigenetic alterations, loss of proteostasis, compromise of autophagy, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication, deregulated nutrient sensing) participate in the regulation of aging. Furthermore, thorough research on the pathogenesis of aging to identify interventions that promote health and longevity (such as caloric restriction, microbiota transplantation, and nutritional intervention) and clinical treatment methods for aging-related diseases (depletion of senescent cells, stem cell therapy, antioxidative and anti-inflammatory treatments, and hormone replacement therapy) could decrease the incidence and development of aging-related diseases and in turn promote healthy aging and longevity.
Collapse
Affiliation(s)
- Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Xiuqing Huang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Lin Dou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Mingjing Yan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Tao Shen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Weiqing Tang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| |
Collapse
|
7
|
Effect of Pinoresinol and Vanillic Acid Isolated from Catalpa bignonioides on Mouse Myoblast Proliferation via the Akt/mTOR Signaling Pathway. Molecules 2022; 27:molecules27175397. [PMID: 36080161 PMCID: PMC9457826 DOI: 10.3390/molecules27175397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022] Open
Abstract
Growth and maintenance of skeletal muscle is essential for athletic performance and a healthy life. Stimulating the proliferation and differentiation of muscle cells may help prevent loss of muscle mass. To discover effective natural substances enabling to mitigate muscle loss without side effects, we evaluated muscle growth with several compounds extracted from Catalpa bignonioides Walt. Among these compounds, pinoresinol and vanillic acid increased C2C12, a mouse myoblast cell line, proliferation being the most without cytotoxicity. These substances activated the Akt/mammalian target of the rapamycin (mTOR) pathway, which positively regulates the proliferation of muscle cells. In addition, the results of in silico molecular docking study showed that they may bind to the active site of insulin-like growth factor 1 receptor (IGF-1R), which is an upstream of the Akt/mTOR pathway, indicating that both pinoresinol and vanillic acid stimulate myoblast proliferation through direct interaction with IGF-1R. These results suggest that pinoresinol and vanillic acid may be a natural supplement to improve the proliferation of skeletal muscle via IGF-1R/Akt/mTOR signaling and thus strengthen muscles.
Collapse
|
8
|
Fu W, Chen S, Zhang Z, Chen Y, You X, Li Q. Quercetin in Tonglong Qibi decoction ameliorates testosterone-induced benign prostatic hyperplasia in rats by regulating Nrf2 signalling pathways and oxidative stress. Andrologia 2022; 54:e14502. [PMID: 35725022 DOI: 10.1111/and.14502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/25/2022] [Accepted: 05/25/2022] [Indexed: 11/26/2022] Open
Abstract
Benign prostatic hyperplasia (BPH) is a common urological disease in older males. Existing pharmacotherapy shows several side effects, and the exploration of new therapeutic strategies is of high significance. Tonglong Qibi (TQ) decoction was proved to ameliorate BPH, while the underlying mechanisms are still unclear. In the current study, we explored the anti-BPH effects of TQ in vivo and identified its main therapeutic component and the underlying mechanisms in vitro. We demonstrated that TQ mitigated BPH in rats and showed no toxicity to the liver and reproductive system. Network pharmacology identified quercetin as the main component in TQ treating BPH. Quercetin reduced proliferation, oxidative stress, and increased Nrf2 expression in hyperplastic prostate epithelial cells. These findings indicate that quercetin in TQ alleviates BPH via inhibiting oxidative stress and activating the Nrf2 signalling pathway.
Collapse
Affiliation(s)
- Wei Fu
- Xiamen Hospital (The Eighth Clinical Medical College), Beijing University of Chinese Medicine, Xiamen, China.,Department of Andrology, Yunnan Provincial Hospital of Traditional Chinese Medicine, Kunming, Yunnan, China.,Department of Andrology, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Shuchao Chen
- Department of Andrology, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zezheng Zhang
- Department of Andrology, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yingwen Chen
- Department of Andrology, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xujun You
- Department of Andrology, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Qixin Li
- Department of Andrology, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
9
|
Origanum majorana L. Extract Attenuated Benign Prostatic Hyperplasia in Rat Model: Effect on Oxidative Stress, Apoptosis, and Proliferation. Antioxidants (Basel) 2022; 11:antiox11061149. [PMID: 35740046 PMCID: PMC9219805 DOI: 10.3390/antiox11061149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
Benign prostatic hyperplasia (BPH) is a widespread androgenic illness influencing elderly men. It is distinguished by prostatic epithelial and stromal muscle cell proliferation. Inflammation, oxidative stress, and apoptosis have all been interrelated to the development of BPH. Marjoram (Origanum majorana L.) is a herb with reported antiproliferative, proapoptotic, and antioxidative properties, which have not yet been studied in relation to BPH. Consequently, in this work, an ethanolic extract of O. majorana was prepared in two doses (250 and 500 mg/kg/day) to be injected into castrated rats after induction of a testosterone-BPH model. Testosterone propionate (TP) was subcutaneously injected (0.5 mg/kg/day) for one week after castration to induce BPH. Forty adult Wistar male rats were randomly allocated into five groups: control, BPH model, high and low O. majorana doses (250, 500 mg/kg/day), and finasteride (FN) (0.8 mg/kg/day) as a positive control. Treatment was continued with drugs/normal saline for 28 days. Rat’s body and prostate were weighed, prostate index (PI) and % of prostate growth inhibition were calculated, serum dihydrotestosterone (DHT), prostatic content of superoxide dismutase (SOD), catalase (CAT), total antioxidant capacity (TAC), and malondialdehyde (MDA), DN damage, histopathological changes, immune expression of proliferating cell nuclear antigen (PCNA), caspase-3, α-SMA, and TGF-β1 were assessed. In addition, molecular quantitative PCR and ELISA analyses were performed to identify the expression of mRNAs and related proteins of both caspase-3 and TGF-β1 in prostate tissue from O. majorana-treated and untreated groups. Rats with BPH had significantly higher prostate weights and PI, higher DHT, DNA damage (8-hydroxyguanine, 8-OH-dG), and MDA levels with prominent PCNA, α-SMA, and TGF-β expression, but lower SOD, CAT, and TAC activity and caspase-3 expression. O. majorana (250 and 500 mg/kg/day)-treated groups revealed a decrease in prostate weights and PI, lower levels of DHT, suppressed oxidative stress, reduced tissue proliferation and fibrosis, and restored antioxidant and proapoptotic activity. Additionally, quantitative PCR and ELISA analysis showed that treatment with O. majorana significantly upregulated the expression of caspase-3 and downregulated the expression of TGF-β in prostate tissues of BPH rats. The data were confirmed by the immunohistological reactivity of these targeted markers in the prostate tissues. These effects were more significant with O. majorana 500 mg/mL/rat. In conclusion, the current study indicates the efficient use of O. majorana in the treatment of testosterone-induced BPH through its antiproliferative, proapoptotic, and antioxidative mechanisms.
Collapse
|
10
|
Lee JY, Kim S, Kim S, Kim JH, Bae BS, Koo GB, So SH, Lee J, Lee YH. Effects of red ginseng oil(KGC11 o) on testosterone-propionate-induced benign prostatic hyperplasia. J Ginseng Res 2022; 46:473-480. [PMID: 35600774 PMCID: PMC9120790 DOI: 10.1016/j.jgr.2021.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/13/2021] [Accepted: 11/10/2021] [Indexed: 11/27/2022] Open
Abstract
Background Benign prostatic hyperplasia (BPH) is a disease characterized by abnormal proliferation of the prostate, which occurs frequently in middle-aged men. In this study, we report the effect of red ginseng oil (KGC11o) on BPH. Methods The BPH-induced Sprague-Dawley rats were divided into seven groups: control, BPH, KGC11o 25, 50, 100, 200, and finasteride groups. KGC11o and finasteride were administered for 8 weeks. The BPH biomarkers, DHT, 5AR1, and 5AR2, androgen receptor, prostate-specific antigen (PSA), Bax, Bcl-2, and TGF-β were determined in the serum and prostate tissue. The cell viability after KGC11o treatment was determined using BPH-1 cells, and, androgen receptor, Bax, Bcl-2, and TGF-β were confirmed by western blotting. Results In the in vivo study, administration of KGC11o reduced prostate weight by 18%, suppressed DHT (up to 22%) and 5AR2 (up to 12%) levels from administration of 100 mg/kg KGC11o (P < 0.05). PSA was significantly downregulated dose-dependently from at the concentration of 50 mg/kg KGC11o (P < 0.05). BPH-1 cell viability significantly reduced through the treatment with KGC11o. In vitro and vivo, AR, Bcl-2 TGF-β levels reduced significantly but Bax was increased (P < 0.05). Conclusion These results suggest that KGC11o may inhibit the development of BPH by significantly reducing the levels of BPH biomarkers via 5ARI, anti-androgenic effect, and anti-proliferation effect, serving as a potential functional food for treating BPH.
Collapse
Affiliation(s)
- Jeong Yoon Lee
- Department of Food Science and Nutrition, The University of Suwon, Hwasung, Republic of Korea
| | - Sohyuk Kim
- Department of Food Science and Nutrition, The University of Suwon, Hwasung, Republic of Korea
| | - Seokho Kim
- Department of Food Science and Nutrition, The University of Suwon, Hwasung, Republic of Korea
| | - Jong Han Kim
- Laboratory of Efficacy Research, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Bong Seok Bae
- Laboratory of Resource and Analysis, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Gi-Bang Koo
- Laboratory of Efficacy Research, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Seung-Ho So
- Laboratory of Efficacy Research, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Jeongmin Lee
- Department of Medical Nutrition, Kyung Hee University, Yongin, Republic of Korea
| | - Yoo-Hyun Lee
- Department of Food Science and Nutrition, The University of Suwon, Hwasung, Republic of Korea
| |
Collapse
|
11
|
Kaur J, Gulati M, Singh SK, Kuppusamy G, Kapoor B, Mishra V, Gupta S, Arshad MF, Porwal O, Jha NK, Chaitanya M, Chellappan DK, Gupta G, Gupta PK, Dua K, Khursheed R, Awasthi A, Corrie L. Discovering multifaceted role of vanillic acid beyond flavours: Nutraceutical and therapeutic potential. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
β-RA Targets Mitochondrial Metabolism and Adipogenesis, Leading to Therapeutic Benefits against CoQ Deficiency and Age-Related Overweight. Biomedicines 2021; 9:biomedicines9101457. [PMID: 34680574 PMCID: PMC8533582 DOI: 10.3390/biomedicines9101457] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/01/2021] [Accepted: 10/09/2021] [Indexed: 11/17/2022] Open
Abstract
Primary mitochondrial diseases are caused by mutations in mitochondrial or nuclear genes, leading to the abnormal function of specific mitochondrial pathways. Mitochondrial dysfunction is also a secondary event in more common pathophysiological conditions, such as obesity and metabolic syndrome. In both cases, the improvement and management of mitochondrial homeostasis remain challenging. Here, we show that beta-resorcylic acid (β-RA), which is a natural phenolic compound, competed in vivo with 4-hydroxybenzoic acid, which is the natural precursor of coenzyme Q biosynthesis. This led to a decrease in demethoxyubiquinone, which is an intermediate metabolite of CoQ biosynthesis that is abnormally accumulated in Coq9R239X mice. As a consequence, β-RA rescued the phenotype of Coq9R239X mice, which is a model of primary mitochondrial encephalopathy. Moreover, we observed that long-term treatment with β-RA also reduced the size and content of the white adipose tissue (WAT) that is normally accumulated during aging in wild-type mice, leading to the prevention of hepatic steatosis and an increase in survival at the elderly stage of life. The reduction in WAT content was due to a decrease in adipogenesis, an adaptation of the mitochondrial proteome in the kidneys, and stimulation of glycolysis and acetyl-CoA metabolism. Therefore, our results demonstrate that β-RA acted through different cellular mechanisms, with effects on mitochondrial metabolism; as such, it may be used for the treatment of primary coenzyme Q deficiency, overweight, and hepatic steatosis.
Collapse
|
13
|
Ahmed AS, Soliman MG. Protective Role of 4-(4-Hydroxy-3-methoxyphenyl)-2-Butanone on Prostatic Cells Hyperplasia of Rats and Human, 5α-reductase Inhibition Pathway. J Microsc Ultrastruct 2021; 9:164-169. [PMID: 35070691 PMCID: PMC8751679 DOI: 10.4103/jmau.jmau_37_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 05/17/2020] [Accepted: 09/03/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Prostate gland is an exocrine gland that could be affected by various pathological conditions. Benign prostatic hyperplasia (BPH) is an age-dependent medical condition caused by increased activity of 5α-reductase enzyme (5α-R). Medical treatment by finasteride is considered during treatment, but it has unavoidable side effects. Hence, there is an increasing need to use natural ingredients for BPH treatment. Gingerol oil (ginger extract) is transferred by heating into zingerone. Recent studies reported the effect of zingerone on prostate cancer cells. AIMS AND OBJECTIVES The aim of the present research is to investigate the protective effect of zingerone against BPH. MATERIALS AND METHODS Sixty male Albino Wistar rats were divided into three groups: control group, prostatic hyperplasia group treated with saline, and prostatic hyperplasia group treated with zingerone (PH-Z-G). At day 28, all rats were sacrificed, epididymis and prostate samples were collected for histopathological examination and Western blotting for androgen receptors (ARs) proteins and steroid 5 alpha-reductase 1 (SRD5A1). Human RWPE-1 prostatic cell line was assessed for viability and cycle after treated with zingerone 500 μg/day for 10 days. RESULTS PH-S group showed significant (P < 0.05) thickening of connective tissue septa associated with narrowing of acinar lumen. PH-Z group showed regain of the normal histological feature. SRD5A1 and AR expression was significantly (P < 0.05) reduced in PH-Z group in comparison with PH-S group. Cell line proliferation was significantly reduced after application of zingerone with G2/M cell cycle arrest. CONCLUSION Our results showed that natural herbal zingerone decreased the prostatic tissue levels of (5α reductase and AR) in rat BPH model, which could be a promising herbal medicine for BPH treatment. Further human clinical trials are required.
Collapse
Affiliation(s)
- Ahmed S. Ahmed
- Department of Anatomy and Embryology, College of Medicine, Tanta University, Tanta, Egypt
| | | |
Collapse
|
14
|
Wang Z, Zhang Y, Zhao C, Li Y, Hu X, Wu L, Chen M, Tong S. The miR-223-3p/MAP1B axis aggravates TGF-β-induced proliferation and migration of BPH-1 cells. Cell Signal 2021; 84:110004. [PMID: 33839256 DOI: 10.1016/j.cellsig.2021.110004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 11/15/2022]
Abstract
Uncontrolled proliferation and migration of benign prostatic hyperplasia (BPH) epithelial cells play a critical role in the pathogenesis of BPH. The regulatory roles of microRNAs (miRNAs) in multiple human diseases have been observed. This study was dedicated to investigating the regulatory effects of the miR-223-3p on the proliferation and migration of BPH progress. In the present study, the aberrant upregulation of miR-223-3p in BPH samples and BPH-1 cells was determined. TGF-β stimulation induced miR-223-3p expression, promoted BPH-1 cell viability and DNA synthesis, inhibited BPH-1 cell apoptosis, and decreased pro-apoptotic Bax/caspase 3. These changes induced by TGF-β stimulation were further enhanced the overexpression of miR-223-3p and attenuated via the inhibition of miR-223-3p. Under TGF-β stimulation, the overexpression of miR-223-3p enhanced, whereas the inhibition of miR-223-3p inhibited the EMT and MAPK signaling pathways. By targeting the MAP1B 3'UTR, miR-223-3p repressed MAP1B expression. In contrast to miR-223-3p overexpression, MAP1B overexpression attenuated TGF-β-induced changes in BPH-1 cell phenotypes, pro-apoptotic Bax/caspase 3, and the EMT and MAPK signaling pathways; more importantly, MAP1B overexpression significantly attenuated the roles of miR-223-3p overexpression in BPH-1 cell phenotypes, pro-apoptotic Bax/caspase 3, and the EMT and MAPK signaling pathways under TGF-β stimulation. In conclusion, miR-223-3p aggravates the uncontrolled proliferation and migration of BPH-1 cells through targeting MAP1B. The EMT and MAPK signaling pathways might be involved.
Collapse
Affiliation(s)
- Zhi Wang
- Department of Urology Surgery, Xiangya Hospital of Central South University, Changsha 410008, China; Department of Urology, Hunan Children's Hospital, Changsha 410007, China
| | - Yichuan Zhang
- Department of Urology Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Cheng Zhao
- Department of Urology Surgery, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Yangle Li
- Department of Urology Surgery, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Xiheng Hu
- Department of Urology Surgery, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Longxiang Wu
- Department of Urology Surgery, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Minfeng Chen
- Department of Urology Surgery, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Shiyu Tong
- Department of Urology Surgery, Xiangya Hospital of Central South University, Changsha 410008, China.
| |
Collapse
|
15
|
Insulin exacerbated high glucose-induced epithelial-mesenchymal transition in prostatic epithelial cells BPH-1 and prostate cancer cells PC-3 via MEK/ERK signaling pathway. Exp Cell Res 2020; 394:112145. [PMID: 32561286 DOI: 10.1016/j.yexcr.2020.112145] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/13/2020] [Accepted: 06/08/2020] [Indexed: 12/15/2022]
Abstract
As two most common progressive diseases of aging, type 2 diabetes mellitus (T2DM) and benign prostatic hyperplasia (BPH) were all characterized by endocrine and metabolic disorders. Here, our clinical study showed that there were significant differences in fasting blood glucose (FBG), fasting insulin (FINS), insulin resistance index (HOMA-IR) and prostate volume (PV) between simple BPH patients and BPH complicated with T2DM patients. Further analysis showed that HOMA-IR was positively correlated with PV in BPH complicated with T2DM patients. The in vitro experiment results showed that high glucose (HG) promoted EMT process in a glucose-dependent manner in human prostate hyperplasia cells (BPH-1) and prostate cancer cells (PC-3), and this pathological process was exacerbated by co-culture with insulin. Mechanistically, insulin-induced exacerbation of EMT was depended on the activation of MEK/ERK signaling pathway, and we suggested that insulin and its analogs should be used very carefully for the clinical antihyperglycemic treatment of BPH complicated with T2DM patients.
Collapse
|
16
|
Liu J, Fang T, Li M, Song Y, Li J, Xue Z, Li J, Bu D, Liu W, Zeng Q, Zhang Y, Yun S, Huang R, Yan J. Pao Pereira Extract Attenuates Testosterone-Induced Benign Prostatic Hyperplasia in Rats by inhibiting 5α-Reductase. Sci Rep 2019; 9:19703. [PMID: 31873149 PMCID: PMC6928012 DOI: 10.1038/s41598-019-56145-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 12/04/2019] [Indexed: 01/08/2023] Open
Abstract
Benign prostatic hyperplasia (BPH) is one of the most common diseases in the urinary system of elderly men. Pao extract is an herbal preparation of the bark of the Amazon rainforest tree Pao Pereira (Geissospermum vellosii), which was reported to inhibit prostate cancer cell proliferation. Herein we investigated the therapeutic potential of Pao extract against BPH development in a testosterone-induced BPH rat model. The administration of testosterone induced the prostate enlargement, compared with the sham operated group with vehicle treatment. The BPH/Pao group showed reduced prostate weight comparable with BPH/finasteride group. Notably, Pao treatment did not significantly reduce body weights and sperm number of rats, compared with the control group. Furthermore, Pao extract treatment reduced the proliferative index in prostate glands and testosterone-induced expression levels of AR, as well as androgen-associated proteins such as SRD5A1 and PSA. Moreover, Pao extract and its active component, flavopereirine, induced cytotoxicity on human prostate epithelial RWPE-1 cells in a dose- and time- dependent manner with G2/M arrest. Consistently, Pao extract and flavopereirine suppressed the expression levels of SRD5A1, AR and PSA, respectively. Together, these data demonstrated that Pao extract suppresses testosterone-induced BPH development through inhibiting AR activity and expression, and suggested that Pao extract may be a promising and relative safe agent for BPH.
Collapse
Affiliation(s)
- Jiakuan Liu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, 210061, Jiangsu, China
| | - Tian Fang
- Department of Comparative Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, Jiangsu, China
| | - Meiqian Li
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, 210061, Jiangsu, China
| | - Yuting Song
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, 210061, Jiangsu, China
| | - Junzun Li
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, 210061, Jiangsu, China
| | - Zesheng Xue
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, 210061, Jiangsu, China
| | - Jiaxuan Li
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, 210061, Jiangsu, China
| | - Dandan Bu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, 210061, Jiangsu, China
| | - Wei Liu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, 210061, Jiangsu, China
| | - Qinghe Zeng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yidan Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, 210061, Jiangsu, China.,Department of Bioscience and Bioengineering, School of Chemistry and Life Science, Jinling College of Nanjing University, Nanjing, 210061, Jiangsu, China
| | - Shifeng Yun
- Department of Comparative Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, Jiangsu, China.
| | - Ruimin Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jun Yan
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, 210061, Jiangsu, China.
| |
Collapse
|
17
|
In Vivo Effects of Polymerized Anthocyanin from Grape Skin on Benign Prostatic Hyperplasia. Nutrients 2019; 11:nu11102444. [PMID: 31615010 PMCID: PMC6835789 DOI: 10.3390/nu11102444] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 11/16/2022] Open
Abstract
Benign prostatic hyperplasia (BPH) is a common chronic disease of the urinary system among elderly men. Especially, the metabolic imbalance of androgen in elderly men is one of the leading causes of BPH. Dihydrotestosterone (DHT) and converted testosterone by 5-α reductase type 2 (5AR2), binding with androgen receptor (AR), affect prostate proliferation and growth. In BPH, levels of androgen signaling-related protein expression are shown highly. Androgen signaling induces the overexpression of prostate-specific antigen (PSA) and cell proliferation factor such as proliferating cell nuclear antigen (PCNA) and cyclin D1. Grape skin anthocyanins are well known for their antioxidative, anti-cancer, anti-diabetes, anti-inflammatory, antimicrobial, and anti-aging activities. Polymerized anthocyanin (PA) downregulated the expression of androgen signaling-related proteins such as 5AR2, AR, and PSA in LNCaP cell lines. Furthermore, we investigated the effects on PA in testosterone propionate-induced BPH rat experiments. The oral administration of PA decreased the prostate weight in rats with TP-induced BPH. PA decreased the AR, 5AR2, SRC1, PSA, PCNA, and cyclin D1 expression in prostate tissues and the serum DHT levels, ameliorated the BPH-mediated increase of Bcl-2 expression, and increased the Bax expression. These results suggest that PA may be a potential natural therapeutic agent for BPH treatment.
Collapse
|
18
|
Aconiti Lateralis Radix Preparata, the Dried Root of Aconitum carmichaelii Debx., Improves Benign Prostatic Hyperplasia via Suppressing 5-Alpha Reductase and Inducing Prostate Cell Apoptosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:6369132. [PMID: 31467577 PMCID: PMC6701400 DOI: 10.1155/2019/6369132] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/02/2019] [Accepted: 07/11/2019] [Indexed: 12/15/2022]
Abstract
Benign prostatic hyperplasia (BPH) is a common disease in elderly men which can be characterized by an abnormal enlargement of the prostate associated with lower urinary symptoms. Current medications available for BPH treatment display several adverse effects; thus, the search for effective treatments with less side effects is still ongoing. In this study, we investigated the effect of Aconiti Lateralis Radix Preparata (dried root of Aconitum carmichaelii Debx.; AL), which is an herb used to treat extremely cold symptoms in traditional Korean medicine, on BPH using a testosterone propionate- (TP-) induced BPH rat model. Eight-week inguinal injection of TP induced BPH in rats, the prostate of which was displaying an abnormal proliferation. The pathological proliferation of the prostate was ameliorated by AL treatment of 4 weeks. Pathohistological changes in the prostate including epithelial thickness and lumen area were restored in AL-treated rats. Furthermore, 5α-reductase (5AR) and androgen receptor (AR), the two main factors in the pathogenesis of BPH, were decreased. In addition, the ratio of BAX and Bcl-2, an indicator of apoptosis, was increased by AL as well. Similar results were observed in AL-treated LNCaP prostate cancer cells. AL treatment suppressed the expression of the 5AR-AR axis and increased the ratio of BAX and Bcl-2. Apoptosis in the testis is considered a crucial side effect of finasteride, a 5AR inhibitor used to treat BPH. Our results showed that AL treatment did not display such effects, while finasteride treatment resulted in loss of spermatogenic cells within the prostate. Overall, these results suggest AL as a potentially safe nature-derived therapeutic agent for BPH treatment.
Collapse
|
19
|
de Vasconcelos DN, Lima AN, Philot EA, Scott AL, Ferreira Boza IA, de Souza AR, Morgon NH, Ximenes VF. Methyl divanillate: redox properties and binding affinity with albumin of an antioxidant and potential NADPH oxidase inhibitor. RSC Adv 2019; 9:19983-19992. [PMID: 35514705 PMCID: PMC9065500 DOI: 10.1039/c9ra02465d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/18/2019] [Indexed: 01/05/2023] Open
Abstract
Vanillic acid is a widely used food additive (flavouring agent, JECFA number: 959) with many reported beneficial biological effects. The same is true for its ester derivative (methyl vanillate, JECFA number: 159). Based on the increasing evidence that diapocynin, the dimer of apocynin (NADPH oxidase inhibitor), has some improved pharmacological properties compared to its monomer, here the dimer of methyl vanillate (MV), i.e., methyl divanillate (dimer of methyl vanillate, DMV) was synthesized and studied in the context of its redox properties and binding affinity with human serum albumin (HSA). We found that the antioxidant potency of DMV was significantly increased compared to MV. In this regard, the reduction of 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical by DMV was 30-fold more effective compared to MV. Ferric ion reduction was 4-fold higher and peroxyl radical reduction was 2.7-fold higher. The interaction with HSA was significantly improved (Stern–Vomer constants, 3.8 × 105 mol−1 L and 2.3 × 104 mol−1 L, for DMV and MV, respectively). The complexation between DMV and HSA was also evidenced by induced circular dichroism (ICD) signal generation in the former due to its fixation in the asymmetric protein pocket. Density-functional calculations (TD-DFT) showed that the ICD spectrum was related to a DMV conformation bearing a dihedral angle of approximately −60°. Similar dihedral angles were obtained in the lowest and most populated DMV cluster poses obtained by molecular docking simulations. The computational studies and experimental displacement studies revealed that DMV binds preferentially at site I. In conclusion, besides being a powerful antioxidant, DMV is also a strong ligand of HSA. This is the first study on the chemical and biophysical properties of DMV, a compound with potential beneficial biological effects. Methyl divanillate, a derivative of the vanillic acid (flavouring agent, JECFA number: 959) with promising beneficial biological effects.![]()
Collapse
Affiliation(s)
- Debora Naliati de Vasconcelos
- Department of Chemistry, Faculty of Sciences, UNESP - São Paulo State University 17033-360 Bauru São Paulo Brazil +55-14-3301-6088
| | - Angélica Nakagawa Lima
- Laboratory of Computational Biology and Bioinformatics, UFABC - Federal University of ABC 09210-580 Santo André SP Brazil
| | - Eric Allison Philot
- Laboratory of Computational Biology and Bioinformatics, UFABC - Federal University of ABC 09210-580 Santo André SP Brazil
| | - Ana Lígia Scott
- Laboratory of Computational Biology and Bioinformatics, UFABC - Federal University of ABC 09210-580 Santo André SP Brazil
| | - Izabelle Amorim Ferreira Boza
- Department of Chemistry, Faculty of Sciences, UNESP - São Paulo State University 17033-360 Bauru São Paulo Brazil +55-14-3301-6088
| | - Aguinaldo Robinson de Souza
- Department of Chemistry, Faculty of Sciences, UNESP - São Paulo State University 17033-360 Bauru São Paulo Brazil +55-14-3301-6088
| | - Nelson Henrique Morgon
- Department of Physical Chemistry, Institute of Chemistry, Campinas State University (UNICAMP) 13083-861 Campinas São Paulo Brazil
| | - Valdecir Farias Ximenes
- Department of Chemistry, Faculty of Sciences, UNESP - São Paulo State University 17033-360 Bauru São Paulo Brazil +55-14-3301-6088
| |
Collapse
|
20
|
Kiyama R. Estrogenic Activity of Coffee Constituents. Nutrients 2019; 11:E1401. [PMID: 31234352 PMCID: PMC6628280 DOI: 10.3390/nu11061401] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/14/2019] [Accepted: 06/18/2019] [Indexed: 02/06/2023] Open
Abstract
Here, the constituents of coffee with estrogenic activity are summarized by a comprehensive literature search, and their mechanisms of action for their physiological effects are discussed at the molecular and cellular levels. The estrogenic activity of coffee constituents, such as acids, caramelized products, carbohydrates, lignin, minerals, nitrogenous compounds, oil (lipids), and others, such as volatile compounds, was first evaluated by activity assays, such as animal tests, cell assay, ligand-binding assay, protein assay, reporter-gene assay, transcription assay, and yeast two-hybrid assay. Second, the health benefits associated with the estrogenic coffee constituents, such as bone protection, cancer treatment/prevention, cardioprotection, neuroprotection, and the improvement of menopausal syndromes, were summarized, including their potential therapeutic/clinical applications. Inconsistent results regarding mixed estrogenic/anti-estrogenic/non-estrogenic or biphasic activity, and unbeneficial effects associated with the constituents, such as endocrine disruption, increase the complexity of the effects of estrogenic coffee constituents. However, as the increase of the knowledge about estrogenic cell signaling, such as the types of specific signaling pathways, selective modulations of cell signaling, signal crosstalk, and intercellular/intracellular networks, pathway-based assessment will become a more realistic means in the future to more reliably evaluate the beneficial applications of estrogenic coffee constituents.
Collapse
Affiliation(s)
- Ryoiti Kiyama
- Dept. of Life Science, Faculty of Life Science, Kyushu Sangyo Univ. 2-3-1 Matsukadai, Higashi-ku, Fukuoka 813-8503, Japan.
| |
Collapse
|
21
|
Tao R, Miao L, Yu X, Orgah JO, Barnabas O, Chang Y, Liu E, Fan G, Gao X. Cynomorium songaricum Rupr demonstrates phytoestrogenic or phytoandrogenic like activities that attenuates benign prostatic hyperplasia via regulating steroid 5-α-reductase. JOURNAL OF ETHNOPHARMACOLOGY 2019; 235:65-74. [PMID: 30708032 DOI: 10.1016/j.jep.2019.01.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cynomorium songaricum Rupr. (CS) belongs to the genus of parasitic perennial flowering plants, mostly used in Chinese traditional medicine for benign prostatic hyperplasia (BPH) treatment. BPH is a chronic disease in men that both androgen and estrogen play a crucial role in promoting its development via their receptors. Previously we have showed that compounds from CS have the phytoestrogenic and/or phytoandrogenic activities that may have the potential suppressive effects on BPH, while the mechanism remains unclear. AIM OF THE STUDY In this study, we aim to investigate the effect of CS and its derived compounds: luteolin (LUT), gallic acid (GA), protocatechuic acid (PA) and protocatechualdehyde (Pra) on inhibition of rat BPH and proliferation of BPH-1 cell line respectively, and further uncover whether it is related with the phytoestrogenic and / or phytoandrogenic activities. MATERIALS AND METHODS Estradiol/testosterone (1:100) was subcutaneous injected to induce BPH in a castrated rat model, and CS was orally administrated for 45 days. Then the weights of the body and prostate were recorded, the pathogenesis changes of prostate were analyzed by Hematoxylin and eosin (H&E) and immunohistochemical (IHC). The levels of 17β-estradiol (E2), testosterone, and dihydrotestosterone (DHT) from rats' serum were measured by enzyme-linked immunosorbent assay (ELISA). In vitro, human benign prostatic epithelial cell BPH-1 was cultured and treated with or without different CS compounds and DHT or E2. MTT and CCK-8 assays were performed to detect the regulatory effects on cell proliferation. The expressions of PCNA, AR, ERα, ERβ, and steroid 5-α-reductases (SRD5A1 and SRD5A2) were further analyzed by western blotting upon treatment. RESULTS Treatment with CS significantly inhibited rat prostate enlargement, improved the pathological feature and reduced the thickness of smooth muscle layer. The up-regulated AR and ERα expressions and down-regulated ERβ in BPH rat prostate were significantly blocked after CS administration. Moreover, the enhanced values of E2/testosterone and the level of DHT in serum were also strongly inhibited in CS group compared with those in BPH groups. In cellular level, LUT, GA, PA, or Pra significantly inhibited DHT- or E2- induced BPH-1 cell proliferation and PCNA expressions. Consistently with the data in vivo, compounds from CS interfered the DHT or E2-regulated AR, ERα and ERβ expressions in BPH-1 cells as well. Importantly, the dramatic increased SRD5A1 and SRD5A2 expressions were observed in BPH rat prostates and DHT or E2-stimulated BPH-1 cells. However, treatment with CS in rat or with compounds isolated from CS in BPH-1 cells significantly blocked the induction of SRD5A1 and SRD5A2. CONCLUSIONS CS suppressed BPH development through interfering with prostatic AR, ERα/β, and SRD5A1/2 expressions, which provided evidence of CS for BPH treatment.
Collapse
Affiliation(s)
- Rui Tao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Lin Miao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Xiean Yu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - John Owoicho Orgah
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Oche Barnabas
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Yanxu Chang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Erwei Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Guanwei Fan
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China.
| | - Xiumei Gao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
22
|
Madersbacher S, Sampson N, Culig Z. Pathophysiology of Benign Prostatic Hyperplasia and Benign Prostatic Enlargement: A Mini-Review. Gerontology 2019; 65:458-464. [PMID: 30943489 DOI: 10.1159/000496289] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 12/18/2018] [Indexed: 01/13/2023] Open
Abstract
Benign prostatic hyperplasia (BPH), benign prostatic enlargement (BPE) and lower urinary tract symptoms (LUTS) belong to the most frequent diseases in ageing men. Beyond the 6th decade of life, more than 30% of men suffer from moderate to severe LUTS requiring intervention. The pathophysiology of BPH/BPE is still incompletely understood. The dominant role of the androgen system and the androgen receptor is well defined. Androgen receptors are expressed in BPH tissue in which they are activated by the potent androgen dihydrotestosterone. Synthesis of dihydrotestosterone is under control of the 5α-reductase enzyme, activity of which is antagonized by finasteride and dutasteride. More recently, the impact of prostatic inflammation and metabolic parameters particularly for the development of BPE and LUTS has increasingly been recognized. A better understanding of the pathophysiology is a prerequisite for the development of novel, more effective medical treatment options.
Collapse
Affiliation(s)
- Stephan Madersbacher
- Department of Urology, Kaiser Franz Josef Hospital, Vienna, Austria,
- Sigmund Freud Private University, Vienna, Austria,
| | - Natalie Sampson
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Zoran Culig
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
23
|
Ryu JM, Jang GY, Park D, Woo KS, Kim TM, Jeong HS, Kim DJ. Effect of sorghum ethyl-acetate extract on benign prostatic hyperplasia induced by testosterone in Sprague-Dawley rats. Biosci Biotechnol Biochem 2018; 82:2101-2108. [PMID: 30124113 DOI: 10.1080/09168451.2018.1507721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Benign prostatic hyperplasia (BPH) is commonly observed in men > 50 years worldwide. Phytotherapy is one of the many treatment options. Sorghum (Sorghum bicolor L.) contains various health-improving phytochemicals with antioxidant and inhibitory activities on cell proliferation, both in vitro and in vivo. To confirm the effects of Donganme sorghum ethyl-acetate extract (DSEE) on BPH, we induced BPH in Spragye-Dawley rats using exogenous testosterone. We measured prostate weight, examined prostrates histopathologically, and analyzed mRNAs associated with male hormones and proteins associated with cell proliferation in the prostate. DSEE inhibited weight gain of the prostate; decreased mRNA expressions of androgen receptor and 5α-reductase II; and improved histopathological symptoms, the protein-expressed ratio of Bax/Bcl-2, and the oxidative status of BPH induced by testosterone in SD rats. Therefore, DSEE may have potential as a preventive or therapeutic agent against BPH.
Collapse
Affiliation(s)
- Jae-Myun Ryu
- a Veterinary Medical Center and College of Veterinary Medicine , Chungbuk National University , Cheongju , Korea
| | - Gwi Yeong Jang
- b Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science , Rural Development Administration , Eumseong , Korea
| | - Dongsun Park
- c Department of Biology Education , Korea National University of Education , Cheongju , Korea
| | - Koan Sik Woo
- d Department of Central Area Science, National Institute of Crop Science , Rural Development Administration , Suwon , Korea
| | - Tae Myoung Kim
- a Veterinary Medical Center and College of Veterinary Medicine , Chungbuk National University , Cheongju , Korea
| | - Heon Sang Jeong
- e Department of Food Science and Biotechnology , Chungbuk National University , Cheongju , Korea
| | - Dae Joong Kim
- a Veterinary Medical Center and College of Veterinary Medicine , Chungbuk National University , Cheongju , Korea
| |
Collapse
|
24
|
Anti-Inflammatory and Antioxidant Effects of Kelong-Capsule on Testosterone-Induced Benign Prostatic Hyperplasia in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:5290514. [PMID: 30046340 PMCID: PMC6038470 DOI: 10.1155/2018/5290514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 02/06/2018] [Accepted: 03/21/2018] [Indexed: 02/06/2023]
Abstract
Benign prostatic hyperplasia (BPH) is a common disease in the current ageing male population. This research aims to study the effects of Kelong-Capsules (KLC) on testosterone-induced BPH. Thirty rats were randomly divided into normal group, model group, and three treatment groups. Three treatment groups were given KLC (3.6 g/kg), KLC (7.2 g/kg), and finasteride (0.9 mg/kg), respectively, for 28 days after establishing the animal model. The BPH rat models were evaluated by Traditional Chinese Medicine (TCM) symptoms and prostate index (PI). Results indicated that three treatment groups all alleviated the pathological changes of prostate and kidney at different levels. Compared with the model group, the PI of the groups treated with KLC (7.2 g/kg) and finasteride decreased significantly. The expressions of NF-E2 related factor 2 (Nrf-2) and quinine oxidoreductase (NQO1) in the group treated with KLC (3.6 g/kg) increased markedly (p < 0.01). The cyclooxygenase-2 (COX-2) protein expression of the group treated with KLC (7.2 g/kg) was increased (p < 0.01). In conclusion, KLC could obviously inhibit the growth of prostate, and KLC (3.6 g/kg) could promote the expressions of Nrf2 and NQO1.
Collapse
|