1
|
Shu T, Li J, Gu J, Wu L, Xie P, Zhang D, Li W, Wan J, Zheng X. Long noncoding RNA UCA1 promotes the chondrogenic differentiation of human bone marrow mesenchymal stem cells via regulating PARP1 ubiquitination. Stem Cells 2024; 42:752-762. [PMID: 38829368 DOI: 10.1093/stmcls/sxae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 04/30/2024] [Indexed: 06/05/2024]
Abstract
Bone marrow mesenchymal stem cells (BMSCs) possess the potential to differentiate into cartilage cells. Long noncoding RNA (lncRNAs) urothelial carcinoma associated 1 (UCA1) has been confirmed to improve the chondrogenic differentiation of marrow mesenchymal stem cells (MSCs). Herein, we further investigated the effects and underlying mechanisms of these processes. The expression of UCA1 was positively associated with chondrogenic differentiation and the knockdown of UCA1 has been shown to attenuate the expression of chondrogenic markers. RNA pull-down assay and RNA immunoprecipitation showed that UCA1 could directly bind to PARP1 protein. UCA1 could improve PARP1 protein via facilitating USP9X-mediated PARP1 deubiquitination. Then these processes stimulated the NF-κB signaling pathway. In addition, PARP1 was declined in UCA1 knockdown cells, and silencing of PARP1 could diminish the increasing effects of UCA1 on the chondrogenic differentiation from MSCs and signaling pathway activation. Collectively, these outcomes suggest that UCA1 could act as a mediator of PARP1 protein ubiquitination and develop the chondrogenic differentiation of MSCs.
Collapse
Affiliation(s)
- Tao Shu
- Department of Orthopaedics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518000, People's Republic of China
- Department of Spine Surgery, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, People's Republic of China
| | - Jiachun Li
- Department of Orthopaedics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518000, People's Republic of China
| | - Juyuan Gu
- Department of Orthopedics, Hebei Medical University Third Hospital, Shijiazhuang, Hebei 050051, People's Republic of China
| | - Liang Wu
- Department of Orthopedics, South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, People's Republic of China
| | - Peng Xie
- Department of Nuclear Medicine, Hebei Medical University Third Hospital, Shijiazhuang, Hebei 050051, People's Republic of China
| | - Dongfeng Zhang
- Department of Orthopedics, South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, People's Republic of China
| | - Wen Li
- Department of Spine Surgery, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, People's Republic of China
| | - Junming Wan
- Department of Orthopaedics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518000, People's Republic of China
| | - Xiaozuo Zheng
- Department of Orthopedics, Hebei Medical University Third Hospital, Shijiazhuang, Hebei 050051, People's Republic of China
| |
Collapse
|
2
|
Shakeri M, Aminian A, Mokhtari K, Bahaeddini M, Tabrizian P, Farahani N, Nabavi N, Hashemi M. Unraveling the molecular landscape of osteoarthritis: A comprehensive review focused on the role of non-coding RNAs. Pathol Res Pract 2024; 260:155446. [PMID: 39004001 DOI: 10.1016/j.prp.2024.155446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024]
Abstract
Osteoarthritis (OA) poses a significant global health challenge, with its prevalence anticipated to increase in the coming years. This review delves into the emerging molecular biomarkers in OA pathology, focusing on the roles of various molecules such as metabolites, noncoding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). Advances in omics technologies have transformed biomarker identification, enabling comprehensive analyses of the complex pathways involved in OA pathogenesis. Notably, ncRNAs, especially miRNAs and lncRNAs, exhibit dysregulated expression patterns in OA, presenting promising opportunities for diagnosis and therapy. Additionally, the intricate interplay between epigenetic modifications and OA progression highlights the regulatory role of epigenetics in gene expression dynamics. Genome-wide association studies have pinpointed key genes undergoing epigenetic changes, providing insights into the inflammatory processes and chondrocyte hypertrophy typical of OA. Understanding the molecular landscape of OA, including biomarkers and epigenetic mechanisms, holds significant potential for developing innovative diagnostic tools and therapeutic strategies for OA management.
Collapse
Affiliation(s)
- Mohammadreza Shakeri
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Aminian
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Khatere Mokhtari
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mohammadreza Bahaeddini
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Pouria Tabrizian
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Najma Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
3
|
Zhang Z, Guo R, Cai C, Guo P. Down-regulation of long noncoding RNA HOXA11-AS nullifies the impact of microRNA-506-3p on chondrocytes proliferation and apoptosis in osteoarthritis. Clinics (Sao Paulo) 2024; 79:100393. [PMID: 38815540 PMCID: PMC11177079 DOI: 10.1016/j.clinsp.2024.100393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 04/17/2024] [Accepted: 05/13/2024] [Indexed: 06/01/2024] Open
Abstract
OBJECTIVES This study was directed towards exploring the impacts of lncRNA HOXA11-AS-mediated microRNA (miR)-506-3p on chondrocytes proliferation and apoptosis in osteoarthritis (OA). METHODS The articular cartilages were provided by OA patients who received total knee arthroplasty, and Human Chondrocyte (HC)-OA (HCOA) was also attained. The miR-506-3p and HOXA11-AS expressions in articular cartilages from OA patients and HCOA cells were analyzed via qPCR. After gain- and loss-of-function assays in HCOA cells, MTT assay and flow cytometry (FC) were used for assessing cell viability and apoptosis, accordingly. The levels of PIK3CA, AKT, and mTOR as well as AKT and mTOR phosphorylation levels assessed using western blotting (WB). The targeting correlation of HOXA11-AS and miR-506-3p as well as miR-506-3p and PIK3CA was assessed through Dual-Luciferase Reporter gene Assay (DLRA). RESULT The articular cartilages from OA patients and Human Chondrocyte (HC)-OA (HCOA) cells showed increased HOXA11-AS and decreased miR-506-3p. Mechanistically, HOXA11-AS was capable of binding to miR-506-3p to increase PIK3CA, the target gene of miR-506-3p. miR-506-3p suppression facilitated HCOA cell proliferation and reduced their apoptosis, which was nullified by further silencing HOXA11-AS or silencing PIK3CA. The down-regulation of HOXA11-AS disrupted the PI3K/AKT/mTOR pathway, which was counteracted by further miR-506-3p inhibition. CONCLUSION The silencing of HOXA11-AS might block the PI3K/AKT/mTOR pathway through miR-506-3p up-regulation, thereby restricting HCOA cell proliferation and provoking apoptosis.
Collapse
Affiliation(s)
- Ziyang Zhang
- Department of Gdansk University of Physical Education and Sport, Start for Ph.D. in Sport & Fitness Science, Gdansk, Poland
| | - Renhao Guo
- Department of Olympic Sports Training Theory, National University of Ukraine on Physical Education and Sport, Start for PhD. St. 1, Ukraine
| | - Chengfa Cai
- Department of Exercise Physiology and Biochemistry, Shandong Institute of Sport Science, Shandong, China
| | - Pengcheng Guo
- Department of Key Lab of Aquatic Sports Training Monitoring and Intervention of General Administration of Sport of China, Faculty of Physical Education, Jiangxi Normal University, Jiangxi, China.
| |
Collapse
|
4
|
Wang R, Shiu HT, Lee WYW. Emerging role of lncRNAs in osteoarthritis: An updated review. Front Immunol 2022; 13:982773. [PMID: 36304464 PMCID: PMC9593085 DOI: 10.3389/fimmu.2022.982773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022] Open
Abstract
Osteoarthritis (OA) is a prevalent joint disease, which is associated with progressive articular cartilage loss, synovial inflammation, subchondral sclerosis and meniscus injury. The molecular mechanism underlying OA pathogenesis is multifactorial. Long non-coding RNAs (lncRNAs) are non-protein coding RNAs with length more than 200 nucleotides. They have various functions such as modulating transcription and protein activity, as well as forming endogenous small interfering RNAs (siRNAs) and microRNA (miRNA) sponges. Emerging evidence suggests that lncRNAs might be involved in the pathogenesis of OA which opens up a new avenue for the development of new biomarkers and therapeutic strategies. The purpose of this review is to summarize the current clinical and basic experiments related to lncRNAs and OA with a focus on the extensively studied H19, GAS5, MALAT1, XIST and HOTAIR. The potential translational value of these lncRNAs as therapeutic targets for OA is also discussed.
Collapse
Affiliation(s)
- Rongliang Wang
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong, China
| | - Hoi Ting Shiu
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Wayne Yuk Wai Lee
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong, China
- *Correspondence: Wayne Yuk Wai Lee,
| |
Collapse
|
5
|
He X, Deng L. miR-204-5p inhibits inflammation of synovial fibroblasts in osteoarthritis by suppressing FOXC1. J Orthop Sci 2022; 27:921-928. [PMID: 34045139 DOI: 10.1016/j.jos.2021.03.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND The paper is aimed at uncovering the mechanism of miR-204-5p in regulating inflammatory responses of human osteoarthritic synovial fibroblasts (SFs). METHODS IL-1β-induced osteoarthritic SFs were established as an osteoarthritis (OA) cell model. The osteoarthritic SFs were accordingly transfected with mimics-miR-204-5p, inhibitors-miR-204-5 or FOXC1 siRNA. MTT tested the vitality of osteoarthritic SFs by analyzing the cell optical density. The expressions of miR-204-5p, FOXC1, TNF-α, IL-6, PGE2, MMP-1, MMP-13 and COX-2 in osteoarthritic SFs were measured by qRT-PCR, Western blotting and/or ELISA. The binding of miR-204-5p to FOXC1 was verified through luciferase reporter assay. The regulatory effect of miR-204-5p on FOXC1 was also tested in normal SFs. RESULTS miR-204-5p was under-expressed and FOXC1 was over-expressed in osteoarthritic SFs. The expressions of FOXC1, TNF-α, IL-6, PGE2, MMP-1, MMP-13 and COX-2 were up-regulated in IL-1β-treated SFs. Up-regulation of miR-204-5p or down-regulation of FOXC1 suppressed the inflammatory responses of osteoarthritic SFs. miR-204-5p negatively regulated FOXC1 by being a sponge in osteoarthritic SFs as well as in normal SFs. CONCLUSION miR-204-5p down-regulates FOXC1 to ameliorate inflammation of SFs in OA.
Collapse
Affiliation(s)
- Xiao He
- The Joint Surgical Center, Chenzhou No. 1 People's Hospital, Chenzhou, Hunan, 423000, PR China.
| | - Lili Deng
- Pediatric Intensive Care Unit, Chenzhou No. 1 People's Hospital, Chenzhou, Hunan, 423000, PR China
| |
Collapse
|
6
|
Okuyan HM, Begen MA. LncRNAs in Osteoarthritis. Clin Chim Acta 2022; 532:145-163. [PMID: 35667478 DOI: 10.1016/j.cca.2022.05.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 11/27/2022]
Abstract
Osteoarthritis (OA) is a progressive joint disease that affects millions of older adults around the world. With increasing rates of incidence and prevalence worldwide, OA has become an enormous global socioeconomic burden on healthcare systems. Long non-coding ribonucleic acids (lncRNAs), essential functional molecules in many biological processes, are a group of non-coding RNAs that are greater than approximately 200 nucleotides in length. Fast-growing and recent developments in lncRNA research are captivating and represent a novel and promising field in understanding the complexity of OA pathogenesis. The involvement of lncRNAs in OA's pathological processes and their altered expressions in joint tissues, blood and synovial fluid make them attractive candidates for the diagnosis and treatment of OA. We focus on the recent advances in major regulator mechanisms of lncRNAs in the pathophysiology of OA and discuss potential diagnostic and therapeutic uses of lncRNAs for OA. We investigate how upregulation or downregulation of lncRNAs influences the pathogenesis of OA and how we can use lncRNAs to elucidate the molecular mechanism of OA. Furthermore, we evaluate how we can use lncRNAs as a diagnostic marker or therapeutic target for OA. Our study not only provides a comprehensive review of lncRNAs regarding OA's pathogenesis but also contributes to the elucidation of its molecular mechanisms and to the development of diagnostic and therapeutic approaches for OA.
Collapse
Affiliation(s)
- Hamza Malik Okuyan
- Biomedical Engineering, Physiotherapy and Rehabilitation, Faculty of Health Sciences, Sakarya University of Applied Sciences, Sakarya, Turkey; Ivey Business School, Epidemiology and Biostatistics - Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.
| | - Mehmet A Begen
- Ivey Business School, Epidemiology and Biostatistics - Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
7
|
De la Fuente-Hernandez MA, Sarabia-Sanchez MA, Melendez-Zajgla J, Maldonado-Lagunas V. Role of lncRNAs into Mesenchymal Stromal Cell Differentiation. Am J Physiol Cell Physiol 2022; 322:C421-C460. [PMID: 35080923 DOI: 10.1152/ajpcell.00364.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Currently, findings support that 75% of the human genome is actively transcribed, but only 2% is translated into a protein, according to databases such as ENCODE (Encyclopedia of DNA Elements) [1]. The development of high-throughput sequencing technologies, computational methods for genome assembly and biological models have led to the realization of the importance of the previously unconsidered non-coding fraction of the genome. Along with this, noncoding RNAs have been shown to be epigenetic, transcriptional and post-transcriptional regulators in a large number of cellular processes [2]. Within the group of non-coding RNAs, lncRNAs represent a fascinating field of study, given the functional versatility in their mode of action on their molecular targets. In recent years, there has been an interest in learning about lncRNAs in MSC differentiation. The aim of this review is to address the signaling mechanisms where lncRNAs are involved, emphasizing their role in either stimulating or inhibiting the transition to differentiated cell. Specifically, the main types of MSC differentiation are discussed: myogenesis, osteogenesis, adipogenesis and chondrogenesis. The description of increasingly new lncRNAs reinforces their role as players in the well-studied field of MSC differentiation, allowing a step towards a better understanding of their biology and their potential application in the clinic.
Collapse
Affiliation(s)
- Marcela Angelica De la Fuente-Hernandez
- Facultad de Medicina, Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Laboratorio de Epigenética, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Miguel Angel Sarabia-Sanchez
- Facultad de Medicina, Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jorge Melendez-Zajgla
- Laboratorio de Genómica Funcional del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | | |
Collapse
|
8
|
Abstract
The last decade has seen an enormous increase in long non-coding RNA (lncRNA) research within rheumatology. LncRNAs are arbitrarily classed as non-protein encoding RNA transcripts that exceed 200 nucleotides in length. These transcripts have tissue and cell specific patterns of expression and are implicated in a variety of biological processes. Unsurprisingly, numerous lncRNAs are dysregulated in rheumatoid conditions, correlating with disease activity and cited as potential biomarkers and targets for therapeutic intervention. In this chapter, following an introduction into each condition, we discuss the lncRNAs involved in rheumatoid arthritis, osteoarthritis and systemic lupus erythematosus. These inflammatory joint conditions share several inflammatory signalling pathways and therefore not surprisingly many commonly dysregulated lncRNAs are shared across these conditions. In the interest of translational research only those lncRNAs which are strongly conserved have been addressed. The lncRNAs discussed here have diverse roles in regulating inflammation, proliferation, migration, invasion and apoptosis. Understanding the molecular basis of lncRNA function in rheumatology will be crucial in fully determining the inflammatory mechanisms that drive these conditions.
Collapse
|
9
|
Zheng YL, Song G, Guo JB, Su X, Chen YM, Yang Z, Chen PJ, Wang XQ. Interactions Among lncRNA/circRNA, miRNA, and mRNA in Musculoskeletal Degenerative Diseases. Front Cell Dev Biol 2021; 9:753931. [PMID: 34708047 PMCID: PMC8542847 DOI: 10.3389/fcell.2021.753931] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/22/2021] [Indexed: 12/18/2022] Open
Abstract
Musculoskeletal degenerative diseases (MSDDs) are pathological conditions that affect muscle, bone, cartilage, joint and connective tissue, leading to physical and functional impairments in patients, mainly consist of osteoarthritis (OA), intervertebral disc degeneration (IDD), rheumatoid arthritis (RA) and ankylosing spondylitis (AS). Long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) are novel regulators of gene expression that play an important role in biological regulation, involving in chondrocyte proliferation and apoptosis, extracellular matrix degradation and peripheral blood mononuclear cell inflammation. Research on MSDD pathogenesis, especially on RA and AS, is still in its infancy and major knowledge gaps remain to be filled. The effects of lncRNA/circRNA-miRNA-mRNA axis on MSDD progression help us to fully understand their contribution to the dynamic cellular processes, provide the potential OA, IDD, RA and AS therapeutic strategies. Further studies are needed to explore the mutual regulatory mechanisms between lncRNA/circRNA regulation and effective therapeutic interventions in the pathology of MSDD.
Collapse
Affiliation(s)
- Yi-Li Zheng
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Ge Song
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Jia-Bao Guo
- The Second School of Clinical Medicine, Xuzhou Medical University, Xuzhou, China
| | - Xuan Su
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Yu-Meng Chen
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Zheng Yang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Pei-Jie Chen
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China.,Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
| |
Collapse
|
10
|
Liu R, Wu H, Song H. Knockdown of TRIM8 Attenuates IL-1β-induced Inflammatory Response in Osteoarthritis Chondrocytes Through the Inactivation of NF-κB Pathway. Cell Transplant 2021; 29:963689720943604. [PMID: 32757662 PMCID: PMC7563946 DOI: 10.1177/0963689720943604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease associated with inflammatory response. Tripartite motif 8 (TRIM8) is a member of TRIM family that has been found to regulate inflammation. The present study was aimed to evaluate the role of TRIM8 in OA chondrocytes. Our results showed that TRIM8 expression was significantly increased in interleukin 1 beta (IL-1β)-stimulated OA chondrocytes. To knock down the TRIM8 expression in chondrocytes, the chondrocytes were transfected with si-TRIM8. Knockdown of TRIM8 attenuated IL-1β-induced production of inflammatory mediators including nitric oxide and prostaglandin E2. The increased expression levels of inducible nitric oxide synthase and cyclooxygenase-2 in IL-1β-induced chondrocytes were suppressed by TRIM8 knockdown. The IL-1β-induced production of proinflammatory cytokines including TNF-α and IL-6 was significantly decreased after transfection with si-TRIM8. Besides, knockdown of TRIM8 mitigated the IL-1β-induced decrease in aggrecan and collagen-II proteins expression and increase in matrix-degrading enzymes in chondrocytes. Furthermore, TRIM8 knockdown prevented IL-1β-induced nuclear factor kappa B (NF-κB) activation in chondrocytes. Taken together, these findings indicated that knockdown of TRIM8 attenuates IL-1β-induced inflammatory response in OA chondrocytes through the inactivation of NF-κB pathway. Thus, targeting TRIM8 might provide therapeutic treatment for OA.
Collapse
Affiliation(s)
- Ruoxi Liu
- Department of Orthopaedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hao Wu
- Department of Orthopaedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Huanjin Song
- Department of Orthopaedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
11
|
Hu Q, Ecker M. Overview of MMP-13 as a Promising Target for the Treatment of Osteoarthritis. Int J Mol Sci 2021; 22:ijms22041742. [PMID: 33572320 PMCID: PMC7916132 DOI: 10.3390/ijms22041742] [Citation(s) in RCA: 215] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 01/02/2023] Open
Abstract
Osteoarthritis (OA) is a common degenerative disease characterized by the destruction of articular cartilage and chronic inflammation of surrounding tissues. Matrix metalloproteinase-13 (MMP-13) is the primary MMP involved in cartilage degradation through its particular ability to cleave type II collagen. Hence, it is an attractive target for the treatment of OA. However, the detailed molecular mechanisms of OA initiation and progression remain elusive, and, currently, there are no interventions available to restore degraded cartilage. This review fully illustrates the involvement of MMP-13 in the initiation and progression of OA through the regulation of MMP-13 activity at the molecular and epigenetic levels, as well as the strategies that have been employed against MMP-13. The aim of this review is to identify MMP-13 as an attractive target for inhibitor development in the treatment of OA.
Collapse
|
12
|
Tu J, Huang W, Zhang W, Mei J, Zhu C. The emerging role of lncRNAs in chondrocytes from osteoarthritis patients. Biomed Pharmacother 2020; 131:110642. [PMID: 32927251 DOI: 10.1016/j.biopha.2020.110642] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/07/2020] [Accepted: 08/16/2020] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play important roles in many physiological and pathological processes, including osteoarthritis (OA). Recent studies have demonstrated that lncRNAs are involved in the pathogenesis of OA by affecting various essential cellular features of chondrocytes, such as proliferation, apoptosis, inflammation, and degradation of the extracellular matrix (ECM). However, there are only a limited number of studies in this area, indicating that the role of lncRNAs in OA may have been overlooked. The aim of this literature review is to summarize the versatile roles and molecular mechanisms of lncRNAs in chondrocytes involved in OA. At the end of this article, the function of the lncRNA HOX transcript antisense RNA (HOTAIR) in chondrocytes in OA is highlighted. Because lncRNAs affect proliferation, apoptosis, inflammatory responses, and ECM degradation by chondrocytes in OA, they may serve as potential biomarkers or therapeutic targets for the diagnosis or treatment of OA. The specific role and related mechanisms of lncRNAs in OA warrants further investigation.
Collapse
Affiliation(s)
- Jiajie Tu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China.
| | - Wei Huang
- Department of Orthopaedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Weiwei Zhang
- Departments of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jiawei Mei
- Department of Orthopaedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Chen Zhu
- Department of Orthopaedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
13
|
Zhang Y, Ma L, Wang C, Wang L, Guo Y, Wang G. Long noncoding RNA LINC00461 induced osteoarthritis progression by inhibiting miR-30a-5p. Aging (Albany NY) 2020; 12:4111-4123. [PMID: 32155130 PMCID: PMC7093191 DOI: 10.18632/aging.102839] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 02/04/2020] [Indexed: 12/16/2022]
Abstract
Mounting studies have shown that long noncoding RNAs (lncRNAs) play important roles in the development and occurrence of several human diseases. However, the role of LINC00461 in osteoarthritis (OA) remains obscure. A CCK-8 assay was performed to detect cell viability, and qRT-PCR analysis was used to measure mRNA expression. The targeting by miR-30a-5p of the LINC00461 3'UTR was detected using a luciferase reporter assay. Our data indicated that the inflammatory mediators IL-6 and TNF-α induced LINC00461 expression in chondrocytes and that the expression of LINC00461 was upregulated in OA tissues. Furthermore, we showed that TNF-α and IL-6 suppressed the expression of miR-30a-5p and that miR-30a-5p expression was lower in OA tissues than in normal samples. The expression level of miR-30a-5p in OA tissues was negatively related to LINC00461 expression. In addition, we showed that LINC00461 directly interacted with miR-30a-5p in chondrocytes. Elevated expression of LINC00461 induced chondrocyte proliferation, cell cycle progression, inflammation, and extracellular matrix (ECM) degradation. However, we demonstrated that ectopic expression of miR-30a-5p suppressed cell growth, cell cycle progression, inflammation and ECM degradation. Finally, we found that overexpression of LINC00461 enhanced chondrocyte proliferation, cell cycle progression, inflammation, and ECM degradation by downregulating miR-30a-5p. These data demonstrated that LINC00461 may modulate the development of OA by suppressing miR-30a-5p expression in chondrocytes. We propose that LINC00461 and miR-30a-5p may be potential therapeutic and diagnostic targets for OA.
Collapse
Affiliation(s)
- Yuanmin Zhang
- Department of Orthopedics, Affiliated Hospital of Jining Medical University, Jining 272029, Shandong, China
| | - Longfei Ma
- Department of Orthopedics, Affiliated Hospital of Jining Medical University, Jining 272029, Shandong, China
| | - Chengqun Wang
- Department of Orthopedics, Affiliated Hospital of Jining Medical University, Jining 272029, Shandong, China
| | - Lina Wang
- Department of Orthopedics, The Second Hospital of Shandong University, Jinan 250000, Shandong, China
| | - Yanxia Guo
- Department of Orthopedics, The Second Hospital of Shandong University, Jinan 250000, Shandong, China
| | - Guodong Wang
- Department of Orthopedics, Affiliated Hospital of Jining Medical University, Jining 272029, Shandong, China
| |
Collapse
|
14
|
Kubota S, Ishikawa T, Kawata K, Hattori T, Nishida T. Retrotransposons Manipulating Mammalian Skeletal Development in Chondrocytes. Int J Mol Sci 2020; 21:ijms21051564. [PMID: 32106563 PMCID: PMC7084347 DOI: 10.3390/ijms21051564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 12/14/2022] Open
Abstract
Retrotransposons are genetic elements that copy and paste themselves in the host genome through transcription, reverse-transcription, and integration processes. Along with their proliferation in the genome, retrotransposons inevitably modify host genes around the integration sites, and occasionally create novel genes. Even now, a number of retrotransposons are still actively editing our genomes. As such, their profound role in the evolution of mammalian genomes is obvious; thus, their contribution to mammalian skeletal evolution and development is also unquestionable. In mammals, most of the skeletal parts are formed and grown through a process entitled endochondral ossification, in which chondrocytes play central roles. In this review, current knowledge on the evolutional, physiological, and pathological roles of retrotransposons in mammalian chondrocyte differentiation and cartilage development is summarized. The possible biological impact of these mobile genetic elements in the future is also discussed.
Collapse
|
15
|
Jiang S, Liu Y, Xu B, Zhang Y, Yang M. Noncoding RNAs: New regulatory code in chondrocyte apoptosis and autophagy. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 11:e1584. [PMID: 31925936 DOI: 10.1002/wrna.1584] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/13/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022]
Abstract
Osteoarthritis (OA) is a bone and joint disease characterized by progressive cartilage degradation. In the face of global trends of population aging, OA is expected to become the fourth most common disabling disease by 2020. Nevertheless, the detailed pathogenesis of OA has not yet been elucidated. Noncoding RNAs (ncRNAs), including long noncoding RNAs, microRNAs, and circular RNAs, do not encode proteins but have recently emerged as important regulators of apoptosis and autophagy of chondrocytes, thereby highlighting a potential role in chondrocyte injury leading to OA onset and progression. We here review recent findings on these regulatory roles of ncRNAs to provide new directions for research on the pathogenesis of OA and offer new therapeutic targets for prevention and treatment. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Siyu Jiang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Marine Medical Research Institute of Guangdong Zhanjiang, Guangdong Medical University, Zhanjiang, China.,Department of Pharmacology, Guangdong Medical University, Zhanjiang, China
| | - Yi Liu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Marine Medical Research Institute of Guangdong Zhanjiang, Guangdong Medical University, Zhanjiang, China.,Department of Pharmacology, Guangdong Medical University, Zhanjiang, China
| | - Bilian Xu
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, China
| | - Yan Zhang
- Operating Room, Tianjin Binhai New Area Tanggu Obstetrics and Gynecology Hospital, Tianjin, China
| | - Min Yang
- Shenzhen Ritzcon Biological Technology Co., LTD, Shenzhen, China
| |
Collapse
|
16
|
Zhang X, Liu X, Ni X, Feng P, Wang YU. Long non-coding RNA H19 modulates proliferation and apoptosis in osteoarthritis via regulating miR-106a-5p. J Biosci 2019; 44:128. [PMID: 31894109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Osteoarthritis (OA), a type of joint diseases, could result in breakdown of joint cartilage and underlying bone. Accumulating evidences suggested that long non-coding RNAs play important roles in OA progression. However, the underlying mechanism of H19 in OA is still not fully explored. The expression levels of H19 and miR-106a-5p in OA samples from patients or cultured chondrocytes were examined by quantitative real time polymerase chain reaction. Cell proliferation and apoptosis were analysed by MTT assay and flow cytometry, respectively. Western blotting was employed to detect the expression levels of PCNA, CyclinD1, Caspase 3 and Cleaved Caspase 3. StarBase database, luciferase assay and RNA immunoprecipitation were introduced to confirm the relationship between H19 and miR-106a-5p. The correlation of H19 and miR-106a-5p was analysed by Spearman rank analysis. H19 expression was upregulated, while miR-106a-5p level was downregulated in OA samples and IL-1b-treated chondrocytes. H19 overexpression inhibited the proliferation and induced apoptosis in IL-1b-treated chondrocytes, while H19 knockdown induced the opposite effect. Luciferase and RIP assay demonstrated that miR-106a-5p was a direct target of H19. miR-106a-5p overexpression led to proliferation promotion and apoptosis inhibition in chondrocytes treated by IL-1β and it reversed the effect of H19 addition. We conclude that H19 could regulate proliferation and apoptosis of chondrocytes treated by IL-1β in OA via sponging miR-106a-5p.
Collapse
Affiliation(s)
- Xiaojun Zhang
- Department of Orthopaedics, People's Hospital of Tongchuan, Tongchuan, Shaanxi Province 727000, China
| | | | | | | | | |
Collapse
|
17
|
lncRNAs: function and mechanism in cartilage development, degeneration, and regeneration. Stem Cell Res Ther 2019; 10:344. [PMID: 31753016 PMCID: PMC6873685 DOI: 10.1186/s13287-019-1458-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/17/2019] [Accepted: 10/16/2019] [Indexed: 02/06/2023] Open
Abstract
With the increasing incidence of cartilage-related diseases such as osteoarthritis (OA) and intervertebral disc degeneration (IDD), heavier financial and social burdens need to be faced. Unfortunately, there is no satisfactory clinical method to target the pathophysiology of cartilage-related diseases. Many gene expressions, signaling pathways, and biomechanical dysregulations were involved in cartilage development, degeneration, and regeneration. However, the underlying mechanism was not clearly understood. Recently, lots of long non-coding RNAs (lncRNAs) were identified in the biological processes, including cartilage development, degeneration, and regeneration. It is clear that lncRNAs were important in regulating gene expression and maintaining chondrocyte phenotypes and homeostasis. In this review, we summarize the recent researches studying lncRNAs’ expression and function in cartilage development, degeneration, and regeneration and illustrate the potential mechanism of how they act in the pathologic process. With continued efforts, regulating lncRNA expression in the cartilage regeneration may be a promising biological treatment approach.
Collapse
|
18
|
Long non-coding RNA H19 modulates proliferation and apoptosis in osteoarthritis via regulating miR-106a-5p. J Biosci 2019. [DOI: 10.1007/s12038-019-9943-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Deng W, Fan C, Shen R, Wu Y, Du R, Teng J. Long noncoding MIAT acting as a ceRNA to sponge microRNA-204-5p to participate in cerebral microvascular endothelial cell injury after cerebral ischemia through regulating HMGB1. J Cell Physiol 2019; 235:4571-4586. [PMID: 31628679 DOI: 10.1002/jcp.29334] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/30/2019] [Indexed: 12/14/2022]
Abstract
This study is applied to the investigation of the long noncoding RNA myocardial infarction associated transcript's (MIAT's) role in regulating the expression of high-mobility group box 1 (HMGB1) in cerebral microvascular endothelial cell (CMEC) injury after cerebral ischemia by serving as a competitive endogenous RNA (ceRNA) to sponge microRNA-204-5p (miR-204-5p). The cerebral ischemia model of middle cerebral artery occlusion (MCAO) in rats was established by the suture method, in which rats were injected with empty plasmids and MIAT siRNA plasmids. The cerebral ischemia injury model in vitro was established through oxygen glucose deprivation (OGD) in primary cultured CMECs in rats. The cells were transfected with empty plasmids and MIAT siRNA plasmids. The MIAT/miR-204-5p/HMGB1 axis' function in damage and angiogenesis of CMECs were explored. The binding site between MIAT and miR-204-5p along with that between miR-204-5p and HMGB1 was determined. MIAT was overexpressed in MCAO rats' brain tissue and inhibited MIAT attenuated the injury of brain tissue in MCAO rats. Inhibition of MIAT promoted angiogenesis, promoted miR-204-5p expression and inhibited HMGB1 expression in brain tissue of MCAO rats. Inhibition of MIAT reduced CMEC damage, induced angiogenesis of CMECs, increased the number of surviving neurons, promoted miR-204-5p expression and inhibited HMGB1 expression in CMECs treated with OGD. MIAT promoted HMGB1 expression by competitive binding to miR-204-5p to regulate the injury of CMECs after cerebral ischemia. Our study showed that MIAT promoted HMGB1 expression by competitively binding to miR-204-5p to regulate the injury of CMECs after cerebral ischemia.
Collapse
Affiliation(s)
- Wenjing Deng
- The Neurology Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chenghe Fan
- The Neurology Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ruile Shen
- The Neurology Department, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan, China
| | - Yanzhi Wu
- The Neurology Department, Zhengzhou Central Hospital, Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ran Du
- The Neurology Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Junfang Teng
- The Neurology Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
20
|
Shao H, Jin F, Hu J, Zhu Z, Tian F, Tao M, Teng Y. Urothelial carcinoma associated 1 promotes trophoblast invasion by regulating MMP9. Cell Biosci 2019; 9:78. [PMID: 31572567 PMCID: PMC6757381 DOI: 10.1186/s13578-019-0341-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 09/09/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The long non-coding RNA UCA1 is reportedly increased in several human tumors and critical for the cell migration, invasion, or proliferation of several cancer cells. However, the potential roles of UCA1 in trophoblasts at early pregnancy still poorly understood. Here, we sought to unravel the roles of UCA1 in the occurrence of the recurrent miscarriage (RM) disorders. RESULTS The knockdown of UCA1 in human HTR-8 trophoblast cell line reduced their cell proliferative and invasive ability. Conversely, the UCA1 overexpression promoted the cell proliferation and invasion of HTR-8 cells. Quantitative RT-PCR screening revealed that UCA1 overexpression significantly enhanced MMP9, but not MMP2, mRNA expression in trophoblast cells. The overexpression of UCA1 also promoted trophoblast invasion by upregulating MMP9 expression and activity both in vitro and ex vivo. Consistently, UCA1 and MMP9 mRNA expression level was notably reduced in placental villi derived from patients with RM diseases. CONCLUSION This study revealed that UCA1 is critical for the regulation of invasive ability in trophoblasts. The abnormal UCA1/MMP9 pathway might result in the impaired trophoblast activities and lead to the development of RM. Our data may also provide a novel angle for the treatment in RM patients.
Collapse
Affiliation(s)
- Hongfang Shao
- Center of Reproductive Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai, 200233 People’s Republic of China
| | - Feng Jin
- Department of Gynecology and Obstetrics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai, 200233 People’s Republic of China
| | - Jiangshan Hu
- Department of Gynecology and Obstetrics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai, 200233 People’s Republic of China
| | - Zhangying Zhu
- Department of Gynecology and Obstetrics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai, 200233 People’s Republic of China
| | - Fuju Tian
- The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030 People’s Republic of China
| | - Minfang Tao
- Center of Reproductive Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai, 200233 People’s Republic of China
| | - Yincheng Teng
- Department of Gynecology and Obstetrics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai, 200233 People’s Republic of China
| |
Collapse
|
21
|
Long noncoding RNA UCA1 promotes chondrogenic differentiation of human bone marrow mesenchymal stem cells via miRNA-145-5p/SMAD5 and miRNA-124-3p/SMAD4 axis. Biochem Biophys Res Commun 2019; 514:316-322. [DOI: 10.1016/j.bbrc.2019.04.140] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 04/19/2019] [Indexed: 01/22/2023]
|
22
|
Ajekigbe B, Cheung K, Xu Y, Skelton A, Panagiotopoulos A, Soul J, Hardingham T, Deehan D, Barter M, Young D. Identification of long non-coding RNAs expressed in knee and hip osteoarthritic cartilage. Osteoarthritis Cartilage 2019; 27:694-702. [PMID: 30611906 PMCID: PMC6444060 DOI: 10.1016/j.joca.2018.12.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 12/06/2018] [Accepted: 12/24/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Long intergenic non-coding RNAs (lincRNAs) are emerging as key regulators in gene expression; however, little is known about the lincRNA expression changes that occur in osteoarthritis (OA). Here we aimed to define a transcriptome of lncRNAs in OA cartilage, specifically comparing the lincRNA transcriptome of knee and hip cartilage. METHOD RNA-seq was performed on nucleic acid extracted from hip cartilage from patients undergoing joint replacement surgery because of either OA (n = 10) or because of a neck of femur fracture (NOF; n = 6). After transcript alignment, counts were performed using Salmon and differential expression for ENSEMBL lincRNAs determined using DESeq2. Hip RNA-seq lincRNA expression was compared to a knee dataset (ArrayExpress; E-MTAB-4304). ChIP-seq data from ENCODE was used to determine whether lincRNAs were associated with promoters (plncRNA) or unidirectional enhancer-like regulatory elements (elncRNAs). RESULTS Our analysis of the hip transcriptome identified 1692 expressed Transcripts Per Million (TPM ≥1) Ensembl lincRNAs, of which 198 were significantly (FDR ≤0.05) differentially expressed in OA vs normal (NOF) cartilage. Similar analysis of knee cartilage transcriptome identified 648 Emsembl lincRNAs with 93 significantly (FDR ≤0.05) differentially expressed in intact vs damaged cartilage. In total, 1834 lincRNAs were expressed in both hip and knee cartilage, with a highly significant correlation in expression between the two cartilages. CONCLUSION This is the first study to use RNA-seq to map and compare the lincRNA transcriptomes of hip and knee cartilage. We propose that lincRNAs expressed selectively in cartilage, or showing differential expression in OA, will play a role in cartilage homoeostasis.
Collapse
Affiliation(s)
- B. Ajekigbe
- Skeletal Research Group, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle Upon Tyne, NE1 3BZ, UK
| | - K. Cheung
- Skeletal Research Group, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle Upon Tyne, NE1 3BZ, UK,Faculty of Medical Sciences, Bioinformatics Support Unit, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
| | - Y. Xu
- Skeletal Research Group, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle Upon Tyne, NE1 3BZ, UK
| | - A.J. Skelton
- Faculty of Medical Sciences, Bioinformatics Support Unit, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
| | - A. Panagiotopoulos
- Skeletal Research Group, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle Upon Tyne, NE1 3BZ, UK
| | - J. Soul
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, M13 9PT, UK
| | - T.E. Hardingham
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, M13 9PT, UK
| | - D.J. Deehan
- Freeman Hospital, Orthopaedics, Freeman Road, High Heaton, Newcastle Upon Tyne, NE7 7DN, UK
| | - M.J. Barter
- Skeletal Research Group, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle Upon Tyne, NE1 3BZ, UK
| | - D.A. Young
- Skeletal Research Group, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle Upon Tyne, NE1 3BZ, UK,Address correspondence and reprint requests to: D.A. Young, Institute of Genetic Medicine, Central Parkway, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK. Tel: 44-191-2418831.
| |
Collapse
|
23
|
Long non-coding RNA DANCR regulates proliferation and apoptosis of chondrocytes in osteoarthritis via miR-216a-5p-JAK2-STAT3 axis. Biosci Rep 2018; 38:BSR20181228. [PMID: 30361290 PMCID: PMC6294632 DOI: 10.1042/bsr20181228] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/27/2018] [Accepted: 10/15/2018] [Indexed: 12/23/2022] Open
Abstract
Osteoarthritis (OA) is one of the most common chronic joint disease. Long non-coding RNAs (lncRNAs) have been confirmed to play important roles in a variety of diseases including OA. However, the underlying mechanism of lncRNA differentiation antagonizing non-protein coding RNA (DANCR) in OA has not been well elucidated. The expression of DANCR in cartilage tissues from OA patients was detected using quantitative real-time PCR. After cell transfection, the effects of DANCR inhibition on the proliferation, apoptosis and inflammatory factors of OA chondrocytes were detected using Cell Counting Kit-8 assay and flow cytometry assay. Novel target of DANCR was then identified through bioinformatics analysis and confirmed by luciferase reporter assay and RNA immunoprecipitation assay. The expression of DANCR was significantly increased in OA patients. Function assays demonstrated that DANCR suppression inhibited the proliferation, inflammation, and promoted apoptosis of chondrocytes cells. Additionally, DANCR regulated survival of OA chondrocytes through acting as a competitive endogenous RNA for miR-216a-5p. Furthermore, JAK2 was a direct target of miR-216a-5p, and DANCR regulated the JAK2/STAT3 signal pathway through miR-216a-5p in OA chondrocytes. In the present study, we concluded that DANCR promoted the proliferation, inflammation, and reduced cell apoptosis in OA chondrocytes through regulating miR-216a-5p/JAK2/STAT3 signaling pathway, indicating DANCR might be a useful biomarker and potential therapeutic target for OA treatment.
Collapse
|
24
|
Neve B, Jonckheere N, Vincent A, Van Seuningen I. Epigenetic Regulation by lncRNAs: An Overview Focused on UCA1 in Colorectal Cancer. Cancers (Basel) 2018; 10:E440. [PMID: 30441811 PMCID: PMC6266399 DOI: 10.3390/cancers10110440] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancers have become the second leading cause of cancer-related deaths. In particular, acquired chemoresistance and metastatic lesions occurring in colorectal cancer are a major challenge for chemotherapy treatment. Accumulating evidence shows that long non-coding (lncRNAs) are involved in the initiation, progression, and metastasis of cancer. We here discuss the epigenetic mechanisms through which lncRNAs regulate gene expression in cancer cells. In the second part of this review, we focus on the role of lncRNA Urothelial Cancer Associated 1 (UCA1) to integrate research in different types of cancer in order to decipher its putative function and mechanism of regulation in colorectal cancer cells. UCA1 is highly expressed in cancer cells and mediates transcriptional regulation on an epigenetic level through the interaction with chromatin modifiers, by direct regulation via chromatin looping and/or by sponging the action of a diversity of miRNAs. Furthermore, we discuss the role of UCA1 in the regulation of cell cycle progression and its relation to chemoresistance in colorectal cancer cells.
Collapse
Affiliation(s)
- Bernadette Neve
- Inserm UMR-S 1172, Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer (JPArc), Team "Mucins, Epithelial Differentiation and Carcinogenesis"; University Lille; CHU Lille,59045, Lille CEDEX, France.
| | - Nicolas Jonckheere
- Inserm UMR-S 1172, Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer (JPArc), Team "Mucins, Epithelial Differentiation and Carcinogenesis"; University Lille; CHU Lille,59045, Lille CEDEX, France.
| | - Audrey Vincent
- Inserm UMR-S 1172, Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer (JPArc), Team "Mucins, Epithelial Differentiation and Carcinogenesis"; University Lille; CHU Lille,59045, Lille CEDEX, France.
| | - Isabelle Van Seuningen
- Inserm UMR-S 1172, Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer (JPArc), Team "Mucins, Epithelial Differentiation and Carcinogenesis"; University Lille; CHU Lille,59045, Lille CEDEX, France.
| |
Collapse
|
25
|
Liu C, Cao Z, Bai Y, Dou C, Gong X, Liang M, Dong R, Quan H, Li J, Dai J, Kang F, Zhao C, Dong S. LncRNA AK077216 promotes RANKL-induced osteoclastogenesis and bone resorption via NFATc1 by inhibition of NIP45. J Cell Physiol 2018; 234:1606-1617. [PMID: 30132869 DOI: 10.1002/jcp.27031] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/25/2018] [Indexed: 12/11/2022]
Abstract
Osteoclasts derived from the monocyte/macrophage hematopoietic lineage regulate bone resorption, a process balanced by bone formation in the continual renewal of the skeletal system. As dysfunctions of these cells result in bone metabolic diseases such as osteoporosis and osteopetrosis, the exploration of the mechanisms regulating their differentiation is a priority. A potential mechanism may involve long noncoding RNAs (lncRNAs), which are known to regulate various cell biology activities, including proliferation, differentiation, and apoptosis. The expression of the lncRNA AK077216 (Lnc-AK077216) is significantly upregulated during osteoclastogenesis identified by microarray and verified by qPCR. Up- and downregulation of Lnc-AK077216, respectively promotes and inhibits osteoclast differentiation, bone resorption, and the expression of related genes on the basis of tartrate-resistant acid phosphatase staining, qPCR, and western blot results. In addition, Lnc-AK077216 suppresses NIP45 expression and promotes the expression of NFATc1, an essential transcription factor during osteoclastogenesis. Besides, it was found that the expression of Lnc-AK077216 and Nfatc1 is upregulated, whereas Nip45 expression is downregulated in bone marrow and spleen tissues of ovariectomized mice. The results suggest that Lnc-AK077216 regulates NFATc1 expression and promotes osteoclast formation and function, providing a novel mechanism of osteoclastogenesis and a potential biomarker or a new drug target for osteoporosis.
Collapse
Affiliation(s)
- Chuan Liu
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Orthopedic, The Army General Hospital, Beijing, China
| | - Zhen Cao
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yun Bai
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ce Dou
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaoshan Gong
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University (Army Medical University), Chongqing, China
| | - Mengmeng Liang
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University (Army Medical University), Chongqing, China
| | - Rui Dong
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hongyu Quan
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jianmei Li
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jingjin Dai
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fei Kang
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chunrong Zhao
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shiwu Dong
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University (Army Medical University), Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
26
|
Cao L, Wang Y, Wang Q, Huang J. LncRNA FOXD2-AS1 regulates chondrocyte proliferation in osteoarthritis by acting as a sponge of miR-206 to modulate CCND1 expression. Biomed Pharmacother 2018; 106:1220-1226. [PMID: 30119190 DOI: 10.1016/j.biopha.2018.07.048] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/28/2018] [Accepted: 07/08/2018] [Indexed: 10/28/2022] Open
Abstract
Recently, accumulating evidence demonstrated that the long non-coding RNAs (lncRNAs) play important roles in osteoarthritis (OA) progression. However, the role of lncRNA FOXD2-AS1 on OA is still unclear. In the present study, qRT-PCR showed that expression of FOXD2-AS1 and Cyclin D1 (CCND1) was upregulated in OA cartilage tissues, while miR-206 expression was significantly decreased. CCK-8 and colony formation assays showed that FOXD2-AS1 could promote chondrocytes viability. Flow cytometry analysis showed that FOXD2-AS1 inhibition arrested chondrocytes in G0/G1 phase and induced cells apoptosis. Furthermore, luciferase reporter assay and RIP assay showed that FOXD2-AS1 could function as a sponge of miR-206. Rescue assays showed that miR-206 inhibitors reversed the effects of FOXD2-AS1 suppression on chondrocytes viability. In addition, we identified that CCND1 acted as a direct target of miR-206. FOXD2-AS1 suppression could inhibit CCND1 expression in chondrocytes, while miR-206 inhibitors reversed CCND1 expression. Moreover, rescue assays indicated that CCND1 overexpression reversed the effects of FOXD2-AS1 suppression on chondrocytes viability. Taken together, these data indicated that FOXD2-AS1 could promote the growth of chondrocytes by targeting miR-206/CCND1 axis.
Collapse
Affiliation(s)
- Lei Cao
- Department of Trauma and Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 201620, China
| | - Yang Wang
- Department of Emergency, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China; Department of Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Qiugen Wang
- Department of Trauma and Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 201620, China
| | - Jianhua Huang
- Department of Trauma and Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 201620, China.
| |
Collapse
|
27
|
Fan X, Yuan J, Xie J, Pan Z, Yao X, Sun X, Zhang P, Zhang L. Long non-protein coding RNA DANCR functions as a competing endogenous RNA to regulate osteoarthritis progression via miR-577/SphK2 axis. Biochem Biophys Res Commun 2018; 500:658-664. [PMID: 29678573 DOI: 10.1016/j.bbrc.2018.04.130] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 04/17/2018] [Indexed: 11/25/2022]
Abstract
Long noncoding RNAs (lncRNAs) have been known to be involved in multiple diverse diseases, including osteoarthritis (OA). This study aimed to explore the role of differentiation antagonizing non-protein coding RNA (DANCR) in OA and identify the potential molecular mechanisms. The expression of DANCR in cartilage samples from patients with OA was detected using quantitative reverse transcription-polymerase chain reaction. The effects of DANCR on the viability of OA chondrocytes and apoptosis were explored using cell counting kit 8 assay and flow cytometry assay, respectively. Additionally, the interaction among DANCR, miR-577, and SphK2 was explored using dual-luciferase reporter and RIP assays. The present study found that DANCR was significantly upregulated in patients with OA. Functional assays demonstrated that DANCR inhibition suppressed the proliferation of OA chondrocytes and induced cell apoptosis. The study also showed that DANCR acted as a competitive endogenous RNA to sponge miR-577, which targeted the mRNA of SphK2 to regulate the survival of OA chondrocytes. In conclusion, the study revealed that lncRNA DANCR might promote the proliferation of OA chondrocytes and reduce apoptosis through the miR-577/SphK2 axis. Thus, lncRNA DANCR might be considered as a potential therapeutic target for OA treatment.
Collapse
Affiliation(s)
- Xiaochen Fan
- Department of Orthopaedics, Affiliated Zhenjiang First Hospital of Jiangsu University, Zhenjiang 212002, China
| | - Jishan Yuan
- Department of Orthopaedics, Affiliated Zhenjiang First Hospital of Jiangsu University, Zhenjiang 212002, China
| | - Jun Xie
- Department of Orthopaedics, Affiliated Zhenjiang First Hospital of Jiangsu University, Zhenjiang 212002, China
| | - Zhanpeng Pan
- Department of Orthopaedics, Affiliated Zhenjiang First Hospital of Jiangsu University, Zhenjiang 212002, China
| | - Xiang Yao
- Department of Orthopaedics, Affiliated Zhenjiang First Hospital of Jiangsu University, Zhenjiang 212002, China
| | - Xiangyi Sun
- Department of Orthopedics, Jinling Hospital, Nanjing University, School of Medicine, Nanjing 210002, China
| | - Pin Zhang
- Department of Orthopedics, Jinling Clinical Medical College of Nanjing Medical University, Nanjing 210002, China
| | - Lei Zhang
- Department of Orthopedics, Jinling Hospital, Nanjing University, School of Medicine, Nanjing 210002, China.
| |
Collapse
|