1
|
Lv H, Miao M, Wu Z, Huang C, Tang X, Yan R. Hyaluronic acid-coated liposomes for enhanced in vivo efficacy of neogambogic acid via active tumor cell targeting and prolonged systemic exposure. J Liposome Res 2024; 34:605-616. [PMID: 38733152 DOI: 10.1080/08982104.2024.2348643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024]
Abstract
Neogambogic acid (NGA), which possesses a variety of anticancer activities, is visualized as an anticancer bioactive ingredient. However, the huge vascular stimulation, poor aqueous solubility, and short half-life restricted its clinical use. In this work, an effective nanocarrier was explored to reduce toxicity and enhance the tumor-targeted delivery. Two liposomal formulations, neogambogic acid liposomes (NGA-L), and hyaluronic acid-coated neogambogic acid liposomes (HA-NGA-L) were prepared and characterized with high encapsulation efficiency, slow pattern of drug release, narrow size distribution and higher stability. The cytotoxicity and cellular uptake of HA-NGA-L were higher than those of NGA-L in MDA-MB-231 cells (high CD44 expression), while no obvious differences in MCF-7 cells with (low CD44 expression), suggesting the CD44-mediated cellular internalization of hyaluronic acid-modified liposomes enhanced the cytotoxicity. Mechanistically, elevation of Bax and caspase-3 as well as downregulation of Bcl-2 led to cell apoptosis. Besides, the vascular stimulation and the hemolysis test indicated good safety of HA-NGA-L. In addition, HA-NGA-L was the effective nanocarrier to repress tumor proliferation in MDA-MB-231 tumor xenograft mouse through CD44 mediated active targeting without any obvious histopathological abnormities on major organs. Immunohistochemistry analysis revealed the enhanced elevation of Bax and caspase-3, and reduced expression of Bcl-2 contribute to apoptosis in tumors. Meanwhile, HA-NGA-L increased the AUC and t1/2 by 5.34-fold and 3.94-fold, respectively. In summary, the present study shows that HA-NGA-L may be safe and effective for the tumor-targeted delivery of neogambogic acid.
Collapse
Affiliation(s)
- Hongzhen Lv
- School of Basic Medical Sciences, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Miao Miao
- Disease Prevention and Control Center of Tongshan District, Xuzhou, China
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhichao Wu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Cheng Huang
- School of Traditional Chinese Medicine, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Xiaozhu Tang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Rugen Yan
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
2
|
Karpuz M, Ozgenc E, Oner E, Atlihan-Gundogdu E, Burak Z. 68 Ga-labeled, imatinib encapsulated, theranostic liposomes: Formulation, characterization, and in vitro evaluation of anticancer activity. Drug Dev Res 2024; 85:e22136. [PMID: 38009423 DOI: 10.1002/ddr.22136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/28/2023] [Accepted: 11/14/2023] [Indexed: 11/28/2023]
Abstract
Cancer is still a global health problem. Among cancer types, breast cancer is the most frequently diagnosed one, and it causes a high mortality rate if not diagnosed in the early stages. In our study, imatinib encapsulated, nanosized, neutral/cationic liposome formulations were prepared as theranostic agents for breast cancer. After the characterization studies in which all liposomes exhibited proper profile owing to their particle size between 133 and 250 nm, polydispersity index values lower than 0.4, neutral and cationic zeta potential values, and high drug encapsulation efficiency, controlled drug release behaviors with zero-order kinetic were obtained. The higher than 90% radiolabeling efficiency values were obtained thanks to the determination of optimum radiolabeling condition (80°C temperature, 5 mCi radioactivity, and 10 min incubation period). According to the resazurin assay evaluating the cytotoxic profile of liposomes on MCF7 cells, neutral empty liposome was found as biocompatible, while both cationic liposomes (empty and drug-loaded ones) exhibited high nonspecific cytotoxicity at even low drug concentration due to the existence of stearyl amine in the formulations. However, dose-dependent cytotoxic effect and the highest cellular binding capacity were obtained by imatinib loaded neutral liposomes. In conclusion, 68 Ga-radiolabeled, imatinib-loaded, neutral, nanosized liposome formulation is the most promising one as a theranostic agent among all formulations.
Collapse
Affiliation(s)
- Merve Karpuz
- Department of Radiopharmacy, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Turkey
| | - Emre Ozgenc
- Department of Radiopharmacy, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Ezgi Oner
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Turkey
- Thoracic Oncology Research Group, Trinity Translational Medicine Institute, St James's Hospital, Dublin, Ireland
- Department of Clinical Medicine, Trinity School of Medicine, Trinity College Dublin, Dublin, Ireland
| | | | - Zeynep Burak
- Department of Nuclear Medicine, Faculty of Medicine, Ege University, Izmir, Turkey
| |
Collapse
|
3
|
Chen C, Wang J, Sun M, Li J, Wang HMD. Toward the next-generation phyto-nanomedicines: cell-derived nanovesicles (CDNs) for natural product delivery. Biomed Pharmacother 2021; 145:112416. [PMID: 34781147 DOI: 10.1016/j.biopha.2021.112416] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/27/2021] [Accepted: 11/05/2021] [Indexed: 02/08/2023] Open
Abstract
Phytochemicals are plant-derived bioactive compounds, which have been widely used for therapeutic purposes. Due to the poor water-solubility, low bioavailability and non-specific targeting characteristic, diverse classes of nanocarriers are utilized for encapsulation and delivery of bio-effective agents. Cell-derived nanovesicles (CDNs), known for exosomes or extracellular vesicles (EVs), are biological nanoparticles with multiple functions. Compared to the artificial counterpart, CDNs hold great potential in drug delivery given the higher stability, superior biocompatibility and the lager capability of encapsulating bioactive molecules. Here, we provide a bench-to-bedside review of CDNs-based nanoplatform, including the bio-origin, preparation, characterization and functionalization. Beyond that, the focus is laid on the therapeutic effect of CDNs-mediated drug delivery for natural products. The state-of-art development as well as some pre-clinical applications of using CDNs for disease treatment is also summarized. It is highly expected that the continuing development of CDNs-based delivery systems will further promote the clinical utilization and translation of phyto-nanomedicines.
Collapse
Affiliation(s)
- Chaoxiang Chen
- College of Food and Biological Engineering, Jimei University, China
| | - Jialin Wang
- College of Food and Biological Engineering, Jimei University, China
| | - Mengdi Sun
- College of Food and Biological Engineering, Jimei University, China
| | - Jian Li
- College of Food and Biological Engineering, Jimei University, China.
| | - Hui-Min David Wang
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taiwan; Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City 404, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
4
|
Evaluation of the In Vitro Cytotoxic Activity of Caffeic Acid Derivatives and Liposomal Formulation against Pancreatic Cancer Cell Lines. MATERIALS 2020; 13:ma13245813. [PMID: 33352809 PMCID: PMC7766656 DOI: 10.3390/ma13245813] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer belongs to the most aggressive group of cancers, with very poor prognosis. Therefore, there is an important need to find more potent drugs that could deliver an improved therapeutic approach. In the current study we searched for selective and effective caffeic acid derivatives. For this purpose, we analyzed twelve compounds and evaluated their in vitro cytotoxic activity against two human pancreatic cancer cell lines, along with a control, normal fibroblast cell line, by the classic MTT assay. Six out of twelve tested caffeic acid derivatives showed a desirable effect. To improve the therapeutic efficacy of such active compounds, we developed a formulation where caffeic acid derivative (7) was encapsulated into liposomes composed of soybean phosphatidylcholine and DSPE-PEG2000. Subsequently, we analyzed the properties of this formulation in terms of basic physical parameters (such as size, zeta potential, stability at 4 °C and morphology), hemolytic and cytotoxic activity and cellular uptake. Overall, the liposomal formulation was found to be stable, non-hemolytic and had activity against pancreatic cancer cells (IC50 19.44 µM and 24.3 µM, towards AsPC1 and BxPC3 cells, respectively) with less toxicity against normal fibroblasts. This could represent a promising alternative to currently available treatment options.
Collapse
|
5
|
Ding Z, Sigdel K, Yang L, Liu Y, Xuan M, Wang X, Gu Z, Wu J, Xie H. Nanotechnology-based drug delivery systems for enhanced diagnosis and therapy of oral cancer. J Mater Chem B 2020; 8:8781-8793. [PMID: 33026383 DOI: 10.1039/d0tb00957a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Oral cancer is a common malignant life-threatening tumor. Despite some advances in traditional therapy, mortality and mobidity rates are high due to delayed diagnosis and ineffective treatment. Additionally, some patients inevitably suffer from various fatal adverse effects during the course of therapy. Therefore, it is imperative to develop novel methods to eradicate oral cancer cells with minimal adverse effects on normal cells. Nanotechnology is a promising and novel vehicle for the diagnosis and treatment of oral cancer with encouraging recent achievements. In this review, we present state-of-the-art nanotechnology-based drug delivery systems employed in the domain of oral cancer, especially for its enhanced diagnosis and therapy. We describe in detail the types of nanotechnology used in the management of oral cancer and summarize administration routes of nanodrugs. Finally, the potential and prospects of nanotechnology-based drug delivery systems as promising modalities of diagnosis and therapy of oral cancer are highlighted.
Collapse
Affiliation(s)
- Zhangfan Ding
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Song M, Wang J, Lei J, Peng G, Zhang W, Zhang Y, Yin M, Li J, Liu Y, Wei X, Li X, Li G. Preparation and Evaluation of Liposomes Co-Loaded with Doxorubicin, Phospholipase D Inhibitor 5-Fluoro-2-Indolyl Deschlorohalopemide (FIPI) and D-Alpha Tocopheryl Acid Succinate (α-TOS) for Anti-Metastasis. NANOSCALE RESEARCH LETTERS 2019; 14:138. [PMID: 31001703 PMCID: PMC6473021 DOI: 10.1186/s11671-019-2964-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 04/01/2019] [Indexed: 05/10/2023]
Abstract
Tumor metastasis has become a key obstacle to cancer treatment, which causes high mortality. Nowadays, it involves multiple complex pathways, and conventional treatments are not effective due to fewer targets. The aims of the present study were to construct a novel liposome delivery system co-loading a specific PLD inhibitor 5-fluoro-2-indolyldes-chlorohalopemide (FIPI) in combination with antitumor drug doxorubicin (DOX) and functional excipient D-alpha tocopheryl acid succinate (α-TOS) for anti-metastasis. In this study, the liposomes containing three components (DFT-Lip) with different physicochemical properties were successfully prepared by film dispersion method combined with pH-gradient method. Physicochemical parameters such as particles size, potential, encapsulation efficiency, stability, and release profiles were investigated. In vitro and in vivo anti-metastasis effectiveness against highly metastatic breast cancer MDA-MB-231 cell line was evaluated. The liposomes showed uniform particle size (approximately 119 nm), high drug encapsulation efficiency (> 90%), slow release characteristics and stability. In vitro anti-tumor cell metastasis study demonstrated DFT-Lip could greatly inhibit motility, migration and invasion of MDA-MB-231 cells compared to other liposomes, predicting a synergistic anti-tumor metastasis effect between FIPI with α-TOS in liposomes. In vivo anti-metastasis study showed that DFT-Lip prevented the initiation and the progression of metastasis of high metastatic breast cancer. These results suggested that the liposomes containing DOX, FIPI, and α-TOS might be a promising strategy for metastatic tumor therapy in clinics.
Collapse
Affiliation(s)
- Maoyuan Song
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050 China
| | - Jiaxing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191 China
| | - Jiongxi Lei
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191 China
| | - Guanghua Peng
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191 China
| | - Wenxi Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191 China
| | - Yuanyuan Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191 China
| | - Mengya Yin
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191 China
| | - Jiajia Li
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191 China
| | - Yajie Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191 China
| | - Xiaomeng Wei
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050 China
| | - Xinru Li
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191 China
| | - Guiling Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050 China
| |
Collapse
|
7
|
Feldman NB, Gromovykh TI, Sedyakina NE, Krasnyuk II, Lutsenko SV. Cytotoxic and Antitumor Activity of Liposomal Silibinin. BIONANOSCIENCE 2018. [DOI: 10.1007/s12668-018-0556-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|