1
|
Song Y, Ding Q, Hao Y, Cui B, Ding C, Gao F. Pharmacological Effects of Shikonin and Its Potential in Skin Repair: A Review. Molecules 2023; 28:7950. [PMID: 38138440 PMCID: PMC10745356 DOI: 10.3390/molecules28247950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Currently, skin injuries have a serious impact on people's lives and socio-economic stress. Shikonin, a naphthoquinone compound derived from the root of the traditional Chinese medicine Shikonin, has favorable biological activities such as anti-inflammatory, antibacterial, immunomodulatory, anticancer, and wound-healing-promoting pharmacological activities. It has been reported that Shikonin can be used for repairing skin diseases due to its wide range of pharmacological effects. Moreover, the antimicrobial activity of Shikonin can play a great role in food and can also reduce the number of pathogenic bacteria in food. This paper summarizes the research on the pharmacological effects of Shikonin in recent years, as well as research on the mechanism of action of Shikonin in the treatment of certain skin diseases, to provide certain theoretical references for the clinical application of Shikonin, and also to provides research ideas for the investigation of the mechanism of action of Shikonin in other skin diseases.
Collapse
Affiliation(s)
- Yanping Song
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology University, Jilin 132101, China;
| | - Qiteng Ding
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China;
| | - Yuewen Hao
- Jilin Jianwei Natural Biotechnology Co., Ltd., Linjiang 134600, China; (Y.H.); (B.C.)
| | - Bing Cui
- Jilin Jianwei Natural Biotechnology Co., Ltd., Linjiang 134600, China; (Y.H.); (B.C.)
| | - Chuanbo Ding
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology University, Jilin 132101, China;
- Jilin Aodong Yanbian Pharmaceutical Co., Ltd., Dunhua 133700, China
| | - Feng Gao
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology University, Jilin 132101, China;
| |
Collapse
|
2
|
Putri M, Rastiarsa BM, Djajanagara RATM, Ramli GA, Anggraeni N, Sutadipura N, Atik N, Syamsunarno MRAA. Effect of cogon grass root ethanol extract on fatty acid binding protein 4 and oxidative stress markers in a sepsis mouse model. F1000Res 2023; 10:1161. [PMID: 38559341 PMCID: PMC10980860 DOI: 10.12688/f1000research.73561.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 04/04/2024] Open
Abstract
Background: Sepsis causes several immunological and metabolic alterations that induce oxidative stress. The modulation of fatty acid-binding protein 4 (FABP4) has been shown to worsen this condition. Extract of cogon grass root (ECGR) contains flavonoids and isoeugenol compounds that exhibit anti-inflammatory and antioxidant properties. This study aimed to assess the effects of ECGR on FABP4 and oxidative stress-related factors in a sepsis mouse model. Methods: Twenty-nine male mice ( Mus musculus) of the Deutsche Denken Yoken strain were divided into four groups: group 1, control; group 2, mice treated with 10 μL/kg body weight (BW) lipopolysaccharide (LPS); and groups 3 and 4, mice pre-treated with 90 and 115 mg/kg BW, respectively, and then treated with 10 μL/kg BW LPS for 14 d. Blood, liver, lymph, and cardiac tissue samples were collected and subjected to histological and complete blood examinations. Antioxidant (Glutathione peroxidase 3 (GPx3) and superoxide dismutase), FABP4 levels, and immune system-associated biomarker levels (TNF-α, IL-6 and IL-1β) were measured. Results: Significant increases in platelet levels (p = 0.03), cardiomyocyte counts (p =0.004), and hepatocyte counts (p = 0.0004) were observed in group 4 compared with those in group 2. Conversely, compared with those in group 2, there were significant decreases in TNF-α expression in group 3 (p = 0.004), white pulp length and width in group 4 (p = 0.001), FABP4 levels in groups 3 and 4 (p = 0.015 and p = 0.012, respectively), lymphocyte counts in group 4 (p = 0.009), and monocyte counts (p = 0.000) and polymorphonuclear cell counts in the livers (p = 0.000) and hearts (p = 0.000) of groups 3 and 4. Gpx3 activity was significantly higher in group 3 than in group 1 (p = 0.04). Conclusions: ECGR reduces FABP4 level and modulating oxidative stress markers in sepsis mouse model.
Collapse
Affiliation(s)
- Mirasari Putri
- Department of Biochemistry, Nutrition and Biomolecular, Faculty of medicine. Universitas Islam Bandung, Bandung, West-Java, 40616, Indonesia
| | | | | | - Ghaliby Ardhia Ramli
- Faculty of Medicine, Universitas Islam Bandung, Bandung, West-Java, 40616, Indonesia
| | - Neni Anggraeni
- Medical Laboratorium Technologist, Bakti Asih School of Analyst, Bandung, West-Java, 40192, Indonesia
| | - Nugraha Sutadipura
- Department of Biochemistry, Nutrition and Biomolecular, Faculty of medicine. Universitas Islam Bandung, Bandung, West-Java, 40616, Indonesia
| | - Nur Atik
- Department of Biomedicine Sciences, Faculty of Medicine, Universitas Padjadjaran, West Java, 45363, Indonesia
| | - Mas Rizky A. A. Syamsunarno
- Department of Biomedicine Sciences, Faculty of Medicine, Universitas Padjadjaran, West Java, 45363, Indonesia
| |
Collapse
|
3
|
Zhu F, Song Z, Zhang S, Zhang X, Zhu D. The Renoprotective Effect of Shikonin in a Rat Model of Diabetic Kidney Disease. Transplant Proc 2023; 55:1731-1738. [PMID: 37391330 DOI: 10.1016/j.transproceed.2023.04.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/22/2023] [Accepted: 04/14/2023] [Indexed: 07/02/2023]
Abstract
BACKGROUND In diabetes mellitus, diabetic nephropathy (DN) is a typical complication and pivotal cause of chronic kidney disease. The DN disease burden is among the highest in the world and is associated with high morbidity, mortality, and disease burden. Safe and effective medications are urgently needed for the treatment of DN. Interest has been increasing in Shikonin, extracted from the naphthoquinone plant, particularly in determining its renal protective effect. METHODS In this study, we explored Shikonin's effects and potential mechanisms on a streptozotocin (STZ)-induced DN experimental model. An STZ-induced rat diabetic model was established, and the rats were treated with different doses of Shikonin (10/50 mg/kg) for 4 weeks. Blood, urine, and renal tissue samples were collected after the last administration. Renal tissues were examined to detect each group's physiologic, biochemical, histopathologic, and molecular changes. RESULTS The results showed that Shikonin administration could significantly alleviate the STZ-induced elevation of blood urea nitrogen, serum creatinine, urinary protein content, and renal pathologic injury. Furthermore, Shikonin significantly decreased oxidative stress, inflammation, and Toll-like receptor 4/myeloid differentiation primary response 88/nuclear factor-κB expression levels in DN kidney tissues. Shikonin showed a dose-dependent effect, with the best outcome at 50 mg/kg. CONCLUSION Shikonin could effectively alleviate DN-related nephropathy damage and reveal the underlying pharmacologic mechanism. Based on the results, a Shikonin combination can be used in clinical treatment.
Collapse
Affiliation(s)
- Feng Zhu
- Department of Endocrinology, Affiliated Hospital of Jinggangshan University, Ji'an City, China
| | - Zhengyi Song
- Department of General Surgery, Third Clinical Medical College of China Three Gorges University, Gezhouba Central Hospital of Sinopharm, Yichang, China
| | - Shuang Zhang
- Department of Neurology, Third Clinical Medical College of China Three Gorges University, Gezhouba Central Hospital of Sinopharm, Yichang, China
| | - Xueqin Zhang
- Department of Endocrinology, Third Clinical Medical College of China Three Gorges University, Gezhouba Central Hospital of Sinopharm, Yichang, China
| | - Dan Zhu
- Department of Endocrinology, Third Clinical Medical College of China Three Gorges University, Gezhouba Central Hospital of Sinopharm, Yichang, China.
| |
Collapse
|
4
|
Sun Q, Gong T, Liu M, Ren S, Yang H, Zeng S, Zhao H, Chen L, Ming T, Meng X, Xu H. Shikonin, a naphthalene ingredient: Therapeutic actions, pharmacokinetics, toxicology, clinical trials and pharmaceutical researches. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 94:153805. [PMID: 34749177 DOI: 10.1016/j.phymed.2021.153805] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/15/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Shikonin is one of the major phytochemical components of Lithospermum erythrorhizon (Purple Cromwell), which is a type of medicinal herb broadly utilized in traditional Chinese medicine. It is well established that shikonin possesses remarkable therapeutic actions on various diseases, with the underlying mechanisms, pharmacokinetics and toxicological effects elusive. Also, the clinical trial and pharmaceutical study of shikonin remain to be comprehensively delineated. PURPOSE The present review aimed to systematically summarize the updated knowledge regarding the therapeutic actions, pharmacokinetics, toxicological effects, clinical trial and pharmaceutical study of shikonin. METHODS The information contained in this review article were retrieved from some authoritative databases including Web of Science, PubMed, Google scholar, Chinese National Knowledge Infrastructure (CNKI), Wanfang Database and so on, till August 2021. RESULTS Shikonin exerts multiple therapeutic efficacies, such as anti-inflammation, anti-cancer, cardiovascular protection, anti-microbiomes, analgesia, anti-obesity, brain protection, and so on, mainly by regulating the NF-κB, PI3K/Akt/MAPKs, Akt/mTOR, TGF-β, GSK3β, TLR4/Akt signaling pathways, NLRP3 inflammasome, reactive oxygen stress, Bax/Bcl-2, etc. In terms of pharmacokinetics, shikonin has an unfavorable oral bioavailability, 64.6% of the binding rate of plasma protein, and enhances some metabolic enzymes, particularly including cytochrome P450. In regard to the toxicological effects, shikonin may potentially cause nephrotoxicity and skin allergy. The above pharmacodynamics and pharmacokinetics of shikonin have been validated by few clinical trials. In addition, pharmaceutical innovation of shikonin with novel drug delivery system such as nanoparticles, liposomes, microemulsions, nanogel, cyclodextrin complexes, micelles and polymers are beneficial to the development of shikonin-based drugs. CONCLUSIONS Shikonin is a promising phytochemical for drug candidates. Extensive and intensive explorations on shikonin are warranted to expedite the utilization of shikonin-based drugs in the clinical setting.
Collapse
Affiliation(s)
- Qiang Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ting Gong
- Department of Ultrasound, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
| | - Maolun Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shan Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Han Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Sha Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hui Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tianqi Ming
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Haibo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
5
|
Phytochemicals Targeting JAK-STAT Pathways in Inflammatory Bowel Disease: Insights from Animal Models. Molecules 2021; 26:molecules26092824. [PMID: 34068714 PMCID: PMC8126249 DOI: 10.3390/molecules26092824] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 12/18/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the gastrointestinal tract that consists of Crohn’s disease (CD) and ulcerative colitis (UC). Cytokines are thought to be key mediators of inflammation-mediated pathological processes of IBD. These cytokines play a crucial role through the Janus kinase (JAK) and signal transducer and activator of transcription (STAT) signaling pathways. Several small molecules inhibiting JAK have been used in clinical trials, and one of them has been approved for IBD treatment. Many anti-inflammatory phytochemicals have been shown to have potential as new drugs for IBD treatment. This review describes the significance of the JAK–STAT pathway as a current therapeutic target for IBD and discusses the recent findings that phytochemicals can ameliorate disease symptoms by affecting the JAK–STAT pathway in vivo in IBD disease models. Thus, we suggest that phytochemicals modulating JAK–STAT pathways are potential candidates for developing new therapeutic drugs, alternative medicines, and nutraceutical agents for the treatment of IBD.
Collapse
|
6
|
Phytochemicals as potential IKK-β inhibitor for the treatment of cardiovascular diseases in plant preservation: terpenoids, alkaloids, and quinones. Inflammopharmacology 2019; 28:83-93. [DOI: 10.1007/s10787-019-00640-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 08/27/2019] [Indexed: 12/11/2022]
|
7
|
Ahn J, Chae HS, Chin YW, Kim J. Furylhydroquinones and miscellaneous compounds from the roots of Lithospermum erythrorhizon and their anti-inflammatory effect in HaCaT cells. Nat Prod Res 2018; 33:1691-1698. [PMID: 29382220 DOI: 10.1080/14786419.2018.1431632] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
One new furylhydroquinone derivative (1) and seven known compounds (2-8) were isolated from the roots of Lithospermum erythrorhizon Sieb. et Zucc (Boraginaceae). The structure of 1 was elucidated by extensive spectroscopic methods using NMR and MS. The absolute configuration of shikonofuran J (1) was unambiguously determined by aid of comparison experimental ECD with predicted ECD spectra. All the isolates were tested for their inhibitory activities against IL-6 production in HaCaT cells stimulated by tumor necrosis factor (TNF)-α. It was found that gracicleistanthoside (5) and uridine (7) remarkably down-regulated the TNF-α-induced synthesis of interleukin-6 (IL-6), a pro-inflammatory cytokine associated with cutaneous inflammation, in HaCaT cells.
Collapse
Affiliation(s)
- Jongmin Ahn
- a College of Pharmacy and Research Institute of Pharmaceutical Sciences , Seoul National University , Seoul , Republic of Korea
| | - Hee-Sung Chae
- b College of Pharmacy and Integrated Research Institute for Drug Development , Dongguk University-Seoul , Gyeonggi-do , Republic of Korea
| | - Young-Won Chin
- b College of Pharmacy and Integrated Research Institute for Drug Development , Dongguk University-Seoul , Gyeonggi-do , Republic of Korea
| | - Jinwoong Kim
- a College of Pharmacy and Research Institute of Pharmaceutical Sciences , Seoul National University , Seoul , Republic of Korea
| |
Collapse
|