1
|
Primke TF, Ingelfinger R, Elewa MAF, Macinkovic I, Weigert A, Fabritius MP, Reichel CA, Ullrich A, Kazmaier U, Burgers LD, Fürst R. The Microtubule-Targeting Agent Pretubulysin Impairs the Inflammatory Response in Endothelial Cells by a JNK-Dependent Deregulation of the Histone Acetyltransferase Brd4. Cells 2023; 12:2112. [PMID: 37626922 PMCID: PMC10453553 DOI: 10.3390/cells12162112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
The anti-inflammatory effects of depolymerizing microtubule-targeting agents on leukocytes are known for a long time, but the potential involvement of the vascular endothelium and the underlying mechanistic basis is still largely unclear. Using the recently synthesized depolymerizing microtubule-targeting agent pretubulysin, we investigated the anti-inflammatory potential of pretubulysin and other microtubule-targeting agents with respect to the TNF-induced leukocyte adhesion cascade in endothelial cells, to improve our understanding of the underlying biomolecular background. We found that treatment with pretubulysin reduces inflammation in vivo and in vitro via inhibition of the TNF-induced adhesion of leukocytes to the vascular endothelium by down-regulation of the pro-inflammatory cell adhesion molecules ICAM-1 and VCAM-1 in a JNK-dependent manner. The underlying mechanism includes JNK-induced deregulation and degradation of the histone acetyltransferase Bromodomain-containing protein 4. This study shows that depolymerizing microtubule-targeting agents, in addition to their established effects on leukocytes, also significantly decrease the inflammatory activation of vascular endothelial cells. These effects are not based on altered pro-inflammatory signaling cascades, but require deregulation of the capability of cells to enter constructive transcription for some genes, setting a baseline for further research on the prominent anti-inflammatory effects of depolymerizing microtubule-targeting agents.
Collapse
Affiliation(s)
- Tobias F. Primke
- Institute of Pharmaceutical Biology, Goethe University Frankfurt, 60438 Frankfurt, Germany; (T.F.P.); (R.I.); (L.D.B.)
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Goethe University Frankfurt, 60596 Frankfurt, Germany
| | - Rebecca Ingelfinger
- Institute of Pharmaceutical Biology, Goethe University Frankfurt, 60438 Frankfurt, Germany; (T.F.P.); (R.I.); (L.D.B.)
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Goethe University Frankfurt, 60596 Frankfurt, Germany
| | - Mohammed A. F. Elewa
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, 60596 Frankfurt, Germany; (M.A.F.E.); (I.M.); (A.W.)
- Biochemistry Department, Faculty of Pharmacy, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Igor Macinkovic
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, 60596 Frankfurt, Germany; (M.A.F.E.); (I.M.); (A.W.)
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, 60596 Frankfurt, Germany; (M.A.F.E.); (I.M.); (A.W.)
| | - Matthias P. Fabritius
- Department of Otorhinolaryngology, Walter Brendel Centre of Experimental Medicine, University Hospital, 81377 Munich, Germany; (M.P.F.); (C.A.R.)
- Department of Radiology, University Hospital, University of Munich, 81377 Munich, Germany
| | - Christoph A. Reichel
- Department of Otorhinolaryngology, Walter Brendel Centre of Experimental Medicine, University Hospital, 81377 Munich, Germany; (M.P.F.); (C.A.R.)
| | - Angelika Ullrich
- Institute of Organic Chemistry, Saarland University, 66123 Saarbrücken, Germany; (A.U.); (U.K.)
| | - Uli Kazmaier
- Institute of Organic Chemistry, Saarland University, 66123 Saarbrücken, Germany; (A.U.); (U.K.)
| | - Luisa D. Burgers
- Institute of Pharmaceutical Biology, Goethe University Frankfurt, 60438 Frankfurt, Germany; (T.F.P.); (R.I.); (L.D.B.)
| | - Robert Fürst
- Institute of Pharmaceutical Biology, Goethe University Frankfurt, 60438 Frankfurt, Germany; (T.F.P.); (R.I.); (L.D.B.)
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Goethe University Frankfurt, 60596 Frankfurt, Germany
| |
Collapse
|
2
|
Singh AJ, Gray JW. Chemokine signaling in cancer-stroma communications. J Cell Commun Signal 2021; 15:361-381. [PMID: 34086259 PMCID: PMC8222467 DOI: 10.1007/s12079-021-00621-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/25/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is a multi-faceted disease in which spontaneous mutation(s) in a cell leads to the growth and development of a malignant new organ that if left undisturbed will grow in size and lead to eventual death of the organism. During this process, multiple cell types are continuously releasing signaling molecules into the microenvironment, which results in a tangled web of communication that both attracts new cell types into and reshapes the tumor microenvironment as a whole. One prominent class of molecules, chemokines, bind to specific receptors and trigger directional, chemotactic movement in the receiving cell. Chemokines and their receptors have been demonstrated to be expressed by almost all cell types in the tumor microenvironment, including epithelial, immune, mesenchymal, endothelial, and other stromal cells. This results in chemokines playing multifaceted roles in facilitating context-dependent intercellular communications. Recent research has started to shed light on these ligands and receptors in a cancer-specific context, including cell-type specificity and drug targetability. In this review, we summarize the latest research with regards to chemokines in facilitating communication between different cell types in the tumor microenvironment.
Collapse
Affiliation(s)
- Arun J Singh
- OHSU Center for Spatial Systems Biomedicine, Oregon Health and Science University, Portland, OR, 97201, USA.
| | - Joe W Gray
- OHSU Center for Spatial Systems Biomedicine, Oregon Health and Science University, Portland, OR, 97201, USA
| |
Collapse
|
3
|
Vishwanatha TM, Giepmans B, Goda SK, Dömling A. Tubulysin Synthesis Featuring Stereoselective Catalysis and Highly Convergent Multicomponent Assembly. Org Lett 2020; 22:5396-5400. [PMID: 32584589 PMCID: PMC7372561 DOI: 10.1021/acs.orglett.0c01718] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Indexed: 02/08/2023]
Abstract
A concise and modular total synthesis of the highly potent N14-desacetoxytubulysin H (1) has been accomplished in 18 steps in an overall yield of up to 30%. Our work highlights the complexity-augmenting and route-shortening power of diastereoselective multicomponent reaction (MCR) as well as the role of bulky ligands to perfectly control both the regioselective and diastereoselective synthesis of tubuphenylalanine in just two steps. The total synthesis not only provides an operationally simple and step economy but will also stimulate major advances in the development of new tubulysin analogues.
Collapse
Affiliation(s)
| | - Ben Giepmans
- University Medical College Groningen, 9700 AD Groningen, The Netherlands
| | - Sayed K. Goda
- Faculty of Science, Chemistry Department, Cairo University, Giza, Egypt
| | - Alexander Dömling
- Department of Drug
Design, University of Groningen, A. Deusinglaan 1, 9700 AD Groningen, The Netherlands
| |
Collapse
|
4
|
Gellrich L, Heitel P, Heering J, Kilu W, Pollinger J, Goebel T, Kahnt A, Arifi S, Pogoda W, Paulke A, Steinhilber D, Proschak E, Wurglics M, Schubert-Zsilavecz M, Chaikuad A, Knapp S, Bischoff I, Fürst R, Merk D. l-Thyroxin and the Nonclassical Thyroid Hormone TETRAC Are Potent Activators of PPARγ. J Med Chem 2020; 63:6727-6740. [DOI: 10.1021/acs.jmedchem.9b02150] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Leonie Gellrich
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Pascal Heitel
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Jan Heering
- Branch for Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, D-60596 Frankfurt, Germany
| | - Whitney Kilu
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Julius Pollinger
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Tamara Goebel
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Astrid Kahnt
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Silvia Arifi
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Werner Pogoda
- Department of Forensic Toxicology, Institute of Forensic Medicine, Goethe University Frankfurt, Kennedyallee 104, D-60596 Frankfurt, Germany
| | - Alexander Paulke
- Department of Forensic Toxicology, Institute of Forensic Medicine, Goethe University Frankfurt, Kennedyallee 104, D-60596 Frankfurt, Germany
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
- Branch for Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, D-60596 Frankfurt, Germany
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
- Branch for Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, D-60596 Frankfurt, Germany
| | - Mario Wurglics
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Manfred Schubert-Zsilavecz
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Apirat Chaikuad
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
- Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe University Frankfurt, Max-von-Laue-Straße 15, D-60438 Frankfurt, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
- Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe University Frankfurt, Max-von-Laue-Straße 15, D-60438 Frankfurt, Germany
| | - Iris Bischoff
- Institute of Pharmaceutical Biology, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Robert Fürst
- Institute of Pharmaceutical Biology, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| |
Collapse
|
5
|
Kern S, Truebenbach I, Höhn M, Gorges J, Kazmaier U, Zahler S, Vollmar AM, Wagner E. Combined antitumoral effects of pretubulysin and methotrexate. Pharmacol Res Perspect 2019; 7:e00460. [PMID: 30693087 PMCID: PMC6343018 DOI: 10.1002/prp2.460] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/14/2018] [Indexed: 12/12/2022] Open
Abstract
Pretubulysin (PT), a potent tubulin-binding antitumoral drug, and the well-established antimetabolite methotrexate (MTX) were tested separately or in combination (PT+MTX) for antitumoral activity in L1210 leukemia cells or KB cervix carcinoma cells in vitro and in vivo in NMRI-nu/nu tumor mouse models. In cultured L1210 cells, treatment with PT or MTX displays strong antitumoral effects in vitro, and the combination PT+MTX exceeds the effect of single drugs. PT also potently kills the MTX resistant KB cell line, without significant MTX combination effect. Cell cycle analysis reveals the expected arrest in G1/S by MTX and in G2/M by PT. In both cell lines, the PT+MTX combination induces a G2/M arrest which is stronger than the PT-triggered G2/M arrest. PT+MTX does not change rates of apoptotic L1210 or KB cells as compared to single drug applications. Confocal laser scanning microscopy images show the microtubule disruption and nuclear fragmentation induced by PT treatment of L1210 and KB cells. MTX changes the architecture of the F-actin skeleton. PT+MTX combines the toxic effects of both drugs. In the in vivo setting, the antitumoral activity of drugs differs from their in vitro cytotoxicity, but their combination effects are more pronounced. MTX on its own does not display significant antitumoral activity, whereas PT reduces tumor growth in both L1210 and KB in vivo models. Consistent with the cell cycle effects, MTX combined at moderate dose boosts the antitumoral effect of PT in both in vivo tumor models. Therefore, the PT+MTX combination may present a promising therapeutic approach for different types of cancer.
Collapse
Affiliation(s)
- Sarah Kern
- Pharmaceutical BiotechnologyCenter for System‐Based Drug Research, and Center for Nanoscience (CeNS)Ludwig‐Maximilians‐UniversitätMunichGermany
| | - Ines Truebenbach
- Pharmaceutical BiotechnologyCenter for System‐Based Drug Research, and Center for Nanoscience (CeNS)Ludwig‐Maximilians‐UniversitätMunichGermany
| | - Miriam Höhn
- Pharmaceutical BiotechnologyCenter for System‐Based Drug Research, and Center for Nanoscience (CeNS)Ludwig‐Maximilians‐UniversitätMunichGermany
| | - Jan Gorges
- Institute for Organic ChemistrySaarland UniversitySaarbrückenGermany
| | - Uli Kazmaier
- Institute for Organic ChemistrySaarland UniversitySaarbrückenGermany
| | - Stefan Zahler
- Pharmaceutical BiologyCenter for System‐Based Drug ResearchLudwig‐Maximilians‐UniversitätMunichGermany
| | - Angelika M. Vollmar
- Pharmaceutical BiologyCenter for System‐Based Drug ResearchLudwig‐Maximilians‐UniversitätMunichGermany
| | - Ernst Wagner
- Pharmaceutical BiotechnologyCenter for System‐Based Drug Research, and Center for Nanoscience (CeNS)Ludwig‐Maximilians‐UniversitätMunichGermany
| |
Collapse
|