1
|
Zheng J, Wang L, Liu A, Shen H, Wang B, Jiang Y, Jing P, Guan D, Yu L, Zhang X. Predicting the therapeutic role and potential mechanisms of Indole-3-acetic acid in diminished ovarian reserve based on network pharmacology and molecular docking. Hereditas 2024; 161:47. [PMID: 39568012 PMCID: PMC11580193 DOI: 10.1186/s41065-024-00348-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/10/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND Indole-3-acetic acid (IAA), an indole analog produced by intestinal microorganisms metabolizing tryptophan, has anti-inflammatory and antioxidant properties and thus has potential applications in ovarian protection, although the exact mechanism is unknown. The present study preliminarily investigated the pharmacological mechanism of IAA in alleviating diminished ovarian reserve (DOR) by network pharmacology and molecular docking. METHODS Relevant target proteins of IAA were searched in SwissTargetPrediction, PharmMapper, TargetNet, BATMAN-TCM, and SuperPred databases. The potential targets of DOR were obtained from GeneCards, DisGenet, OMIM, and Drugbank databases. Both common targets were then imported into the String website to construct a PPI network, and these targets were analyzed for GO and KEGG enrichment. Finally, we utilized molecular docking to validate the possible binding conformations between IAA and the candidate targets. We used in vitro experiments to preliminarily investigate the effects of IAA on DOR. RESULTS We obtained 88 potential targets for IAA and DOR interaction. We received 16 pivotal targets by constructed protein interaction screening. KEGG enrichment analysis mainly included the AGE-RAGE signaling pathway, IL-17 signaling pathway, Chemical carcinogenesis-reactive oxygen species in diabetic complications, etc. GO functional analysis showed that IAA treatment of DOR may involve biological processes such as response to external stimuli, hypoxia, gene expression, and regulation of enzyme activity. Molecular docking and in vitro experiments further revealed the potential effects of IAA on MMP2, TNF-α, AKT1, HSP90AA1, and NF-κ B. CONCLUSION We preliminarily revealed the potential protective effects of IAA against DOR through multiple targets and pathways, which provides a new research strategy for the molecular mechanism of IAA to alleviate DOR in the future. However, further studies need to demonstrate whether IAA can be used as a compound to prevent and treat DOR.
Collapse
Affiliation(s)
- Jianxiu Zheng
- Lanzhou University, Chengguan District, No. 222 Tian Shui South Road, Lanzhou, Gansu, 730000, People's Republic of China
- The First School of Clinical Medicine, Lanzhou University, Chengguan District, No. 1, Dong Gang Xi Road, Lanzhou, Gansu, 730000, People's Republic of China
| | - Liyan Wang
- The First Hospital of Lanzhou University, Chengguan District, No. 1 Dong Gang Xi Road, Lanzhou, Gansu, 730000, People's Republic of China
- Key Laboratory for Reproductive Medicine and Embryo, Gansu Province, Lanzhou, People's Republic of China
| | - Ahui Liu
- Lanzhou University, Chengguan District, No. 222 Tian Shui South Road, Lanzhou, Gansu, 730000, People's Republic of China
- The First School of Clinical Medicine, Lanzhou University, Chengguan District, No. 1, Dong Gang Xi Road, Lanzhou, Gansu, 730000, People's Republic of China
| | - Haofei Shen
- The First Hospital of Lanzhou University, Chengguan District, No. 1 Dong Gang Xi Road, Lanzhou, Gansu, 730000, People's Republic of China
| | - Bin Wang
- The First Hospital of Lanzhou University, Chengguan District, No. 1 Dong Gang Xi Road, Lanzhou, Gansu, 730000, People's Republic of China
| | - Yanbiao Jiang
- Lanzhou University, Chengguan District, No. 222 Tian Shui South Road, Lanzhou, Gansu, 730000, People's Republic of China
- The First School of Clinical Medicine, Lanzhou University, Chengguan District, No. 1, Dong Gang Xi Road, Lanzhou, Gansu, 730000, People's Republic of China
| | - Panpan Jing
- The First Hospital of Lanzhou University, Chengguan District, No. 1 Dong Gang Xi Road, Lanzhou, Gansu, 730000, People's Republic of China
| | - Defeng Guan
- The First Hospital of Lanzhou University, Chengguan District, No. 1 Dong Gang Xi Road, Lanzhou, Gansu, 730000, People's Republic of China
| | - Liulin Yu
- The First Hospital of Lanzhou University, Chengguan District, No. 1 Dong Gang Xi Road, Lanzhou, Gansu, 730000, People's Republic of China
| | - Xuehong Zhang
- The First Hospital of Lanzhou University, Chengguan District, No. 1 Dong Gang Xi Road, Lanzhou, Gansu, 730000, People's Republic of China.
- Key Laboratory for Reproductive Medicine and Embryo, Gansu Province, Lanzhou, People's Republic of China.
| |
Collapse
|
2
|
Hong MW, Kim H, Choi SY, Sharma N, Lee SJ. Effect of Gossypol on Gene Expression in Swine Granulosa Cells. Toxins (Basel) 2024; 16:436. [PMID: 39453212 PMCID: PMC11511463 DOI: 10.3390/toxins16100436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/21/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024] Open
Abstract
Gossypol (GP), a polyphenolic compound in cottonseed, has notable effects on female reproduction and the respiratory system in pigs. This study aimed to discern the alterations in gene expression within swine granulosa cells (GCs) when treated with two concentrations of GP (6.25 and 12.5 µM) for 72 h, in vitro. The analysis revealed significant changes in the expression of numerous genes in the GP-treated groups. A Gene Ontology analysis highlighted that the differentially expressed genes (DEGs) primarily pertained to processes such as the mitotic cell cycle, chromosome organization, centromeric region, and protein binding. Pathway analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG) indicated distinct impacts on various pathways in response to different GP concentrations. Specifically, in the GP6.25 group, pathways related to the cycle oocyte meiosis, progesterone-mediated oocyte maturation, and p53 signaling were prominently affected. Meanwhile, in the GP12.5 group, pathways associated with PI3K-Akt signaling, focal adhesion, HIF-1 signaling, cell cycle, and ECM-receptor interaction showed significant alterations. Notably, genes linked to female reproductive function (CDK1, CCNB1, CPEB1, MMP3), cellular component organization (BIRC5, CYP1A1, TGFB3, COL1A2), and oxidation-reduction processes (PRDX6, MGST1, SOD3) exhibited differential expression in GP-treated groups. These findings offer valuable insights into the changes in GC gene expression in pigs exposed to GP.
Collapse
Affiliation(s)
- Min-Wook Hong
- College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hun Kim
- College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - So-Young Choi
- College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Neelesh Sharma
- Division of Veterinary Medicine, Faculty of Veterinary Sciences & Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, R.S. Pura, Jammu and Kashmir 181102, India
| | - Sung-Jin Lee
- College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
3
|
Wei S, Tang W, Chen D, Xiong J, Xue L, Dai Y, Guo Y, Wu C, Dai J, Wu M, Wang S. Multiomics insights into the female reproductive aging. Ageing Res Rev 2024; 95:102245. [PMID: 38401570 DOI: 10.1016/j.arr.2024.102245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/22/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
The human female reproductive lifespan significantly diminishes with age, leading to decreased fertility, reduced fertility quality and endocrine function disorders. While many aspects of aging in general have been extensively documented, the precise mechanisms governing programmed aging in the female reproductive system remain elusive. Recent advancements in omics technologies and computational capabilities have facilitated the emergence of multiomics deep phenotyping. Through the application and refinement of various high-throughput omics methods, a substantial volume of omics data has been generated, deepening our comprehension of the pathogenesis and molecular underpinnings of reproductive aging. This review highlights current and emerging multiomics approaches for investigating female reproductive aging, encompassing genomics, epigenomics, transcriptomics, proteomics, metabolomics, and microbiomics. We elucidate their influence on fundamental cell biology and translational research in the context of reproductive aging, address the limitations and current challenges associated with multiomics studies, and offer a glimpse into future prospects.
Collapse
Affiliation(s)
- Simin Wei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Weicheng Tang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Dan Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Jiaqiang Xiong
- Department of Obstetrics and Gynecology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Liru Xue
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Yun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Yican Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Chuqing Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China.
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China.
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China.
| |
Collapse
|
4
|
Cheng J, Wei Y, Zhao Z, Xing Q, Gao Z, Cheng J, Yu C, Pan Y, Yang Y, Shi D, Deng Y. MiR-29c-5p regulates the function of buffalo granulosa cells to induce follicular atresia by targeting INHBA. Theriogenology 2023; 205:50-62. [PMID: 37086585 DOI: 10.1016/j.theriogenology.2023.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/23/2023] [Accepted: 04/14/2023] [Indexed: 04/24/2023]
Abstract
MicroRNAs (miRNAs) are involved in many physiological processes such as signal transduction, cell proliferation and apoptosis. Many studies have shown that miRNAs can regulate the process of follicular development. Our previous studies found that the expression of miR-29c-5p in buffalo atretic follicles was much higher than that in healthy follicles, suggesting that this miRNA may participate in the process of buffalo follicular atresia. In this study, we aim to explore to the role and molecular mechanisms of miR-29c-5p on the functions of buffalo granulosa cells (GCs). GCs cultured in vitro were transfected with miR-29c-5p mimics and its inhibitor, respectively, and it was found that the mimics significantly increased the apoptotic rate of GCs. They also inhibited the proliferation of GCs and the secretion of steroid hormones. The effect of the inhibitor was opposite to that of the mimics. MiR-29c-5p was subsequently shown to target the inhibin subunit beta A, (INHBA). Overexpression of INHBA could promote the production of activin A and inhibin A, and then reverse the effect of miR-29c-5p on buffalo GCs. In conclusion, these results suggest that miR-29c-5p promotes apoptosis and inhibits proliferation and steroidogenesis by targeting INHBA in buffalo GCs. This may ultimately promote atresia in buffalo follicles.
Collapse
Affiliation(s)
- Jiarui Cheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, PR China
| | - Yaochang Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, PR China
| | - Ziwen Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, PR China
| | - Qinghua Xing
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, PR China
| | - Ziyan Gao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, PR China
| | - Juanru Cheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, PR China
| | - Chengqi Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, PR China
| | - Yu Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, PR China
| | - Yanyan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, PR China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, PR China
| | - Yanfei Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, PR China.
| |
Collapse
|
5
|
Du Y, Liu J, Liu S, Hu J, Wang S, Cui K, Yan K, Liu X, Wu NR, Yang X, Liang X. Mogroside-rich extract from Siraitia grosvenorii fruits protects against the depletion of ovarian reserves in aging mice by ameliorating inflammatory stress. Food Funct 2022; 13:121-130. [PMID: 34897342 DOI: 10.1039/d1fo03194e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mogroside-rich extract (MGE), the main bioactive component of dried Siraitia grosvenorii fruit, has long been used as a natural sweetener and traditional Chinese medicine. This extract possesses various types of pharmacological activities, such as anti-inflammatory, antioxidative, hypoglycemic and hypolipemic activities. Moreover, we recently revealed that MGE has beneficial effects on female reproduction. Increasing maternal age leads to a rapid reduction in female fertility; in particular, it dramatically decreases ovarian function. Nevertheless, whether MGE can alleviate ovarian aging and the underlying mechanisms have not yet been explored. In this study, mice were treated with MGE by supplementation in drinking water from 10 to 44 weeks of age. Then, ovarian function and molecular changes were determined. Our findings showed that MGE treatment protected aged mice from estrous cycle disorder. Moreover, MGE treatment significantly increased the ovarian reserves of aged mice. RNA-seq data showed that MGE upregulated the expression of genes related to gonad development, follicular development, and hormone secretion in ovarian tissue. Additionally, inflammatory stress was induced, as indicated by upregulation of inflammation-related gene expression and elevated TNF-α levels in the ovarian tissues of aged mice; however, MGE treatment attenuated inflammatory stress. In summary, our findings demonstrate that MGE can ameliorate age-related estrous cycle disorder and ovarian reserve decline in mice, possibly by alleviating ovarian inflammatory stress.
Collapse
Affiliation(s)
- Ya Du
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China. .,College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Jiahao Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China. .,College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Shaoyuan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China. .,College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Jiahao Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China. .,College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Siyuan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China. .,College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Kexin Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China. .,College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Ke Yan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China. .,College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Xinxin Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China. .,College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Nian-Rong Wu
- Rid Testing & Certification (Guangxi) Inc., No.19-1 South of Renmin Road, Lingui District, Guilin, Guangxi, 541100, China
| | - Xiaogan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China. .,College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Xingwei Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China. .,College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China
| |
Collapse
|
6
|
Fonseca É, Marques CC, Pimenta J, Jorge J, Baptista MC, Gonçalves AC, Pereira RMLN. Anti-Aging Effect of Urolithin A on Bovine Oocytes In Vitro. Animals (Basel) 2021; 11:ani11072048. [PMID: 34359176 PMCID: PMC8300261 DOI: 10.3390/ani11072048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Post-ovulatory and maternal oocyte aging impair female reproductive capacity through several mechanisms that are not fully understood. Urolithin A (UA) is a natural compound previously identified to exert an anti-aging effects in several cells, which has never been used in bovine germinal cells. Our goal was to study UA effect on the developmental potential of the female gamete and the surround cumulus cells obtained from young and adult cows. A model for in vitro aging of female gametes was implemented to study different problems associated with reproductive aging and fertility impairment. Results confirmed that aging exerts a harmful effect on oocyte quality measured by using different parameters and gene expression levels of cumulus cells. Moreover, UA supplementation was an effective way to prevent oocyte aging, improving the subsequent bovine embryonic development. Abstract Oxidative stress and mitochondrial dysfunction have been associated with the age-related decline of oocyte quality and strategies for their prevention are currently quested. Urolithin A (UA) is a natural metabolite with pro-apoptotic and antioxidant effects, capable of preventing the accumulation of dysfunctional mitochondria in different aged cells. UA has never been tested in bovine oocytes. Our aim was to study the effect of UA on the developmental potential of cumulus-oocyte-complexes (COCs) and granulosa cells’ (GCs) expression of important genes related to reproductive competence. Nuclear maturation progression, mitochondrial membrane potential (MMP) and developmental competence of physiologically mature (22 h) and in vitro aged oocytes (30 h of IVM) obtained from prepubertal and adult females, either supplemented with UA or not were assessed. Additionally, the amount of mRNA of several genes (NFE2L2, NQO1, and mt-DN5) and the number of mt-ND5 DNA copies were quantified in cultured GCs from prepubertal and adult females, either supplemented with UA or not. Our study confirmed the harmful effect of oocyte aging on the nuclear maturation progression, MMP, developmental competence and gene expression levels. UA treatment during in vitro maturation enhanced (p < 0.05) the maturation rate and subsequent developmental capacity of aged oocytes. A positive effect (p < 0.05) of UA on physiological maturation, MMP and embryonic development was also identified. UA also interfered on the expression profile of NFE2L2 and NQO1 genes in GCs cultures. Our findings demonstrate that UA supplementation is an effective way to prevent oocyte aging and improves the subsequent bovine embryonic development.
Collapse
Affiliation(s)
- Élisa Fonseca
- Instituto Nacional de Investigação Agrária e Veterinária, Quinta da Fonte Boa, 2005-048 Santarem, Portugal; (É.F.); (C.C.M.); (J.P.); (M.C.B.)
| | - Carla Cruz Marques
- Instituto Nacional de Investigação Agrária e Veterinária, Quinta da Fonte Boa, 2005-048 Santarem, Portugal; (É.F.); (C.C.M.); (J.P.); (M.C.B.)
| | - Jorge Pimenta
- Instituto Nacional de Investigação Agrária e Veterinária, Quinta da Fonte Boa, 2005-048 Santarem, Portugal; (É.F.); (C.C.M.); (J.P.); (M.C.B.)
- Centro de Investigação Interdisciplinar em Sanidade Animal, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Joana Jorge
- Group of Environment, Genetics and Oncobiology, Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research, University Coimbra, 3000-548 Coimbra, Portugal; (J.J.); (A.C.G.)
- Center for Innovative Biomedicine and Biotechnology, University Coimbra, 3004-504 Coimbra, Portugal
| | - Maria Conceição Baptista
- Instituto Nacional de Investigação Agrária e Veterinária, Quinta da Fonte Boa, 2005-048 Santarem, Portugal; (É.F.); (C.C.M.); (J.P.); (M.C.B.)
| | - Ana Cristina Gonçalves
- Group of Environment, Genetics and Oncobiology, Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research, University Coimbra, 3000-548 Coimbra, Portugal; (J.J.); (A.C.G.)
- Center for Innovative Biomedicine and Biotechnology, University Coimbra, 3004-504 Coimbra, Portugal
| | - Rosa M. L. N. Pereira
- Instituto Nacional de Investigação Agrária e Veterinária, Quinta da Fonte Boa, 2005-048 Santarem, Portugal; (É.F.); (C.C.M.); (J.P.); (M.C.B.)
- Centro de Investigação Interdisciplinar em Sanidade Animal, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal
- Correspondence: ; Tel.: +351-243767300
| |
Collapse
|