1
|
Rodrigues JAO, Kiran NS, Chatterjee A, Prajapati BG, Dhas N, Dos Santos AO, de Sousa FF, Souto EB. Metallodrugs: Synthesis, mechanism of action and nanoencapsulation for targeted chemotherapy. Biochem Pharmacol 2025; 231:116644. [PMID: 39577705 DOI: 10.1016/j.bcp.2024.116644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/31/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
As a multifactorial and heterogeneous disease, cancer has a high mortality rate, and the search for more effective treatments is an enormous challenge. Metal coordination compounds open a range of possibilities that conventional organic and biological molecules can no longer fulfil due to increasing drug resistance. Metallodrugs still have tremendous potential to help overcome drug resistance and find new cures in medicine, considering that at least 25 metallic elements participate in healthy functioning of the human body. Transition metal ions, such as copper, zinc and iron, are incorporated into catalytic proteins, the so-called metalloenzymes, which participate in various chemical reactions necessary for life. The interaction of metal complexes in different pathways with the structural richness of deoxyribonucleic acid encouraged to seek to understand the mechanisms of action and overcome the obstacles encountered for a promising future of these drugs. The success of platinum-based metallodrugs is one of the great inspirations for the search of new metallodrugs, although the approval of these molecules has been slow in recent years due to the risk of systemic toxicity and insufficient understanding of their mechanisms. To overcome the clinical limitations encountered in some metallodrugs, nanoencapsulation has been proposed as a new approach to improve therapeutic index in chemotherapy. The remarkable selectivity of nanoencapsulated metallodrugs and their enhanced capacity to bypass various biological barriers allow site-specific targeting. In this review, we present the advances in the development and use of the most relevant metallodrugs, and new delivery approaches, in the fight against cancer.
Collapse
Affiliation(s)
- Jessica A O Rodrigues
- Center for Social Sciences, Health and Technology, Federal University of Maranhão (UFMA), 65900-410 Imperatriz, MA, Brazil.
| | - Neelakanta S Kiran
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India
| | - Ankita Chatterjee
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India
| | - Bhupendra G Prajapati
- Shree. S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana 384012, Gujarat, India; Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Adenilson O Dos Santos
- Center for Social Sciences, Health and Technology, Federal University of Maranhão (UFMA), 65900-410 Imperatriz, MA, Brazil
| | - Francisco F de Sousa
- Center for Social Sciences, Health and Technology, Federal University of Maranhão (UFMA), 65900-410 Imperatriz, MA, Brazil; Institute of Exact and Natural Sciences, Federal University of Pará (UFPA), 66075-110, Belem, PA, Brazil
| | - Eliana B Souto
- UCD School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland.
| |
Collapse
|
2
|
Baier D, Mendrina T, Schoenhacker‐Alte B, Pirker C, Mohr T, Rusz M, Regner B, Schaier M, Sgarioto N, Raynal NJ, Nowikovsky K, Schmidt WM, Heffeter P, Meier‐Menches SM, Koellensperger G, Keppler BK, Berger W. The Lipid Metabolism as Target and Modulator of BOLD-100 Anticancer Activity: Crosstalk with Histone Acetylation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301939. [PMID: 37752764 PMCID: PMC10646284 DOI: 10.1002/advs.202301939] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 08/18/2023] [Indexed: 09/28/2023]
Abstract
The leading first-in-class ruthenium-complex BOLD-100 currently undergoes clinical phase-II anticancer evaluation. Recently, BOLD-100 is identified as anti-Warburg compound. The present study shows that also deregulated lipid metabolism parameters characterize acquired BOLD-100-resistant colon and pancreatic carcinoma cells. Acute BOLD-100 treatment reduces lipid droplet contents of BOLD-100-sensitive but not -resistant cells. Despite enhanced glycolysis fueling lipid accumulation, BOLD-100-resistant cells reveal diminished lactate secretion based on monocarboxylate transporter 1 (MCT1) loss mediated by a frame-shift mutation in the MCT1 chaperone basigin. Glycolysis and lipid catabolism converge in the production of protein/histone acetylation substrate acetyl-coenzymeA (CoA). Mass spectrometric and nuclear magnetic resonance analyses uncover spontaneous cell-free BOLD-100-CoA adduct formation suggesting acetyl-CoA depletion as mechanism bridging BOLD-100-induced lipid metabolism alterations and histone acetylation-mediated gene expression deregulation. Indeed, BOLD-100 treatment decreases histone acetylation selectively in sensitive cells. Pharmacological targeting confirms histone de-acetylation as central mode-of-action of BOLD-100 and metabolic programs stabilizing histone acetylation as relevant Achilles' heel of acquired BOLD-100-resistant cell and xenograft models. Accordingly, histone gene expression changes also predict intrinsic BOLD-100 responsiveness. Summarizing, BOLD-100 is identified as epigenetically active substance acting via targeting several onco-metabolic pathways. Identification of the lipid metabolism as driver of acquired BOLD-100 resistance opens novel strategies to tackle therapy failure.
Collapse
Affiliation(s)
- Dina Baier
- Center for Cancer Research and Comprehensive Cancer CenterMedical University ViennaBorschkegasse 8aVienna1090Austria
- Institute of Inorganic ChemistryUniversity of ViennaWaehringer Str. 42Vienna1090Austria
- Research Cluster “Translational Cancer Therapy Research”Vienna1090Austria
| | - Theresa Mendrina
- Center for Cancer Research and Comprehensive Cancer CenterMedical University ViennaBorschkegasse 8aVienna1090Austria
- Institute of Inorganic ChemistryUniversity of ViennaWaehringer Str. 42Vienna1090Austria
- Research Cluster “Translational Cancer Therapy Research”Vienna1090Austria
| | - Beatrix Schoenhacker‐Alte
- Center for Cancer Research and Comprehensive Cancer CenterMedical University ViennaBorschkegasse 8aVienna1090Austria
- Institute of Inorganic ChemistryUniversity of ViennaWaehringer Str. 42Vienna1090Austria
- Research Cluster “Translational Cancer Therapy Research”Vienna1090Austria
| | - Christine Pirker
- Center for Cancer Research and Comprehensive Cancer CenterMedical University ViennaBorschkegasse 8aVienna1090Austria
- Research Cluster “Translational Cancer Therapy Research”Vienna1090Austria
| | - Thomas Mohr
- Center for Cancer Research and Comprehensive Cancer CenterMedical University ViennaBorschkegasse 8aVienna1090Austria
- Joint Metabolome FacilityUniversity of Vienna and Medical University of ViennaWaehringer Str. 38Vienna1090Austria
- ScienceConsultGuntramsdorf2351Austria
| | - Mate Rusz
- Institute of Inorganic ChemistryUniversity of ViennaWaehringer Str. 42Vienna1090Austria
- Research Cluster “Translational Cancer Therapy Research”Vienna1090Austria
- Institute of Analytical ChemistryFaculty of ChemistryUniversity of ViennaWaehringer Str. 38Vienna1090Austria
| | - Benedict Regner
- Anna Spiegel Center of Translational ResearchDepartment of Medicine IMedical University ViennaLazarettgasse 14Vienna1090Austria
| | - Martin Schaier
- Institute of Analytical ChemistryFaculty of ChemistryUniversity of ViennaWaehringer Str. 38Vienna1090Austria
| | - Nicolas Sgarioto
- Départment de pharmacologie et physiologieFaculté de médecineCentre de recherché de l hôpitalUniversité de MontréalSaint‐Justine (7.17.020), 3175 Chemin de la Côte Ste‐CatherineQuebecH3T1C5Canada
| | - Noël J.‐M. Raynal
- Départment de pharmacologie et physiologieFaculté de médecineCentre de recherché de l hôpitalUniversité de MontréalSaint‐Justine (7.17.020), 3175 Chemin de la Côte Ste‐CatherineQuebecH3T1C5Canada
| | - Karin Nowikovsky
- Unit of Physiology and BiophysicsDepartment of Biomedical SciencesUniversity of Veterinary Medicine ViennaVeterinaerplatz 1Vienna1210Austria
| | - Wolfgang M. Schmidt
- Neuromuscular Research DepartmentCenter for Anatomy and Cell BiologyMedical University of ViennaWähringer Str. 13Vienna1090Austria
| | - Petra Heffeter
- Center for Cancer Research and Comprehensive Cancer CenterMedical University ViennaBorschkegasse 8aVienna1090Austria
- Research Cluster “Translational Cancer Therapy Research”Vienna1090Austria
| | - Samuel M. Meier‐Menches
- Institute of Inorganic ChemistryUniversity of ViennaWaehringer Str. 42Vienna1090Austria
- Joint Metabolome FacilityUniversity of Vienna and Medical University of ViennaWaehringer Str. 38Vienna1090Austria
- Institute of Analytical ChemistryFaculty of ChemistryUniversity of ViennaWaehringer Str. 38Vienna1090Austria
| | - Gunda Koellensperger
- Institute of Analytical ChemistryFaculty of ChemistryUniversity of ViennaWaehringer Str. 38Vienna1090Austria
| | - Bernhard K. Keppler
- Institute of Inorganic ChemistryUniversity of ViennaWaehringer Str. 42Vienna1090Austria
- Research Cluster “Translational Cancer Therapy Research”Vienna1090Austria
| | - Walter Berger
- Center for Cancer Research and Comprehensive Cancer CenterMedical University ViennaBorschkegasse 8aVienna1090Austria
- Research Cluster “Translational Cancer Therapy Research”Vienna1090Austria
| |
Collapse
|
3
|
Targeting emerging cancer hallmarks by transition metal complexes: Epigenetic reprogramming and epitherapies. Part II. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Lucaciu RL, Hangan AC, Sevastre B, Oprean LS. Metallo-Drugs in Cancer Therapy: Past, Present and Future. Molecules 2022; 27:6485. [PMID: 36235023 PMCID: PMC9572156 DOI: 10.3390/molecules27196485] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/24/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer treatments which include conventional chemotherapy have not proven very successful in curing human malignancies. The failures of these treatment modalities include inherent resistance, systemic toxicity and severe side effects. Out of 50% patients administrated to chemotherapy, only 5% survive. For these reasons, the identification of new drug designs and therapeutic strategies that could target cancer cells while leaving normal cells unaffected still continues to be a challenge. Despite advances that have led to the development of new therapies, treatment options are still limited for many types of cancers. This review provides an overview of platinum, copper and ruthenium metal based anticancer drugs in clinical trials and in vitro/in vivo studies. Presumably, copper and ruthenium complexes have greater potential than Pt(II) complexes, showing reduced toxicity, a new mechanism of action, a different spectrum of activity and the possibility of non-cross-resistance. We focus the discussion towards past, present and future aspects.
Collapse
Affiliation(s)
- Roxana Liana Lucaciu
- Department of Pharmaceutical Biochemistry and Clinical Laboratory, Faculty of Pharmacy, “Iuliu-Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania or
| | - Adriana Corina Hangan
- Department of Inorganic Chemistry, Faculty of Pharmacy, “Iuliu-Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Bogdan Sevastre
- Clinic Department, Faculty of Veterinary Madicine, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Luminița Simona Oprean
- Department of Inorganic Chemistry, Faculty of Pharmacy, “Iuliu-Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
5
|
Ferraro MG, Piccolo M, Misso G, Santamaria R, Irace C. Bioactivity and Development of Small Non-Platinum Metal-Based Chemotherapeutics. Pharmaceutics 2022; 14:pharmaceutics14050954. [PMID: 35631543 PMCID: PMC9147010 DOI: 10.3390/pharmaceutics14050954] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Countless expectations converge in the multidisciplinary endeavour for the search and development of effective and safe drugs in fighting cancer. Although they still embody a minority of the pharmacological agents currently in clinical use, metal-based complexes have great yet unexplored potential, which probably hides forthcoming anticancer drugs. Following the historical success of cisplatin and congeners, but also taking advantage of conventional chemotherapy limitations that emerged with applications in the clinic, the design and development of non-platinum metal-based chemotherapeutics, either as drugs or prodrugs, represents a rapidly evolving field wherein candidate compounds can be fine-tuned to access interactions with druggable biological targets. Moving in this direction, over the last few decades platinum family metals, e.g., ruthenium and palladium, have been largely proposed. Indeed, transition metals and molecular platforms where they originate are endowed with unique chemical and biological features based on, but not limited to, redox activity and coordination geometries, as well as ligand selection (including their inherent reactivity and bioactivity). Herein, current applications and progress in metal-based chemoth are reviewed. Converging on the recent literature, new attractive chemotherapeutics based on transition metals other than platinum—and their bioactivity and mechanisms of action—are examined and discussed. A special focus is committed to anticancer agents based on ruthenium, palladium, rhodium, and iridium, but also to gold derivatives, for which more experimental data are nowadays available. Next to platinum-based agents, ruthenium-based candidate drugs were the first to reach the stage of clinical evaluation in humans, opening new scenarios for the development of alternative chemotherapeutic options to treat cancer.
Collapse
Affiliation(s)
- Maria Grazia Ferraro
- BioChemLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (R.S.)
| | - Marialuisa Piccolo
- BioChemLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (R.S.)
| | - Gabriella Misso
- Department of Precision Medicine, School of Medicine and Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Correspondence: (G.M.); (C.I.)
| | - Rita Santamaria
- BioChemLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (R.S.)
| | - Carlo Irace
- BioChemLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (R.S.)
- Correspondence: (G.M.); (C.I.)
| |
Collapse
|
6
|
González-Ballesteros MM, Mejía C, Ruiz-Azuara L. Metallodrugs, an approach against invasion and metastasis in cancer treatment. FEBS Open Bio 2022; 12:880-899. [PMID: 35170871 PMCID: PMC9063434 DOI: 10.1002/2211-5463.13381] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/21/2022] [Accepted: 02/15/2022] [Indexed: 11/24/2022] Open
Abstract
Cancer is a heterogeneous and multifactorial disease that causes high mortality throughout the world; therefore, finding the most effective therapies is a major research challenge. Currently, most anticancer drugs present a limited number of well‐established targets, such as cell proliferation or death; however, it is important to consider that the worse progression of cancer toward pathological stages implies invasion and metastasis processes. Medicinal Inorganic Chemistry (MIC) is a young area that deals with the design, synthesis, characterization, preclinical evaluation, and mechanism of action of new inorganic compounds, called metallodrugs. The properties of metallic ions allow enriching of strategies for the design of new drugs, enabling the adjustment of physicochemical and stereochemical properties. Metallodrugs can adopt geometries, such as tetrahedral, octahedral, square planar, and square planar pyramid, which adjusts their arrangement and facilitates binding with a wide variety of targets. The redox properties of some metal ions can be modulated by the presence of the bound ligands to adjust their interaction, thereby opening a range of mechanisms of action. In this regard, the mechanisms of action that trigger the biological activity of metallodrugs have been generally identified by: (a) coordination of the metal to biomolecules (for instance, cisplatin binds to the N7 in DNA guanine, as Pt‐N via coordination of the inhibition of enzymes); (b) redox‐active; and (c) ROS production. For this reason, a series of metallodrugs can interact with several specific targets in the anti‐invasive processes of cancer and can prevent metastasis. The structural base of several metal compounds shows great anticancer potential by inhibiting the signaling pathways related to cancer progression. In this minireview, we present the advances in the field of antimetastatic effects of metallodrugs.
Collapse
Affiliation(s)
- Mauricio M González-Ballesteros
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad de México, CP, 04510, Mexico
| | - Carmen Mejía
- Laboratorio de Biología Celular, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, C.P, 76230, México
| | - Lena Ruiz-Azuara
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad de México, CP, 04510, Mexico
| |
Collapse
|
7
|
Davis J, Cetto A, Campbell M, Scoggins S, Stultz L, Hanson P. DMSO reduces the cytotoxicity of anticancer ruthenium complex KP1019 in yeast. MICROPUBLICATION BIOLOGY 2021; 2021:10.17912/micropub.biology.000436. [PMID: 34377963 PMCID: PMC8339913 DOI: 10.17912/micropub.biology.000436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 11/25/2022]
Abstract
Low solubility in aqueous solutions is a significant limitation of the otherwise promising anticancer ruthenium complex KP1019. In laboratory studies, this challenge is often overcome by using DMSO to help drive the drug into solution. Since DMSO was previously shown to alter the bioactivity of platinum-based chemotherapeutics, here we examine DMSO's effects on KP1019. Using Saccharomyces cerevisiae as a model organism, we apply multiple measures of growth inhibition to demonstrate that DMSO reduces the drug's toxicity. This reduction in bioactivity correlates with spectrophotometric changes consistent with DMSO-dependent increases in the stability of the KP1019 pro-drug. The impact of DMSO on the biology and chemistry of KP1019 suggests this solvent should not be used in studies of this and similar anticancer ruthenium complexes.
Collapse
Affiliation(s)
- Jonathan Davis
- Department of Biology, Furman University, Greenville, SC 29613, USA
| | - Anne Cetto
- Department of Chemistry, Birmingham-Southern College, Birmingham, AL 35254, USA
| | - Mary Campbell
- Department of Chemistry, Birmingham-Southern College, Birmingham, AL 35254, USA
| | - Seth Scoggins
- Department of Chemistry, Birmingham-Southern College, Birmingham, AL 35254, USA
| | - Laura Stultz
- Department of Chemistry, Birmingham-Southern College, Birmingham, AL 35254, USA
| | - Pamela Hanson
- Department of Biology, Furman University, Greenville, SC 29613, USA,
Correspondence to: Pamela Hanson ()
| |
Collapse
|
8
|
Shang C, Hou Y, Meng T, Shi M, Cui G. The Anticancer Activity of Indazole Compounds: A Mini Review. Curr Top Med Chem 2021; 21:363-376. [PMID: 33238856 DOI: 10.2174/1568026620999201124154231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/30/2020] [Accepted: 10/06/2020] [Indexed: 11/22/2022]
Abstract
The incidence and mortality of cancer continue to grow since the current medical treatments often fail to produce a complete and durable tumor response and ultimately give rise to therapy resistance and tumor relapse. Heterocycles with potential therapeutic values are of great pharmacological importance, and among them, indazole moiety is a privileged structure in medicinal chemistry. Indazole compounds possess potential anticancer activity, and indazole-based agents such as, axitinib, lonidamine and pazopanib have already been employed for cancer therapy, demonstrating indazole compounds as useful templates for the development of novel anticancer agents. The aim of this review is to present the main aspects of exploring anticancer properties, such as the structural modifications, the structure-activity relationship and mechanisms of action, making an effort to highlight the importance and therapeutic potential of the indazole compounds in the present anticancer agents.
Collapse
Affiliation(s)
- Congshan Shang
- Medical College, Xi'an Peihua University, Xi'an 710025, Shaanxi, China
| | - Yani Hou
- Medical College, Xi'an Peihua University, Xi'an 710025, Shaanxi, China
| | - Tingting Meng
- Medical College, Xi'an Peihua University, Xi'an 710025, Shaanxi, China
| | - Min Shi
- Medical College, Xi'an Peihua University, Xi'an 710025, Shaanxi, China
| | - Guoyan Cui
- Department of Basic Medicine, Changzhi Medical College, Changzhi 046000, Shaanxi, China
| |
Collapse
|
9
|
Swagatika S, Tomar RS. Cantharidin downregulates PSD1 expression and inhibits autophagic flux in yeast cells. FEBS Open Bio 2021; 12:1017-1035. [PMID: 33999504 PMCID: PMC9063437 DOI: 10.1002/2211-5463.13196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/07/2021] [Accepted: 05/14/2021] [Indexed: 11/10/2022] Open
Abstract
Cantharidin is a terpenoid compound of insect origin, naturally produced by male blister beetles as an anti-predatory mechanism. Cantharidin has anticancer properties, which are attributed to its ability to induce cell cycle arrest, DNA damage, MAPK signalling pathway and apoptosis. Cantharidin has been reported to induce apoptosis in triple-negative breast cancer cells by suppressing autophagy via downregulation of Beclin 1 expression and autophagosome formation. However, it remains unclear which stage of the autophagic pathway is targeted by cantharidin. Herein, we report that yeast cells are sensitive to cantharidin, and external supplementation of ethanolamine (ETA) ameliorates the cytotoxicity. In addition, cantharidin downregulates phosphatidylserine decarboxylase1 (PSD1) expression. We also report that cantharidin inhibits autophagic flux, and external administration of ETA could rescue this inhibition. Additionally, co-treatment with chloroquine sensitized the autophagy inhibitory effects of cantharidin. We conclude that yeast cells are sensitive to cantharidin due to inhibition of autophagic flux.
Collapse
Affiliation(s)
- Swati Swagatika
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal-462066, MP, India
| | - Raghuvir Singh Tomar
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal-462066, MP, India
| |
Collapse
|
10
|
Swagatika S, Tomar RS. ABC transporter Pdr5 is required for cantharidin resistance in Saccharomyces cerevisiae. Biochem Biophys Res Commun 2021; 553:141-147. [PMID: 33770579 DOI: 10.1016/j.bbrc.2021.03.074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/15/2021] [Indexed: 01/22/2023]
Abstract
Cantharidin is a potent anti-cancer drug and is known to exert its cytotoxic effects in several cancer cell lines. Although we have ample knowledge about its mode of action, we still know a little about cantharidin associated drug resistance mechanisms which dictates the efficacy and cytotoxic potential of this drug. In this direction, in the present study we employed Sacharomyces cerevisiae as a model organism and screened mutants of pleiotropic drug resistance network of genes for their susceptibility to cantharidin. We show that growth of pdr1Δ and pdr1Δpdr3Δ was severely reduced in presence of cantharidin whereas that of pdr3Δ remain unaffected when compared to wildtype. Loss of one of the PDR1 target genes PDR5, encoding an ABC membrane efflux pump, rendered the cells hypersensitive whereas overexpression of it conferred resistance. Additionally, cantharidin induced the upregulation of both PDR1 and PDR5 genes. Interestingly, pdr1Δpdr5Δ double deletion mutants were hypersensitive to cantharidin showing a synergistic effect in its cellular detoxification. Furthermore, transcriptional activation of PDR5 post cantharidin treatment was majorly dependent on the presence of Pdr1 and less significantly of Pdr3 transcription factors. Altogether our findings suggest that Pdr1 acts to increase cantharidin resistance by elevating the level of Pdr5 which serves as a major detoxification safeguard under CAN stress.
Collapse
Affiliation(s)
- Swati Swagatika
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, 462066, MP, India
| | - Raghuvir Singh Tomar
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, 462066, MP, India.
| |
Collapse
|
11
|
Stultz LK, Hunsucker A, Middleton S, Grovenstein E, O'Leary J, Blatt E, Miller M, Mobley J, Hanson PK. Proteomic analysis of the S. cerevisiae response to the anticancer ruthenium complex KP1019. Metallomics 2020; 12:876-890. [PMID: 32329475 PMCID: PMC7362344 DOI: 10.1039/d0mt00008f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Like platinum-based chemotherapeutics, the anticancer ruthenium complex indazolium trans-[tetrachlorobis(1H-indazole)ruthenate(iii)], or KP1019, damages DNA, induces apoptosis, and causes tumor regression in animal models. Unlike platinum-based drugs, KP1019 showed no dose-limiting toxicity in a phase I clinical trial. Despite these advances, the mechanism(s) and target(s) of KP1019 remain unclear. For example, the drug may damage DNA directly or by causing oxidative stress. Likewise, KP1019 binds cytosolic proteins, suggesting DNA is not the sole target. Here we use the budding yeast Saccharomyces cerevisiae as a model in a proteomic study of the cellular response to KP1019. Mapping protein level changes onto metabolic pathways revealed patterns consistent with elevated synthesis and/or cycling of the antioxidant glutathione, suggesting KP1019 induces oxidative stress. This result was supported by increased fluorescence of the redox-sensitive dye DCFH-DA and increased KP1019 sensitivity of yeast lacking Yap1, a master regulator of the oxidative stress response. In addition to oxidative and DNA stress, bioinformatic analysis revealed drug-dependent increases in proteins involved ribosome biogenesis, translation, and protein (re)folding. Consistent with proteotoxic effects, KP1019 increased expression of a heat-shock element (HSE) lacZ reporter. KP1019 pre-treatment also sensitized yeast to oxaliplatin, paralleling prior research showing that cancer cell lines with elevated levels of translation machinery are hypersensitive to oxaliplatin. Combined, these data suggest that one of KP1019's many targets may be protein metabolism, which opens up intriguing possibilities for combination therapy.
Collapse
Affiliation(s)
- Laura K Stultz
- Department of Chemistry, Birmingham-Southern College, Birmingham, AL 35254, USA
| | - Alexandra Hunsucker
- Department of Biology, Birmingham-Southern College, Birmingham, AL 35254, USA
| | - Sydney Middleton
- Department of Chemistry, Birmingham-Southern College, Birmingham, AL 35254, USA
| | - Evan Grovenstein
- Department of Biology, Birmingham-Southern College, Birmingham, AL 35254, USA
| | - Jacob O'Leary
- Department of Chemistry, Birmingham-Southern College, Birmingham, AL 35254, USA
| | - Eliot Blatt
- Department of Biology, Rhodes College, Memphis, TN 38112, USA
| | - Mary Miller
- Department of Biology, Rhodes College, Memphis, TN 38112, USA
| | - James Mobley
- Department of Surgery, University of Alabama at Birmingham, School of Medicine, Birmingham, AL 35294, USA
| | - Pamela K Hanson
- Department of Biology, Furman University, Greenville, SC 29613, USA.
| |
Collapse
|
12
|
Juszczak M, Kluska M, Wysokiński D, Woźniak K. Anti-cancer properties of ruthenium compounds: NAMI-A and KP1019. POSTEP HIG MED DOSW 2020. [DOI: 10.5604/01.3001.0013.8549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cancer research is among the key challenges in current medicine and biology. Many decades of investigations have brought measurable benefits in both areas with regard to expanding the knowledge of the molecular mechanism of cancer and developing treatment strategies. Despite that cancers are still among diseases with the highest mortality rate, and cancer treatment is often unsuccessful and connected with severe side effects. The development of therapeutic strategies in both targeting the primary tumor origin and preventing metastasis is largely based on testing newly synthesized chemical agents, including a group of metal-containing complexes. It seems that ruthenium-containing complexes are of high potential in cancer therapy, and our work presents the current data about the application of ruthenium-based complexes − NAMI-A and KP1019 in cancer therapy.
Collapse
Affiliation(s)
- Michał Juszczak
- Katedra Genetyki Molekularnej, Wydział Biologii i Ochrony Środowiska, Uniwersytet Łódzki
| | - Magdalena Kluska
- Katedra Genetyki Molekularnej, Wydział Biologii i Ochrony Środowiska, Uniwersytet Łódzki
| | - Daniel Wysokiński
- Katedra Genetyki Molekularnej, Wydział Biologii i Ochrony Środowiska, Uniwersytet Łódzki
| | - Katarzyna Woźniak
- Katedra Genetyki Molekularnej, Wydział Biologii i Ochrony Środowiska, Uniwersytet Łódzki
| |
Collapse
|
13
|
Madzivire CR, Caramés-Méndez P, Pask CM, Phillips RM, Lord RM, McGowan PC. Anticancer, antifungal and antibacterial potential of bis(β-ketoiminato)ruthenium(II) carbonyl complexes. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.119025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
14
|
Kumar P, Swagatika S, Dasari S, Tomar RS, Patra AK. Modulation of ruthenium anticancer drugs analogs with tolfenamic acid: Reactivity, biological interactions and growth inhibition of yeast cell. J Inorg Biochem 2019; 199:110769. [DOI: 10.1016/j.jinorgbio.2019.110769] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 07/05/2019] [Accepted: 07/10/2019] [Indexed: 12/13/2022]
|
15
|
Rausch M, Dyson PJ, Nowak‐Sliwinska P. Recent Considerations in the Application of RAPTA‐C for Cancer Treatment and Perspectives for Its Combination with Immunotherapies. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900042] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Magdalena Rausch
- Molecular Pharmacology GroupSchool of Pharmaceutical Sciences, Faculty of SciencesUniversity of Lausanne and University of Geneva Rue Michel‐Servet 1, 1211 Geneva 4 Switzerland
| | - Paul J. Dyson
- Institute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Patrycja Nowak‐Sliwinska
- Molecular Pharmacology GroupSchool of Pharmaceutical Sciences, Faculty of SciencesUniversity of Lausanne and University of Geneva Rue Michel‐Servet 1, 1211 Geneva 4 Switzerland
- Translational Research Centre in Oncohaematology Geneva, Switzerland, 1211 Geneva 4 Switzerland
| |
Collapse
|
16
|
Abdel‐Aal MAA, Abdel‐Aziz SA, Shaykoon MSA, Abuo‐Rahma GEA. Towards anticancer fluoroquinolones: A review article. Arch Pharm (Weinheim) 2019; 352:e1800376. [DOI: 10.1002/ardp.201800376] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/18/2019] [Accepted: 03/21/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Mohamed A. A. Abdel‐Aal
- Department of Medicinal Chemistry, Faculty of PharmacyMinia UniversityMinia Egypt
- Department of Pharmaceutical Chemistry, Faculty of PharmacyAl‐Azhar UniversityAssiut Egypt
| | - Salah A. Abdel‐Aziz
- Department of Pharmaceutical Chemistry, Faculty of PharmacyAl‐Azhar UniversityAssiut Egypt
| | | | | |
Collapse
|
17
|
NAMI-A and KP1019/1339, Two Iconic Ruthenium Anticancer Drug Candidates Face-to-Face: A Case Story in Medicinal Inorganic Chemistry. Molecules 2019; 24:molecules24101995. [PMID: 31137659 PMCID: PMC6571951 DOI: 10.3390/molecules24101995] [Citation(s) in RCA: 240] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 05/22/2019] [Indexed: 01/23/2023] Open
Abstract
NAMI-A ((ImH)[trans-RuCl4(dmso-S)(Im)], Im = imidazole) and KP1019/1339 (KP1019 = (IndH)[trans-RuCl4(Ind)2], Ind = indazole; KP1339 = Na[trans-RuCl4(Ind)2]) are two structurally related ruthenium(III) coordination compounds that have attracted a lot of attention in the medicinal inorganic chemistry scientific community as promising anticancer drug candidates. This has led to a considerable amount of studies on their respective chemico-biological features and to the eventual admission of both to clinical trials. The encouraging pharmacological performances qualified KP1019 mainly as a cytotoxic agent for the treatment of platinum-resistant colorectal cancers, whereas the non-cytotoxic NAMI-A has gained the reputation of being a very effective antimetastatic drug. A critical and strictly comparative analysis of the studies conducted so far on NAMI-A and KP1019 allows us to define the state of the art of these experimental ruthenium drugs in terms of the respective pharmacological profiles and potential clinical applications, and to gain some insight into the inherent molecular mechanisms. Despite their evident structural relatedness, deeply distinct biological and pharmacological profiles do emerge. Overall, these two iconic ruthenium complexes form an exemplary and unique case in the field of medicinal inorganic chemistry.
Collapse
|
18
|
Piccolo M, Misso G, Ferraro MG, Riccardi C, Capuozzo A, Zarone MR, Maione F, Trifuoggi M, Stiuso P, D'Errico G, Caraglia M, Paduano L, Montesarchio D, Irace C, Santamaria R. Exploring cellular uptake, accumulation and mechanism of action of a cationic Ru-based nanosystem in human preclinical models of breast cancer. Sci Rep 2019; 9:7006. [PMID: 31065032 PMCID: PMC6505035 DOI: 10.1038/s41598-019-43411-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 01/15/2019] [Indexed: 01/07/2023] Open
Abstract
According to WHO, breast cancer incidence is increasing so that the search for novel chemotherapeutic options is nowadays an essential requirement to fight neoplasm subtypes. By exploring new effective metal-based chemotherapeutic strategies, many ruthenium complexes have been recently proposed as antitumour drugs, showing ability to impact on diverse cellular targets. In the framework of different molecular pathways leading to cell death in human models of breast cancer, here we demonstrate autophagy involvement behind the antiproliferative action of a ruthenium(III)-complex incorporated into a cationic nanosystem (HoThyRu/DOTAP), proved to be hitherto one of the most effective within the suite of nucleolipidic formulations we have developed for the in vivo transport of anticancer ruthenium(III)-based drugs. Indeed, evidences are implicating autophagy in both cancer development and therapy, and anticancer interventions endowed with the ability to trigger this biological response are currently considered attractive oncotherapeutic approaches. Moreover, crosstalk between apoptosis and autophagy, regulated by finely tuned metallo-chemotherapeutics, may provide novel opportunities for future improvement of cancer treatment. Following this line, our in vitro and in vivo preclinical investigations suggest that an original strategy based on suitable formulations of ruthenium(III)-complexes, inducing sustained cell death, could open new opportunities for breast cancer treatment, including the highly aggressive triple-negative subtype.
Collapse
Affiliation(s)
- Marialuisa Piccolo
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy
| | - Gabriella Misso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138, Naples, Italy
| | - Maria Grazia Ferraro
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy
| | - Claudia Riccardi
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 21, 80126, Naples, Italy
| | - Antonella Capuozzo
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy
| | - Mayra Rachele Zarone
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138, Naples, Italy
| | - Francesco Maione
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy
| | - Marco Trifuoggi
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 21, 80126, Naples, Italy
| | - Paola Stiuso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138, Naples, Italy
| | - Gerardino D'Errico
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 21, 80126, Naples, Italy
- CSGI - Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino (FI), Italy
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138, Naples, Italy
| | - Luigi Paduano
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 21, 80126, Naples, Italy.
- CSGI - Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino (FI), Italy.
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 21, 80126, Naples, Italy.
| | - Carlo Irace
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy.
| | - Rita Santamaria
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy
| |
Collapse
|
19
|
Pötsch I, Baier D, Keppler BK, Berger W. Challenges and Chances in the Preclinical to Clinical Translation of Anticancer Metallodrugs. METAL-BASED ANTICANCER AGENTS 2019. [DOI: 10.1039/9781788016452-00308] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Despite being “sentenced to death” for quite some time, anticancer platinum compounds are still the most frequently prescribed cancer therapies in the oncological routine and recent exciting news from late-stage clinical studies on combinations of metallodrugs with immunotherapies suggest that this situation will not change soon. It is perhaps surprising that relatively simple molecules like cisplatin, discovered over 50 years ago, are still widely used clinically, while none of the highly sophisticated metal compounds developed over the last decade, including complexes with targeting ligands and multifunctional (nano)formulations, have managed to obtain clinical approval. In this book chapter, we summarize the current status of ongoing clinical trials for anticancer metal compounds and discuss the reasons for previous failures, as well as new opportunities for the clinical translation of metal complexes.
Collapse
Affiliation(s)
- Isabella Pötsch
- University of Vienna, Department of Inorganic Chemistry Währingerstrasse Vienna 1090 Austria
- Medical University of Vienna, Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I Borschkegasse 8a 1090 Vienna Austria
| | - Dina Baier
- University of Vienna, Department of Inorganic Chemistry Währingerstrasse Vienna 1090 Austria
- Medical University of Vienna, Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I Borschkegasse 8a 1090 Vienna Austria
| | - Bernhard K. Keppler
- University of Vienna, Department of Inorganic Chemistry Währingerstrasse Vienna 1090 Austria
| | - Walter Berger
- Medical University of Vienna, Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I Borschkegasse 8a 1090 Vienna Austria
| |
Collapse
|
20
|
Thakre PK, SV A, Golla U, Chauhan S, Tomar RS. Previously uncharacterized amino acid residues in histone H3 and H4 mutants with roles in
DNA
damage repair response and cellular aging. FEBS J 2018; 286:1154-1173. [DOI: 10.1111/febs.14723] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/01/2018] [Accepted: 12/04/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Pilendra K. Thakre
- Laboratory of Chromatin Biology Department of Biological Sciences Indian Institute of Science Education and Research Bhopal India
| | - Athira SV
- Laboratory of Chromatin Biology Department of Biological Sciences Indian Institute of Science Education and Research Bhopal India
| | - Upendarrao Golla
- Laboratory of Chromatin Biology Department of Biological Sciences Indian Institute of Science Education and Research Bhopal India
| | - Sakshi Chauhan
- Laboratory of Chromatin Biology Department of Biological Sciences Indian Institute of Science Education and Research Bhopal India
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) Bethesda MD USA
| | - Raghuvir S. Tomar
- Laboratory of Chromatin Biology Department of Biological Sciences Indian Institute of Science Education and Research Bhopal India
| |
Collapse
|