1
|
Tost J, Ak-Aksoy S, Campa D, Corradi C, Farinella R, Ibáñez-Costa A, Dubrot J, Earl J, Melian EB, Kataki A, Kolnikova G, Madjarov G, Chaushevska M, Strnadel J, Tanić M, Tomas M, Dubovan P, Urbanova M, Buocikova V, Smolkova B. Leveraging epigenetic alterations in pancreatic ductal adenocarcinoma for clinical applications. Semin Cancer Biol 2025; 109:101-124. [PMID: 39863139 DOI: 10.1016/j.semcancer.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy characterized by late detection and poor prognosis. Recent research highlights the pivotal role of epigenetic alterations in driving PDAC development and progression. These changes, in conjunction with genetic mutations, contribute to the intricate molecular landscape of the disease. Specific modifications in DNA methylation, histone marks, and non-coding RNAs are emerging as robust predictors of disease progression and patient survival, offering the potential for more precise prognostic tools compared to conventional clinical staging. Moreover, the detection of epigenetic alterations in blood and other non-invasive samples holds promise for earlier diagnosis and improved management of PDAC. This review comprehensively summarises current epigenetic research in PDAC and identifies persisting challenges. These include the complex nature of epigenetic profiles, tumour heterogeneity, limited access to early-stage samples, and the need for highly sensitive liquid biopsy technologies. Addressing these challenges requires the standardisation of methodologies, integration of multi-omics data, and leveraging advanced computational tools such as machine learning and artificial intelligence. While resource-intensive, these efforts are essential for unravelling the functional consequences of epigenetic changes and translating this knowledge into clinical applications. By overcoming these hurdles, epigenetic research has the potential to revolutionise the management of PDAC and improve patient outcomes.
Collapse
Affiliation(s)
- Jorg Tost
- Centre National de Recherche en Génomique Humaine, CEA - Institut de Biologie François Jacob, University Paris - Saclay, Evry, France.
| | - Secil Ak-Aksoy
- Bursa Uludag University Faculty of Medicine, Medical Microbiology, Bursa 16059, Turkey.
| | - Daniele Campa
- Department of Biology, University of Pisa, via Derna 1, Pisa 56126, Italy.
| | - Chiara Corradi
- Department of Biology, University of Pisa, via Derna 1, Pisa 56126, Italy.
| | - Riccardo Farinella
- Department of Biology, University of Pisa, via Derna 1, Pisa 56126, Italy.
| | - Alejandro Ibáñez-Costa
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Department of Cell Biology, Physiology, and Immunology, University of Cordoba, Reina Sofia University Hospital, Edificio IMIBIC, Avenida Men´endez Pidal s/n, Cordoba 14004, Spain.
| | - Juan Dubrot
- Solid Tumors Program, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain.
| | - Julie Earl
- Biomarkers and Personalized Approach to Cancer (BIOPAC) Group, Ramón y Cajal Institute for Health Research (IRYCIS), Ctra Colmenar Viejo Km 9.100, CIBERONC, Madrid 28034, Spain.
| | - Emma Barreto Melian
- Biomarkers and Personalized Approach to Cancer (BIOPAC) Group, Ramón y Cajal Institute for Health Research (IRYCIS), Ctra Colmenar Viejo Km 9.100, CIBERONC, Madrid 28034, Spain
| | - Agapi Kataki
- A' Department of Propaedeutic Surgery, National and Kapodistrian University of Athens, Vas. Sofias 114, Athens 11527, Greece.
| | - Georgina Kolnikova
- Department of Pathology, National Cancer Institute in Bratislava, Klenova 1, Bratislava 83310, Slovakia.
| | - Gjorgji Madjarov
- Ss. Cyril and Methodius University - Faculty of Computer Science and Engineering, Rudjer Boshkovikj 16, Skopje 1000, Macedonia.
| | - Marija Chaushevska
- Ss. Cyril and Methodius University - Faculty of Computer Science and Engineering, Rudjer Boshkovikj 16, Skopje 1000, Macedonia; gMendel ApS, Fruebjergvej 3, Copenhagen 2100, Denmark.
| | - Jan Strnadel
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin 036 01, Slovakia.
| | - Miljana Tanić
- Experimental Oncology Department, Institute for Oncology and Radiology of Serbia, Serbia; UCL Cancer Institute, University College London, London WC1E 6DD, UK.
| | - Miroslav Tomas
- Department of Surgical Oncology, National Cancer Institute in Bratislava and Slovak Medical University in Bratislava, Klenova 1, Bratislava 83310, Slovakia.
| | - Peter Dubovan
- Department of Surgical Oncology, National Cancer Institute in Bratislava and Slovak Medical University in Bratislava, Klenova 1, Bratislava 83310, Slovakia.
| | - Maria Urbanova
- Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, Bratislava 84505, Slovakia.
| | - Verona Buocikova
- Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, Bratislava 84505, Slovakia.
| | - Bozena Smolkova
- Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, Bratislava 84505, Slovakia.
| |
Collapse
|
2
|
Hu Y, Liu W, Fang W, Dong Y, Zhang H, Luo Q. Tumor energy metabolism: implications for therapeutic targets. MOLECULAR BIOMEDICINE 2024; 5:63. [PMID: 39609317 PMCID: PMC11604893 DOI: 10.1186/s43556-024-00229-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/30/2024] Open
Abstract
Tumor energy metabolism plays a crucial role in the occurrence, progression, and drug resistance of tumors. The study of tumor energy metabolism has gradually become an emerging field of tumor treatment. Recent studies have shown that epigenetic regulation is closely linked to tumor energy metabolism, influencing the metabolic remodeling and biological traits of tumor cells. This review focuses on the primary pathways of tumor energy metabolism and explores therapeutic strategies to target these pathways. It covers key areas such as glycolysis, the Warburg effect, mitochondrial function, oxidative phosphorylation, and the metabolic adaptability of tumors. Additionally, this article examines the role of the epigenetic regulator SWI/SNF complex in tumor metabolism, specifically its interactions with glucose, lipids, and amino acids. Summarizing therapeutic strategies aimed at these metabolic pathways, including inhibitors of glycolysis, mitochondrial-targeted drugs, exploitation of metabolic vulnerabilities, and recent developments related to SWI/SNF complexes as potential targets. The clinical significance, challenges, and future directions of tumor metabolism research are discussed, including strategies to overcome drug resistance, the potential of combination therapy, and the application of new technologies.
Collapse
Affiliation(s)
- Youwu Hu
- The Public Experimental Center of Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, Guizhou, 563003, China
- Department of Pathology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Wanqing Liu
- The Public Experimental Center of Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, Guizhou, 563003, China
- Department of Pathology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - WanDi Fang
- Department of Pathology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yudi Dong
- The Public Experimental Center of Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, Guizhou, 563003, China
| | - Hong Zhang
- Department of Pathology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qing Luo
- The Public Experimental Center of Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, Guizhou, 563003, China.
- Guizhou Provincial Key Laboratory of Cell Engineering, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
3
|
Yavas A, Ozcan K, Adsay NV, Balci S, Tarcan ZC, Hechtman JF, Luchini C, Scarpa A, Lawlor RT, Mafficini A, Reid MD, Xue Y, Yang Z, Haye K, Bellizzi AM, Vanoli A, Benhamida J, Balachandran V, Jarnagin W, Park W, O'Reilly EM, Klimstra DS, Basturk O. SWI/SNF Complex-Deficient Undifferentiated Carcinoma of the Pancreas: Clinicopathologic and Genomic Analysis. Mod Pathol 2024; 37:100585. [PMID: 39094734 PMCID: PMC11585460 DOI: 10.1016/j.modpat.2024.100585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/12/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
Inactivating alterations in the SWItch/Sucrose NonFermentable (SWI/SNF) Chromatin Remodeling Complex subunits have been described in multiple tumor types. Recent studies focused on SMARC subunits of this complex to understand their relationship with tumor characteristics and therapeutic opportunities. To date, pancreatic cancer with these alterations has not been well studied, although isolated cases of undifferentiated carcinomas have been reported. Herein, we screened 59 pancreatic undifferentiated carcinomas for alterations in SWI/SNF complex-related (SMARCB1 [BAF47/INI1], SMARCA4 [BRG1], SMARCA2 [BRM]) proteins and/or genes using immunohistochemistry and/or next-generation sequencing. Cases with alterations in SWI/SNF complex-related proteins/genes were compared with cases without alterations, as well as with 96 conventional pancreatic ductal adenocarcinomas (PDAC). In all tumor groups, mismatch repair and PD-L1 protein expression were also evaluated. Thirty of 59 (51%) undifferentiated carcinomas had a loss of SWI/SNF complex-related protein expression or gene alteration. Twenty-seven of 30 (90%) SWI-/SNF-deficient undifferentiated carcinomas had rhabdoid morphology (vs 9/29 [31%] SWI-/SNF-retained undifferentiated carcinomas; P < .001) and all expressed cytokeratin, at least focally. Immunohistochemically, SMARCB1 protein expression was absent in 16/30 (53%) cases, SMARCA2 in 4/30 (13%), and SMARCA4 in 4/30 (13%); both SMARCB1 and SMARCA2 protein expressions were absent in 1/30 (3%). Five of 8 (62.5%) SWI-/SNF-deficient undifferentiated carcinomas that displayed loss of SMARCB1 protein expression by immunohistochemistry were found to have corresponding SMARCB1 deletions by next-generation sequencing. Analysis of canonical driver mutations for PDAC in these cases showed KRAS (2/5) and TP53 (2/5) abnormalities. Median combined positive score for PD-L1 (E1L3N) was significantly higher in the undifferentiated carcinomas with/without SWI/SNF deficiency compared with the conventional PDACs (P < .001). SWI-/SNF-deficient undifferentiated carcinomas were larger (P < .001) and occurred in younger patients (P < .001). Patients with SWI-/SNF-deficient undifferentiated carcinoma had worse overall survival compared with patients with SWI-/SNF-retained undifferentiated carcinoma (P = .004) and PDAC (P < .001). Our findings demonstrate that SWI-/SNF-deficient pancreatic undifferentiated carcinomas are frequently characterized by rhabdoid morphology, exhibit highly aggressive behavior, and have a negative prognostic impact. The ones with SMARCB1 deletions appear to be frequently KRAS wild type. Innovative developmental therapeutic strategies targeting this genomic basis of the SWI/SNF complex and the therapeutic implications of EZH2 inhibition (NCT03213665), SMARCA2 degrader (NCT05639751), or immunotherapy are currently under investigation.
Collapse
Affiliation(s)
- Aslihan Yavas
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Pathology, Now with Institute of Pathology, Heinrich Heine University and University Hospital of Düsseldorf, Düsseldorf, Germany
| | - Kerem Ozcan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Now with Department of Pathology and Laboratory Medicine, Henry Ford Hospital, Detroit, Michigan
| | - N Volkan Adsay
- The Department of Pathology, Koç University Hospital and Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Serdar Balci
- Department of Pathology, Memorial Healthcare Group, Istanbul, Turkey
| | - Zeynep C Tarcan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; David M. Rubenstein Center for Pancreatic Cancer Research, New York, New York
| | - Jaclyn F Hechtman
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Now with Caris Life Sciences, Miami, Florida
| | - Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy; ARC-Net Research Center, University and Hospital Trust of Verona, Verona, Italy
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Rita T Lawlor
- Department of Engineering for Innovation Medicine (DIMI), University of Verona, Verona, Italy
| | - Andrea Mafficini
- Department of Engineering for Innovation Medicine (DIMI), University of Verona, Verona, Italy
| | - Michelle D Reid
- Department of Pathology, School of Medicine, Emory University, Atlanta, Georgia
| | - Yue Xue
- Department of Pathology, University Hospitals, Cleveland, Ohio
| | - Zhaohai Yang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Kester Haye
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Andrew M Bellizzi
- Department of Pathology, University of Iowa, Iowa City, Iowa; Department of Molecular Medicine, Unit of Anatomic Pathology, University of Pavia, Pavia, Italy
| | - Alessandro Vanoli
- Unit of Anatomic Pathology, Fondazione IRCCS San Matteo Hospital, Pavia, Italy
| | - Jamal Benhamida
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Vinod Balachandran
- David M. Rubenstein Center for Pancreatic Cancer Research, New York, New York; Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - William Jarnagin
- David M. Rubenstein Center for Pancreatic Cancer Research, New York, New York; Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Wungki Park
- David M. Rubenstein Center for Pancreatic Cancer Research, New York, New York; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Eileen M O'Reilly
- David M. Rubenstein Center for Pancreatic Cancer Research, New York, New York; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David S Klimstra
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Now with Paige.AI, New York, New York
| | - Olca Basturk
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; David M. Rubenstein Center for Pancreatic Cancer Research, New York, New York.
| |
Collapse
|
4
|
Chen IY, Ettel MG, Bell PD, Huber AR, Findeis-Hosey JJ, Wang W, Hezel AF, Dunne RF, Drage MG, Agostini-Vulaj D. SWI/SNF chromatin remodeling complex in pancreatic ductal adenocarcinoma: Clinicopathologic and immunohistochemical study. Hum Pathol 2024; 144:40-45. [PMID: 38307342 DOI: 10.1016/j.humpath.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/04/2024]
Abstract
The SWItch/Sucrose Non-Fermentable (SWI/SNF) complex is a multimeric protein involved in transcription regulation and DNA damage repair. SWI/SNF complex abnormalities are observed in approximately 14-34 % of pancreatic ductal adenocarcinomas (PDACs). Herein, we evaluated the immunohistochemical expression of a subset of the SWI/SNF complex proteins (ARID1A, SMARCA4/BRG1, SMARCA2/BRM, and SMARCB1/INI1) within our PDAC tissue microarray to determine whether SWI/SNF loss is associated with any clinicopathologic features or patient survival in PDAC. In our cohort, 13 of 353 (3.7 %) PDACs showed deficient SWI/SNF complex expression, which included 11 (3.1 %) with ARID1A loss, 1 (0.3 %) with SMARCA4/BRG1 loss, and 1 (0.3 %) with SMARCA2/BRM loss. All cases were SMARCB1/INI1 proficient. The SWI/SNF-deficient PDACs were more frequently identified in older patients with a mean age of 71.6 years (SD = 7.78) compared to the SWI/SNF-proficient PDACs which occurred at a mean age of 65.2 years (SD = 10.95) (P = 0.013). The SWI/SNF-deficient PDACs were associated with higher histologic grade, compared to the SWI/SNF-proficient PDACs (P = 0.029). No other significant clinicopathologic differences were noted between SWI/SNF-deficient and SWI/SNF-proficient PDACs. On follow-up, no significant differences were seen for overall survival and progression-free survival between SWI/SNF-deficient and SWI/SNF-proficient PDACs (both with P > 0.05). In summary, SWI/SNF-deficient PDACs most frequently demonstrate ARID1A loss. SWI/SNF-deficient PDACs are associated with older age and higher histologic grade. No other significant associations among other clinicopathologic parameters were seen in SWI/SNF-deficient PDACs including survival.
Collapse
Affiliation(s)
- Irene Y Chen
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Mark G Ettel
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Phoenix D Bell
- Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Aaron R Huber
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Jennifer J Findeis-Hosey
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Wenjia Wang
- Department of Medicine, Division of Hematology and Oncology, University of Rochester Medical Center, Rochester, NY, USA
| | - Aram F Hezel
- Department of Medicine, Division of Hematology and Oncology, University of Rochester Medical Center, Rochester, NY, USA
| | - Richard F Dunne
- Department of Medicine, Division of Hematology and Oncology, University of Rochester Medical Center, Rochester, NY, USA
| | - Michael G Drage
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Diana Agostini-Vulaj
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
5
|
Moreta-Moraleda C, Queralt C, Vendrell-Ayats C, Forcales S, Martínez-Balibrea E. Chromatin factors: Ready to roll as biomarkers in metastatic colorectal cancer? Pharmacol Res 2023; 196:106924. [PMID: 37709185 DOI: 10.1016/j.phrs.2023.106924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/29/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023]
Abstract
Colorectal cancer (CRC) ranks as the third most prevalent cancer globally and stands as the fourth leading cause of cancer-related fatalities in 2020. Survival rates for metastatic disease have slightly improved in recent decades, with clinical trials showing median overall survival of approximately 24-30 months. This progress can be attributed to the integration of chemotherapeutic treatments alongside targeted therapies and immunotherapy. Despite these modest improvements, the primary obstacle to successful treatment for advanced CRC lies in the development of chemoresistance, whether inherent or acquired, which remains the major cause of treatment failure. Epigenetics has emerged as a hallmark of cancer, contributing to master transcription regulation and genome stability maintenance. As a result, epigenetic factors are starting to appear as potential clinical biomarkers for diagnosis, prognosis, and prediction of treatment response in CRC.In recent years, numerous studies have investigated the influence of DNA methylation, histone modifications, and chromatin remodelers on responses to chemotherapeutic treatments. While there is accumulating evidence indicating their significant involvement in various types of cancers, the exact relationship between chromatin landscapes and treatment modulation in CRC remains elusive. This review aims to provide a comprehensive summary of the most pertinent and extensively researched epigenetic-associated mechanisms described between 2015 and 2022 and their potential usefulness as predictive biomarkers in the metastatic disease.
Collapse
Affiliation(s)
- Cristina Moreta-Moraleda
- Immunology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, University of Barcelona, c/Feixa Llarga s/n, 08917 L'Hospitalet de Llobregat, Barcelona, Spain; Group of Inflammation, Immunity and Cancer, Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell), The Bellvitge Biomedical Research Institute ( IDIBELL), Hospital Duran i Reynals 3a Planta, Av. Gran Via de l'Hospitalet 199, 08908 L'Hospitalet de Llobregat, Spain
| | - Cristina Queralt
- ProCURE Program, Catalan Instiute of Oncology, Carretera de Can Ruti, camí de les escoles s/n, 08916 Badalona, Spain
| | - Carla Vendrell-Ayats
- ProCURE Program, Catalan Instiute of Oncology, Carretera de Can Ruti, camí de les escoles s/n, 08916 Badalona, Spain; CARE Program, Germans Trias I Pujol Research Institute (IGTP), Carretera de Can Ruti, camí de les escoles s/n, 08916 Badalona, Spain
| | - Sonia Forcales
- Serra Húnter Programme, Immunology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, University of Barcelona, c/Feixa Llarga s/n, 08917 L'Hospitalet de Llobregat, Barcelona, Spain; Group of Inflammation, Immunity and Cancer, Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell), The Bellvitge Biomedical Research Institute ( IDIBELL), Hospital Duran i Reynals 3a Planta, Av. Gran Via de l'Hospitalet 199, 08908 L'Hospitalet de Llobregat, Spain.
| | - Eva Martínez-Balibrea
- ProCURE Program, Catalan Instiute of Oncology, Carretera de Can Ruti, camí de les escoles s/n, 08916 Badalona, Spain; CARE Program, Germans Trias I Pujol Research Institute (IGTP), Carretera de Can Ruti, camí de les escoles s/n, 08916 Badalona, Spain.
| |
Collapse
|
6
|
Liu S, Suhail Y, Novin A, Perpetua L, Kshitiz. Metastatic Transition of Pancreatic Ductal Cell Adenocarcinoma Is Accompanied by the Emergence of Pro-Invasive Cancer-Associated Fibroblasts. Cancers (Basel) 2022; 14:2197. [PMID: 35565326 PMCID: PMC9104173 DOI: 10.3390/cancers14092197] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 02/08/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) are now appreciated as key regulators of cancer metastasis, particularly in cancers with high stromal content, e.g., pancreatic ductal cell carcinoma (PDAC). However, it is not yet well understood if fibroblasts are always primed to be cooperative in PDAC transition to metastasis, if they undergo transformation which ensures their cooperativity, and if such transformations are cancer-driven or intrinsic to fibroblasts. We performed a fibroblast-centric analysis of PDAC cancer, as it transitioned from the primary site to trespass stromal compartment reaching the lymph node using published single-cell RNA sequencing data by Peng et al. We have characterized the change in fibroblast response to cancer from a normal wound healing response in the initial stages to the emergence of subclasses with myofibroblast and inflammatory fibroblasts such as signatures. We have previously posited "Evolved Levels of Invasibility (ELI)", a framework describing the evolution of stromal invasability as a selected phenotype, which explains the large and correlated reduction in stromal invasion by placental trophoblasts and cancer cells in certain mammals. Within PDAC samples, we found large changes in fibroblast subclasses at succeeding stages of PDAC progression, with the emergence of specific subclasses when cancer trespasses stroma to metastasize to proximal lymph nodes (stage IIA to IIB). Surprisingly, we found that the initial metastatic transition is accompanied by downregulation of ELI-predicted pro-resistive genes, and the emergence of a subclass of fibroblasts with ELI-predicted increased invasibility. Interestingly, this trend was also observed in stellate cells. Using a larger cohort of bulk RNAseq data from The Cancer Genome Atlas for PDAC cancers, we confirmed that genes describing this emergent fibroblast subclass are also correlated with lymph node metastasis of cancer cells. Experimental testing of selected genes characterizing pro-resistive and pro-invasive fibroblast clusters confirmed their contribution in regulating stromal invasability as a phenotype. Our data confirm that the complexity of stromal response to cancer is really a function of stage-wise emergence of distinct fibroblast clusters, characterized by distinct gene sets which confer initially a predominantly pro-resistive and then a pro-invasive property to the stroma. Stromal response therefore transitions from being tumor-limiting to a pro-metastatic state, facilitating stromal trespass and the onset of metastasis.
Collapse
Affiliation(s)
- Shaofei Liu
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06030, USA; (S.L.); (Y.S.); (A.N.)
- Center for Cell Analysis and Modeling, University of Connecticut Health, Farmington, CT 06030, USA
| | - Yasir Suhail
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06030, USA; (S.L.); (Y.S.); (A.N.)
- Center for Cell Analysis and Modeling, University of Connecticut Health, Farmington, CT 06030, USA
| | - Ashkan Novin
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06030, USA; (S.L.); (Y.S.); (A.N.)
| | - Lorrie Perpetua
- Research Tissue Repository, University of Connecticut Health, Farmington, CT 06030, USA;
| | - Kshitiz
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06030, USA; (S.L.); (Y.S.); (A.N.)
- Center for Cell Analysis and Modeling, University of Connecticut Health, Farmington, CT 06030, USA
| |
Collapse
|
7
|
Pozdeyev N, Fishbein L, Gay LM, Sokol ES, Hartmaier R, Ross JS, Darabi S, Demeure MJ, Kar A, Foust L, Koc K, Bowles DW, Leong S, Wierman ME, Kiseljak-Vassiliades K. Targeted genomic analysis of 364 adrenocortical carcinomas. Endocr Relat Cancer 2021; 28:671-681. [PMID: 34410225 PMCID: PMC8384129 DOI: 10.1530/erc-21-0040] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/21/2021] [Indexed: 12/13/2022]
Abstract
Despite recent advances in elucidating molecular pathways underlying adrenocortical carcinoma (ACC), this orphan malignancy is associated with poor survival. Identification of targetable genomic alterations is critical to improve outcomes. The objective of this study was to characterize the genomic profile of a large cohort of patient ACC samples to identify actionable genomic alterations. Three hundred sixty-four individual patient ACC tumors were analyzed. The median age of the cohort was 52 years and 60.9% (n = 222) were female. ACC samples had common alterations in epigenetic pathways with 38% of tumors carrying alterations in genes involved in histone modification, 21% in telomere lengthening, and 21% in SWI/SNF complex. Tumor suppressor genes and WNT signaling pathway were each mutated in 51% of tumors. Fifty (13.7%) ACC tumors had a genomic alteration in genes involved in the DNA mismatch repair (MMR) pathway with many tumors also displaying an unusually high number of mutations and a corresponding MMR mutation signature. In addition, genomic alterations in several genes not previously associated with ACC were observed, including IL7R, LRP1B, FRS2 mutated in 6, 8 and 4% of tumors, respectively. In total, 58.5% of ACC (n = 213) had at least one potentially actionable genomic alteration in 46 different genes. As more than half of ACC have one or more potentially actionable genomic alterations, this highlights the value of targeted sequencing for this orphan cancer with a poor prognosis. In addition, significant incidence of MMR gene alterations suggests that immunotherapy is a promising therapeutic for a considerable subset of ACC patients.
Collapse
Affiliation(s)
- Nikita Pozdeyev
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Colorado
- Division of Biomedical Informatics & Personalized Medicine, Department of Medicine, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Colorado
| | - Lauren Fishbein
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Colorado
- Division of Biomedical Informatics & Personalized Medicine, Department of Medicine, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Colorado
| | | | | | | | - Jeffrey S. Ross
- Foundation Medicine Inc. Cambridge Massachusetts
- Departments of Pathology and Urology, Upstate Medical University, Syracuse, New York
| | - Sourat Darabi
- Hoag Family Center Institute, Newport Beach, California
| | - Michael J. Demeure
- Hoag Family Center Institute, Newport Beach, California
- Translational Genomics Research Institute, Phoenix, Arizona
| | - Adwitiya Kar
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Colorado
| | - Lindsey Foust
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Colorado
| | - Katrina Koc
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Colorado
| | - Daniel W. Bowles
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Colorado
| | - Stephen Leong
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Colorado
| | - Margaret E. Wierman
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Colorado
- Research Service Veterans Affairs Medical Center, Aurora Colorado 80045
| | - Katja Kiseljak-Vassiliades
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Colorado
- Research Service Veterans Affairs Medical Center, Aurora Colorado 80045
| |
Collapse
|
8
|
Tsuda M, Fukuda A, Kawai M, Araki O, Seno H. The role of the SWI/SNF chromatin remodeling complex in pancreatic ductal adenocarcinoma. Cancer Sci 2021; 112:490-497. [PMID: 33301642 PMCID: PMC7894000 DOI: 10.1111/cas.14768] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 12/22/2022] Open
Abstract
ATP-dependent chromatin remodeling complexes are a group of epigenetic regulators that can alter the assembly of nucleosomes and regulate the accessibility of transcription factors to DNA in order to modulate gene expression. One of these complexes, the SWI/SNF chromatin remodeling complex is mutated in more than 20% of human cancers. We have investigated the roles of the SWI/SNF complex in pancreatic ductal adenocarcinoma (PDA), which is the most lethal type of cancer. Here, we reviewed the recent literature regarding the role of the SWI/SNF complex in pancreatic tumorigenesis and current knowledge about therapeutic strategies targeting the SWI/SNF complex in PDA. The subunits of the SWI/SNF complex are mutated in 14% of human PDA. Recent studies have shown that they have context-dependent oncogenic or tumor-suppressive roles in pancreatic carcinogenesis. To target its tumor-suppressive properties, synthetic lethal strategies have recently been developed. In addition, their oncogenic properties could be novel therapeutic targets. The SWI/SNF subunits are potential therapeutic targets for PDA, and further understanding of the precise role of the SWI/SNF complex subunits in PDA is required for further development of novel strategies targeting SWI/SNF subunits against PDA.
Collapse
Affiliation(s)
- Motoyuki Tsuda
- Department of Gastroenterology and HepatologyKyoto University Graduate School of MedicineKyotoJapan
- Department of Gastroenterology and HepatologyKindai University Faculty of MedicineOsaka‐sayama CityJapan
| | - Akihisa Fukuda
- Department of Gastroenterology and HepatologyKyoto University Graduate School of MedicineKyotoJapan
| | - Munenori Kawai
- Department of Gastroenterology and HepatologyKyoto University Graduate School of MedicineKyotoJapan
| | - Osamu Araki
- Department of Gastroenterology and HepatologyKyoto University Graduate School of MedicineKyotoJapan
| | - Hiroshi Seno
- Department of Gastroenterology and HepatologyKyoto University Graduate School of MedicineKyotoJapan
| |
Collapse
|
9
|
A highly annotated database of genes associated with platinum resistance in cancer. Oncogene 2021; 40:6395-6405. [PMID: 34645978 PMCID: PMC8602037 DOI: 10.1038/s41388-021-02055-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/21/2021] [Accepted: 09/30/2021] [Indexed: 01/10/2023]
Abstract
Platinum-based chemotherapy, including cisplatin, carboplatin, and oxaliplatin, is prescribed to 10-20% of all cancer patients. Unfortunately, platinum resistance develops in a significant number of patients and is a determinant of clinical outcome. Extensive research has been conducted to understand and overcome platinum resistance, and mechanisms of resistance can be categorized into several broad biological processes, including (1) regulation of drug entry, exit, accumulation, sequestration, and detoxification, (2) enhanced repair and tolerance of platinum-induced DNA damage, (3) alterations in cell survival pathways, (4) alterations in pleiotropic processes and pathways, and (5) changes in the tumor microenvironment. As a resource to the cancer research community, we provide a comprehensive overview accompanied by a manually curated database of the >900 genes/proteins that have been associated with platinum resistance over the last 30 years of literature. The database is annotated with possible pathways through which the curated genes are related to platinum resistance, types of evidence, and hyperlinks to literature sources. The searchable, downloadable database is available online at http://ptrc-ddr.cptac-data-view.org .
Collapse
|
10
|
Hasan N, Ahuja N. The Emerging Roles of ATP-Dependent Chromatin Remodeling Complexes in Pancreatic Cancer. Cancers (Basel) 2019; 11:E1859. [PMID: 31769422 PMCID: PMC6966483 DOI: 10.3390/cancers11121859] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 02/08/2023] Open
Abstract
Pancreatic cancer is an aggressive cancer with low survival rates. Genetic and epigenetic dysregulation has been associated with the initiation and progression of pancreatic tumors. Multiple studies have pointed to the involvement of aberrant chromatin modifications in driving tumor behavior. ATP-dependent chromatin remodeling complexes regulate chromatin structure and have critical roles in stem cell maintenance, development, and cancer. Frequent mutations and chromosomal aberrations in the genes associated with subunits of the ATP-dependent chromatin remodeling complexes have been detected in different cancer types. In this review, we summarize the current literature on the genomic alterations and mechanistic studies of the ATP-dependent chromatin remodeling complexes in pancreatic cancer. Our review is focused on the four main subfamilies: SWItch/sucrose non-fermentable (SWI/SNF), imitation SWI (ISWI), chromodomain-helicase DNA-binding protein (CHD), and INOsitol-requiring mutant 80 (INO80). Finally, we discuss potential novel treatment options that use small molecules to target these complexes.
Collapse
Affiliation(s)
| | - Nita Ahuja
- Department of Surgery, Yale University School of Medicine, New Haven, CT 06520, USA;
| |
Collapse
|
11
|
De P, Dey N. Mutation-Driven Signals of ARID1A and PI3K Pathways in Ovarian Carcinomas: Alteration Is An Opportunity. Int J Mol Sci 2019; 20:ijms20225732. [PMID: 31731647 PMCID: PMC6888220 DOI: 10.3390/ijms20225732] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/08/2019] [Accepted: 11/13/2019] [Indexed: 12/24/2022] Open
Abstract
The chromosome is a functionally dynamic structure. The dynamic nature of chromosome functionally connects it to almost every event within a cell, in health and sickness. Chromatin remodeling system acts in unison with the cell survival pathway in mediating a variety of cellular functions, including mitosis, differentiation, DNA damage repair, and apoptosis. In humans, the 16 SWI/SNF complexes are a class of nucleosome remodelers, and ARID1A, an epigenetic tumor suppressor, is a member of mammalian 17 chromatin remodeling complex, SWI/SNF. Alterations of chromatin remodeling system contribute to tumorigenic events in various cancers, including ovarian cancers. Oncogenic changes of genes of the PI3K pathway are one of the potential genetic determinants of ovarian carcinomas. In this review, we present the data demonstrating the co-occurrence of mutations of ARID1A and the PI3K pathway in our cohort of ovarian cancers from the Avera Cancer Institute (SD, USA). Taking into account data from our cohort and the cBioPortal, we interrogate the opportunity provided by this co-occurrence in the context of mutation-driven signals in the life cycle of a tumor cell and its response to the targeted anti-tumor drugs.
Collapse
Affiliation(s)
- Pradip De
- Translational Oncology Laboratory, Avera Cancer Institute, Sioux Falls, SD 57105, USA;
- Department of Internal Medicine, SSOM, University of South Dakota, Sioux Falls, SD 57105, USA
- VieCure, Greenwood Village, CO 80112, USA
| | - Nandini Dey
- Translational Oncology Laboratory, Avera Cancer Institute, Sioux Falls, SD 57105, USA;
- Department of Internal Medicine, SSOM, University of South Dakota, Sioux Falls, SD 57105, USA
- Correspondence:
| |
Collapse
|
12
|
Grasse S, Lienhard M, Frese S, Kerick M, Steinbach A, Grimm C, Hussong M, Rolff J, Becker M, Dreher F, Schirmer U, Boerno S, Ramisch A, Leschber G, Timmermann B, Grohé C, Lüders H, Vingron M, Fichtner I, Klein S, Odenthal M, Büttner R, Lehrach H, Sültmann H, Herwig R, Schweiger MR. Epigenomic profiling of non-small cell lung cancer xenografts uncover LRP12 DNA methylation as predictive biomarker for carboplatin resistance. Genome Med 2018; 10:55. [PMID: 30029672 PMCID: PMC6054719 DOI: 10.1186/s13073-018-0562-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 06/21/2018] [Indexed: 12/31/2022] Open
Abstract
Background Non-small cell lung cancer (NSCLC) is the most common cause of cancer-related deaths worldwide and is primarily treated with radiation, surgery, and platinum-based drugs like cisplatin and carboplatin. The major challenge in the treatment of NSCLC patients is intrinsic or acquired resistance to chemotherapy. Molecular markers predicting the outcome of the patients are urgently needed. Methods Here, we employed patient-derived xenografts (PDXs) to detect predictive methylation biomarkers for platin-based therapies. We used MeDIP-Seq to generate genome-wide DNA methylation profiles of 22 PDXs, their parental primary NSCLC, and their corresponding normal tissues and complemented the data with gene expression analyses of the same tissues. Candidate biomarkers were validated with quantitative methylation-specific PCRs (qMSP) in an independent cohort. Results Comprehensive analyses revealed that differential methylation patterns are highly similar, enriched in PDXs and lung tumor-specific when comparing differences in methylation between PDXs versus primary NSCLC. We identified a set of 40 candidate regions with methylation correlated to carboplatin response and corresponding inverse gene expression pattern even before therapy. This analysis led to the identification of a promoter CpG island methylation of LDL receptor-related protein 12 (LRP12) associated with increased resistance to carboplatin. Validation in an independent patient cohort (n = 35) confirmed that LRP12 methylation status is predictive for therapeutic response of NSCLC patients to platin therapy with a sensitivity of 80% and a specificity of 84% (p < 0.01). Similarly, we find a shorter survival time for patients with LRP12 hypermethylation in the TCGA data set for NSCLC (lung adenocarcinoma). Conclusions Using an epigenome-wide sequencing approach, we find differential methylation patterns from primary lung cancer and PDX-derived cancers to be very similar, albeit with a lower degree of differential methylation in primary tumors. We identify LRP12 DNA methylation as a powerful predictive marker for carboplatin resistance. These findings outline a platform for the identification of epigenetic therapy resistance biomarkers based on PDX NSCLC models. Electronic supplementary material The online version of this article (10.1186/s13073-018-0562-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sabrina Grasse
- Translational Epigenetics and Tumor Genetics, University Hospital Cologne, Cologne, Germany.,Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Matthias Lienhard
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Martin Kerick
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany.,Present Address: Department of Cell Biology and Immunology, Institute for Parasitology and Biomedicine, Granada, Spain
| | - Anne Steinbach
- Translational Epigenetics and Tumor Genetics, University Hospital Cologne, Cologne, Germany.,Department of Biology, Chemistry and Pharmacy, Free University Berlin, Berlin, Germany
| | - Christina Grimm
- Translational Epigenetics and Tumor Genetics, University Hospital Cologne, Cologne, Germany
| | - Michelle Hussong
- Translational Epigenetics and Tumor Genetics, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, CMMC, Cologne, Germany
| | - Jana Rolff
- Experimental Pharmacology and Oncology Berlin-Buch GmbH, Berlin, Germany
| | - Michael Becker
- Experimental Pharmacology and Oncology Berlin-Buch GmbH, Berlin, Germany
| | - Felix Dreher
- Alacris Theranostics GmbH Berlin, Berlin, Germany
| | - Uwe Schirmer
- Cancer Genome Research Group, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), and National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Translational Lung Research, Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Stefan Boerno
- Sequencing Core Facility, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Anna Ramisch
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Bernd Timmermann
- Sequencing Core Facility, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | | | - Martin Vingron
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Iduna Fichtner
- Experimental Pharmacology and Oncology Berlin-Buch GmbH, Berlin, Germany
| | - Sebastian Klein
- Institute of Pathology, University of Cologne, Cologne, Germany.,Else Kröner Forschungskolleg Clonal Evolution in Cancer, University Hospital Cologne, Weyertal 115b, 50931, Cologne, Germany
| | | | | | - Hans Lehrach
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany.,Alacris Theranostics GmbH Berlin, Berlin, Germany
| | - Holger Sültmann
- Cancer Genome Research Group, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), and National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Translational Lung Research, Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Ralf Herwig
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Michal R Schweiger
- Translational Epigenetics and Tumor Genetics, University Hospital Cologne, Cologne, Germany. .,Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany. .,Center for Molecular Medicine Cologne, CMMC, Cologne, Germany.
| |
Collapse
|
13
|
Caumanns JJ, Wisman GBA, Berns K, van der Zee AGJ, de Jong S. ARID1A mutant ovarian clear cell carcinoma: A clear target for synthetic lethal strategies. Biochim Biophys Acta Rev Cancer 2018; 1870:176-184. [PMID: 30025943 DOI: 10.1016/j.bbcan.2018.07.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 12/20/2022]
Abstract
SWI/SNF chromatin remodeling complexes play an important role in the epigenetic regulation of chromatin structure and gene transcription. Mutual exclusive subunits in the SWI/SNF complex include the DNA targeting members ARID1A and ARID1B as well as the ATPases SMARCA2 and SMARCA4. SWI/SNF complexes are mutated across many cancer types. The highest mutation incidence is found in ARID1A, primarily consisting of deleterious mutations. Current advances have reported synthetic lethal interactions with the loss of ARID1A in several cancer types. In this review, we discuss targets that are only important for tumor growth in an ARID1A mutant context. We focus on synthetic lethal strategies with ARID1A loss in ovarian clear cell carcinoma, a cancer with the highest ARID1A mutation incidence (46-57%). ARID1A directed lethal strategies that can be exploited clinically include targeting of the DNA repair proteins PARP and ATR, and the epigenetic factors EZH2, HDAC2, HDAC6 and BRD2.
Collapse
Affiliation(s)
- Joseph J Caumanns
- Department of Gynecologic Oncology, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - G Bea A Wisman
- Department of Gynecologic Oncology, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Katrien Berns
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Ate G J van der Zee
- Department of Gynecologic Oncology, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Steven de Jong
- Department of Medical Oncology, Cancer Research Centre Groningen, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| |
Collapse
|