1
|
Canchi Sistla H, Talluri S, Rajagopal T, Venkatabalasubramanian S, Rao Dunna N. Genomic instability in ovarian cancer: Through the lens of single nucleotide polymorphisms. Clin Chim Acta 2025; 565:119992. [PMID: 39395774 DOI: 10.1016/j.cca.2024.119992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024]
Abstract
Ovarian cancer (OC) is the deadliest gynecological malignancy among all female reproductive cancers. It is characterized by high mortality rate and poor prognosis. Genomic instability caused by mutations, single nucleotide polymorphisms (SNPs), copy number variations (CNVs), microsatellite instability (MSI), and chromosomal instability (CIN) are associated with OC predisposition. SNPs, which are highly prevalent in the general population, show a greater relative risk contribution, particularly in sporadic cancers. Understanding OC etiology in terms of genetic basis can increase the use of molecular diagnostics and provide promising approaches for designing novel treatment modalities. This will help deliver personalized medicine to OC patients, which may soon be within reach. Given the pivotal impact of SNPs in cancers, the primary emphasis of this review is to shed light on their prevalence in key caretaker genes that closely monitor genomic integrity, viz., DNA damage response, repair, cell cycle checkpoints, telomerase maintenance, and apoptosis and their clinical implications in OC. We highlight the current challenges faced in different SNP-based studies. Various computational methods and bioinformatic tools employed to predict the functional impact of SNPs have also been comprehensively reviewed concerning OC research. Overall, this review identifies that variants in the DDR and HRR pathways are the most studied, implying their critical role in the disease. Conversely, variants in other pathways, such as NHEJ, MMR, cell cycle, apoptosis, telomere maintenance, and PARP genes, have been explored the least.
Collapse
Affiliation(s)
- Harshavardhani Canchi Sistla
- Cancer Genomics Laboratory, Department of Biotechnology, School of Chemical and Biotechnology, SASTRA- Deemed University, Thanjavur 613 401, India
| | - Srikanth Talluri
- Dana Farber Cancer Institute, Boston, MA 02215, USA; Veterans Administration Boston Healthcare System, West Roxbury, MA 02132, USA
| | | | - Sivaramakrishnan Venkatabalasubramanian
- Department of Genetic Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur Campus, Chennai 603 203, India
| | - Nageswara Rao Dunna
- Cancer Genomics Laboratory, Department of Biotechnology, School of Chemical and Biotechnology, SASTRA- Deemed University, Thanjavur 613 401, India.
| |
Collapse
|
2
|
Azzouz D, Palaniyar N. How Do ROS Induce NETosis? Oxidative DNA Damage, DNA Repair, and Chromatin Decondensation. Biomolecules 2024; 14:1307. [PMID: 39456240 PMCID: PMC11505619 DOI: 10.3390/biom14101307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/05/2024] [Accepted: 09/13/2024] [Indexed: 10/28/2024] Open
Abstract
Neutrophil extracellular traps (NETs) are intricate, DNA-based, web-like structures adorned with cytotoxic proteins. They play a crucial role in antimicrobial defense but are also implicated in autoimmune diseases and tissue injury. The process of NET formation, known as NETosis, is a regulated cell death mechanism that involves the release of these structures and is unique to neutrophils. NETosis is heavily dependent on the production of reactive oxygen species (ROS), which can be generated either through NADPH oxidase (NOX) or mitochondrial pathways, leading to NOX-dependent or NOX-independent NETosis, respectively. Recent research has revealed an intricate interplay between ROS production, DNA repair, and NET formation in different contexts. UV radiation can trigger a combined process of NETosis and apoptosis, known as apoNETosis, driven by mitochondrial ROS and DNA repair. Similarly, in calcium ionophore-induced NETosis, both ROS and DNA repair are key components, but only play a partial role. In the case of bacterial infections, the early stages of DNA repair are pivotal. Interestingly, in serum-free conditions, spontaneous NETosis occurs through NOX-derived ROS, with early-stage DNA repair inhibition halting the process, while late-stage inhibition increases it. The intricate balance between DNA repair processes and ROS production appears to be a critical factor in regulating NET formation, with different pathways being activated depending on the nature of the stimulus. These findings not only deepen our understanding of the mechanisms behind NETosis but also suggest potential therapeutic targets for conditions where NETs contribute to disease pathology.
Collapse
Affiliation(s)
- Dhia Azzouz
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Nades Palaniyar
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
3
|
Hua AB, Sweasy JB. Functional roles and cancer variants of the bifunctional glycosylase NEIL2. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65 Suppl 1:40-56. [PMID: 37310399 DOI: 10.1002/em.22555] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/23/2023] [Accepted: 06/08/2023] [Indexed: 06/14/2023]
Abstract
Over 70,000 DNA lesions occur in the cell every day, and the inability to properly repair them can lead to mutations and destabilize the genome, resulting in carcinogenesis. The base excision repair (BER) pathway is critical for maintaining genomic integrity by repairing small base lesions, abasic sites and single-stranded breaks. Monofunctional and bifunctional glycosylases initiate the first step of BER by recognizing and excising specific base lesions, followed by DNA end processing, gap filling, and finally nick sealing. The Nei-like 2 (NEIL2) enzyme is a critical bifunctional DNA glycosylase in BER that preferentially excises cytosine oxidation products and abasic sites from single-stranded, double-stranded, and bubble-structured DNA. NEIL2 has been implicated to have important roles in several cellular functions, including genome maintenance, participation in active demethylation, and modulation of the immune response. Several germline and somatic variants of NEIL2 with altered expression and enzymatic activity have been reported in the literature linking them to cancers. In this review, we provide an overview of NEIL2 cellular functions and summarize current findings on NEIL2 variants and their relationship to cancer.
Collapse
Affiliation(s)
- Anh B Hua
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, Tucson, Arizona, USA
| | - Joann B Sweasy
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, Tucson, Arizona, USA
| |
Collapse
|
4
|
Tepeli YI, Seale C, Gonçalves JP. ELISL: early-late integrated synthetic lethality prediction in cancer. Bioinformatics 2024; 40:btad764. [PMID: 38113447 PMCID: PMC11616771 DOI: 10.1093/bioinformatics/btad764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/06/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023] Open
Abstract
MOTIVATION Anti-cancer therapies based on synthetic lethality (SL) exploit tumour vulnerabilities for treatment with reduced side effects, by targeting a gene that is jointly essential with another whose function is lost. Computational prediction is key to expedite SL screening, yet existing methods are vulnerable to prevalent selection bias in SL data and reliant on cancer or tissue type-specific omics, which can be scarce. Notably, sequence similarity remains underexplored as a proxy for related gene function and joint essentiality. RESULTS We propose ELISL, Early-Late Integrated SL prediction with forest ensembles, using context-free protein sequence embeddings and context-specific omics from cell lines and tissue. Across eight cancer types, ELISL showed superior robustness to selection bias and recovery of known SL genes, as well as promising cross-cancer predictions. Co-occurring mutations in a BRCA gene and ELISL-predicted pairs from the HH, FGF, WNT, or NEIL gene families were associated with longer patient survival times, revealing therapeutic potential. AVAILABILITY AND IMPLEMENTATION Data: 10.6084/m9.figshare.23607558 & Code: github.com/joanagoncalveslab/ELISL.
Collapse
Affiliation(s)
- Yasin I Tepeli
- Pattern Recognition & Bioinformatics, Department of Intelligent
Systems, Faculty EEMCS, Delft University of Technology, Delft, The Netherlands
| | - Colm Seale
- Pattern Recognition & Bioinformatics, Department of Intelligent
Systems, Faculty EEMCS, Delft University of Technology, Delft, The Netherlands
- Holland Proton Therapy Center (HollandPTC), Delft, The Netherlands
| | - Joana P Gonçalves
- Pattern Recognition & Bioinformatics, Department of Intelligent
Systems, Faculty EEMCS, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
5
|
Bowhead NEIL1: molecular cloning, characterization, and enzymatic properties. Biochimie 2023; 206:136-149. [PMID: 36334646 DOI: 10.1016/j.biochi.2022.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 11/08/2022]
Abstract
Nei Like DNA Glycosylase 1 (NEIL1) is a DNA glycosylase, which specifically processes oxidative DNA damage by initiating base excision repair. NEIL1 recognizes and removes bases, primarily oxidized pyrimidines, which have been damaged by endogenous oxidation or exogenous mutagenic agents. NEIL1 functions through a combined glycosylase/AP (apurinic/apyrimidinic)-lyase activity, whereby it cleaves the N-glycosylic bond between the DNA backbone and the damaged base via its glycosylase activity and hydrolysis of the DNA backbone through beta-delta elimination due to its AP-lyase activity. In our study we investigated our hypothesis proposing that the cancer resistance of the bowhead whale can be associated with a better DNA repair with NEIL1 being upregulated or more active. Here, we report the molecular cloning and characterization of three transcript variants of bowhead whale NEIL1 of which two were homologous to human transcripts. In addition, a novel NEIL1 transcript variant was found. A differential expression of NEIL mRNA was detected in bowhead eye, liver, kidney, and muscle. The A-to-I editing of NEIL1 mRNA was shown to be conserved in the bowhead and two adenosines in the 242Lys codon were subjected to editing. A mass spectroscopy analysis of liver and eye tissue failed to demonstrate the existence of a NEIL1 isoform originating from RNA editing. Recombinant bowhead and human NEIL1 were expressed in E. coli and assayed for enzymatic activity. Both bowhead and human recombinant NEIL1 catalyzed, with similar efficiency, the removal of a 5-hydroxyuracil lesion in a DNA bubble structure. Hence, these results do not support our hypothesis but do not refute the hypothesis either.
Collapse
|
6
|
Kakhkharova ZI, Zharkov DO, Grin IR. A Low-Activity Polymorphic Variant of Human NEIL2 DNA Glycosylase. Int J Mol Sci 2022; 23:ijms23042212. [PMID: 35216329 PMCID: PMC8879280 DOI: 10.3390/ijms23042212] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 01/05/2023] Open
Abstract
Human NEIL2 DNA glycosylase (hNEIL2) is a base excision repair protein that removes oxidative lesions from DNA. A distinctive feature of hNEIL2 is its preference for the lesions in bubbles and other non-canonical DNA structures. Although a number of associations of polymorphisms in the hNEIL2 gene were reported, there is little data on the functionality of the encoded protein variants, as follows: only hNEIL2 R103Q was described as unaffected, and R257L, as less proficient in supporting the repair in a reconstituted system. Here, we report the biochemical characterization of two hNEIL2 variants found as polymorphisms in the general population, R103W and P304T. Arg103 is located in a long disordered segment within the N-terminal domain of hNEIL2, while Pro304 occupies a position in the β-turn of the DNA-binding zinc finger motif. Similar to the wild-type protein, both of the variants could catalyze base excision and nick DNA by β-elimination but demonstrated a lower affinity for DNA. Steady-state kinetics indicates that the P304T variant has its catalytic efficiency (in terms of kcat/KM) reduced ~5-fold compared with the wild-type hNEIL2, whereas the R103W enzyme is much less affected. The P304T variant was also less proficient than the wild-type, or R103W hNEIL2, in the removal of damaged bases from single-stranded and bubble-containing DNA. Overall, hNEIL2 P304T could be worthy of a detailed epidemiological analysis as a possible cancer risk modifier.
Collapse
Affiliation(s)
- Zarina I. Kakhkharova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia;
| | - Dmitry O. Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia;
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Correspondence: (D.O.Z.); (I.R.G.)
| | - Inga R. Grin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia;
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Correspondence: (D.O.Z.); (I.R.G.)
| |
Collapse
|
7
|
Chakraborty A, Tapryal N, Islam A, Mitra S, Hazra T. Transcription coupled base excision repair in mammalian cells: So little is known and so much to uncover. DNA Repair (Amst) 2021; 107:103204. [PMID: 34390916 DOI: 10.1016/j.dnarep.2021.103204] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/06/2021] [Accepted: 08/03/2021] [Indexed: 12/31/2022]
Abstract
Oxidized bases in the genome has been implicated in various human pathologies, including cancer, aging and neurological diseases. Their repair is initiated with excision by DNA glycosylases (DGs) in the base excision repair (BER) pathway. Among the five oxidized base-specific human DGs, OGG1 and NTH1 preferentially excise oxidized purines and pyrimidines, respectively, while NEILs remove both oxidized purines and pyrimidines. However, little is known about why cells possess multiple DGs with overlapping substrate specificities. Studies of the past decades revealed that some DGs are involved in repair of oxidized DNA base lesions in the actively transcribed regions. Preferential removal of lesions from the transcribed strands of active genes, called transcription-coupled repair (TCR), was discovered as a distinct sub-pathway of nucleotide excision repair; however, such repair of oxidized DNA bases had not been established until our recent demonstration of NEIL2's role in TC-BER of the nuclear genome. We have shown that NEIL2 forms a distinct transcriptionally active, repair proficient complex. More importantly, we for the first time reconstituted TC-BER using purified components. These studies are important for characterizing critical requirement for the process. However, because NEIL2 cannot remove all types of oxidized bases, it is unlikely to be the only DNA glycosylase involved in TC-BER. Hence, we postulate TC-BER process to be universally involved in maintaining the functional integrity of active genes, especially in post-mitotic, non-growing cells. We further postulate that abnormal bases (e.g., uracil), and alkylated and other small DNA base adducts are also repaired via TC-BER. In this review, we have provided an overview of the various aspects of TC-BER in mammalian cells with the hope of generating significant interest of many researchers in the field. Further studies aimed at better understanding the mechanistic aspects of TC-BER could help elucidate the linkage of TC-BER deficiency to various human pathologies.
Collapse
Affiliation(s)
- Anirban Chakraborty
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Nisha Tapryal
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Azharul Islam
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Sankar Mitra
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Tapas Hazra
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
8
|
Tapryal N, Shahabi S, Chakraborty A, Hosoki K, Wakamiya M, Sarkar G, Sharma G, Cardenas VJ, Boldogh I, Sur S, Ghosh G, Hazra TK. Intrapulmonary administration of purified NEIL2 abrogates NF-κB-mediated inflammation. J Biol Chem 2021; 296:100723. [PMID: 33932404 PMCID: PMC8164026 DOI: 10.1016/j.jbc.2021.100723] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023] Open
Abstract
Aberrant or constitutive activation of nuclear factor kappa B (NF-κB) contributes to various human inflammatory diseases and malignancies via the upregulation of genes involved in cell proliferation, survival, angiogenesis, inflammation, and metastasis. Thus, inhibition of NF-κB signaling has potential for therapeutic applications in cancer and inflammatory diseases. We reported previously that Nei-like DNA glycosylase 2 (NEIL2), a mammalian DNA glycosylase, is involved in the preferential repair of oxidized DNA bases from the transcriptionally active sequences via the transcription-coupled base excision repair pathway. We have further shown that Neil2-null mice are highly sensitive to tumor necrosis factor α (TNFα)- and lipopolysaccharide-induced inflammation. Both TNFα and lipopolysaccharide are potent activators of NF-κB. However, the underlying mechanism of NEIL2's role in the NF-κB-mediated inflammation remains elusive. Here, we have documented a noncanonical function of NEIL2 and demonstrated that the expression of genes, such as Cxcl1, Cxcl2, Cxcl10, Il6, and Tnfα, involved in inflammation and immune cell migration was significantly higher in both mock- and TNFα-treated Neil2-null mice compared with that in the WT mice. NEIL2 blocks NF-κB's binding to target gene promoters by directly interacting with the Rel homology region of RelA and represses proinflammatory gene expression as determined by co-immunoprecipitation, chromatin immunoprecipitation, and electrophoretic mobility-shift assays. Remarkably, intrapulmonary administration of purified NEIL2 via a noninvasive nasal route significantly abrogated binding of NF-κB to cognate DNA, leading to decreased expression of proinflammatory genes and neutrophil recruitment in Neil2-null as well as WT mouse lungs. Our findings thus highlight the potential of NEIL2 as a biologic for inflammation-associated human diseases.
Collapse
Affiliation(s)
- Nisha Tapryal
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Shandy Shahabi
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Anirban Chakraborty
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Koa Hosoki
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA,Department of Medicine, Immunology, Allergy and Rheumatology, Baylor College of Medicine, Houston, Texas, USA
| | - Maki Wakamiya
- Departments of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Gobinda Sarkar
- Department of Orthopedics, Mayo Clinic and Foundation, Rochester, Minnesota, USA,Department of Experimental Pathology, Mayo Clinic and Foundation, Rochester, Minnesota, USA
| | - Gulshan Sharma
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Victor J. Cardenas
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Sanjiv Sur
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA,Department of Medicine, Immunology, Allergy and Rheumatology, Baylor College of Medicine, Houston, Texas, USA
| | - Gourisankar Ghosh
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Tapas K. Hazra
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA,For correspondence: Tapas K. Hazra
| |
Collapse
|
9
|
Sarker AH, Cooper PK, Hazra TK. DNA glycosylase NEIL2 functions in multiple cellular processes. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 164:72-80. [PMID: 33753087 DOI: 10.1016/j.pbiomolbio.2021.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 03/09/2021] [Accepted: 03/16/2021] [Indexed: 12/24/2022]
Abstract
Cell survival largely depends on the faithful maintenance of genetic material since genomic DNA is constantly exposed to genotoxicants from both endogenous and exogenous sources. The evolutionarily conserved base excision repair (BER) pathway is critical for maintaining genome integrity by eliminating highly abundant and potentially mutagenic oxidized DNA base lesions. BER is a multistep process, which is initiated with recognition and excision of the DNA base lesion by a DNA glycosylase, followed by DNA end processing, gap filling and finally sealing of the nick. Besides genome maintenance by global BER, DNA glycosylases have been found to play additional roles, including preferential repair of oxidized lesions from transcribed genes, modulation of the immune response, participation in active DNA demethylation and maintenance of the mitochondrial genome. Central to these functions is the DNA glycosylase NEIL2. Its loss results in increased accumulation of oxidized base lesions in the transcribed genome, triggers an immune response and causes early neurodevelopmental defects, thus emphasizing the multitasking capabilities of this repair protein. Here we review the specialized functions of NEIL2 and discuss the consequences of its absence both in vitro and in vivo.
Collapse
Affiliation(s)
- Altaf H Sarker
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Priscilla K Cooper
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Tapas K Hazra
- University of Texas Medical Branch, Galveston, TX, 77555, USA
| |
Collapse
|
10
|
Eckenroth BE, Cao VB, Averill AM, Dragon JA, Doublié S. Unique Structural Features of Mammalian NEIL2 DNA Glycosylase Prime Its Activity for Diverse DNA Substrates and Environments. Structure 2020; 29:29-42.e4. [PMID: 32846144 DOI: 10.1016/j.str.2020.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 07/10/2020] [Accepted: 08/03/2020] [Indexed: 12/22/2022]
Abstract
Oxidative damage on DNA arising from both endogenous and exogenous sources can result in base modifications that promote errors in replication as well as generating sites of base loss (abasic sites) that present unique challenges to maintaining genomic integrity. These lesions are excised by DNA glycosylases in the first step of the base excision repair pathway. Here we present the first crystal structure of a NEIL2 glycosylase, an enzyme active on cytosine oxidation products and abasic sites. The structure reveals an unusual "open" conformation not seen in NEIL1 or NEIL3 orthologs. NEIL2 is predicted to adopt a "closed" conformation when bound to its substrate. Combined crystallographic and solution-scattering studies show the enzyme to be conformationally dynamic in a manner distinct among the NEIL glycosylases and provide insight into the unique substrate preference of this enzyme. In addition, we characterized three cancer variants of human NEIL2, namely S140N, G230W, and G303R.
Collapse
Affiliation(s)
- Brian E Eckenroth
- Department of Microbiology and Molecular Genetics, University of Vermont, Stafford Hall, 95 Carrigan Drive, Burlington, VT 05405, USA.
| | - Vy Bao Cao
- Department of Microbiology and Molecular Genetics, University of Vermont, Stafford Hall, 95 Carrigan Drive, Burlington, VT 05405, USA
| | - April M Averill
- Department of Microbiology and Molecular Genetics, University of Vermont, Stafford Hall, 95 Carrigan Drive, Burlington, VT 05405, USA
| | - Julie A Dragon
- Department of Microbiology and Molecular Genetics, University of Vermont, Stafford Hall, 95 Carrigan Drive, Burlington, VT 05405, USA
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, University of Vermont, Stafford Hall, 95 Carrigan Drive, Burlington, VT 05405, USA.
| |
Collapse
|
11
|
Shen B, Chapman JH, Custance MF, Tricola GM, Jones CE, Furano AV. Perturbation of base excision repair sensitizes breast cancer cells to APOBEC3 deaminase-mediated mutations. eLife 2020; 9:e51605. [PMID: 31904337 PMCID: PMC6961979 DOI: 10.7554/elife.51605] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/05/2020] [Indexed: 02/06/2023] Open
Abstract
Abundant APOBEC3 (A3) deaminase-mediated mutations can dominate the mutational landscape ('mutator phenotype') of some cancers, however, the basis of this sporadic vulnerability is unknown. We show here that elevated expression of the bifunctional DNA glycosylase, NEIL2, sensitizes breast cancer cells to A3B-mediated mutations and double-strand breaks (DSBs) by perturbing canonical base excision repair (BER). NEIL2 usurps the canonical lyase, APE1, at abasic sites in a purified BER system, rendering them poor substrates for polymerase β. However, the nicked NEIL2 product can serve as an entry site for Exo1 in vitro to generate single-stranded DNA, which would be susceptible to both A3B and DSBs. As NEIL2 or Exo1 depletion mitigates the DNA damage caused by A3B expression, we suggest that aberrant NEIL2 expression can explain certain instances of A3B-mediated mutations.
Collapse
Affiliation(s)
- Birong Shen
- Section on Genomic Structure and Function, Laboratory of Cell and Molecular BiologyNational Institute of Diabetes and Digestive and Kidney Disease, National Institutes of HealthBethesdaUnited States
| | - Joseph H Chapman
- Section on Genomic Structure and Function, Laboratory of Cell and Molecular BiologyNational Institute of Diabetes and Digestive and Kidney Disease, National Institutes of HealthBethesdaUnited States
| | - Michael F Custance
- Section on Genomic Structure and Function, Laboratory of Cell and Molecular BiologyNational Institute of Diabetes and Digestive and Kidney Disease, National Institutes of HealthBethesdaUnited States
| | - Gianna M Tricola
- Section on Genomic Structure and Function, Laboratory of Cell and Molecular BiologyNational Institute of Diabetes and Digestive and Kidney Disease, National Institutes of HealthBethesdaUnited States
| | - Charles E Jones
- Section on Genomic Structure and Function, Laboratory of Cell and Molecular BiologyNational Institute of Diabetes and Digestive and Kidney Disease, National Institutes of HealthBethesdaUnited States
| | - Anthony V Furano
- Section on Genomic Structure and Function, Laboratory of Cell and Molecular BiologyNational Institute of Diabetes and Digestive and Kidney Disease, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
12
|
Lipunova N, Wesselius A, Cheng KK, van Schooten FJ, Cazier JB, Bryan RT, Zeegers MP. External Replication of Urinary Bladder Cancer Prognostic Polymorphisms in the UK Biobank. Front Oncol 2019; 9:1082. [PMID: 31681611 PMCID: PMC6813571 DOI: 10.3389/fonc.2019.01082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/01/2019] [Indexed: 11/18/2022] Open
Abstract
Introduction: Multiple studies have reported genetic associations with prognostic outcomes of urinary bladder cancer. However, the lack of replication of these associations prohibits establishing further evidence-based research directions. Moreover, there is a lack of independent bladder cancer patient samples that contain prognostic measures, making genetic replication analyses even more challenging. Materials and Methods: We have identified 1,534 eligible patients and used data on Hospital Episode Statistics in the UK Biobank to model variables of otherwise non-collected events on bladder cancer recurrence and progression. Data on survival was extracted from the Death Registry. We have used SNPTEST software to replicate previously reported genetic associations with bladder cancer recurrence (N = 69), progression (N = 23), survival (N = 53), and age at the time of diagnosis (N = 20). Results: Using our algorithm, we have identified 618 recurrence and 58 UBC progression events. In total, there were 209 deaths (106 UBC-specific). In replication analyses, eight SNPs have reached nominal statistical significance (p < 0.05). Rs2042329 (CWC27) for UBC recurrence; rs804256, rs4639, and rs804276 (in/close to NEIL2) for NMIBC recurrence; rs2293347 (EGFR) for UBC OS; rs3756712 (PDCD6) for NMIBC OS; rs2344673 (RGS5) for MIBC OS, and rs2297518 (NOS2) for UBC progression. However, none have remained significant after adjustments for multiple comparisons. Discussion: External replication in genetic epidemiology is an essential step to identify credible findings. In our study, we identify potential genetic targets of higher interest for UBC prognosis. In addition, we propose an algorithm for identifying UBC recurrence and progression using routinely-collected data on patient interventions.
Collapse
Affiliation(s)
- Nadezda Lipunova
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom.,Department of Complex Genetics, Maastricht University, Maastricht, Netherlands.,Centre for Computational Biology, University of Birmingham, Birmingham, United Kingdom
| | - Anke Wesselius
- Department of Complex Genetics, Maastricht University, Maastricht, Netherlands
| | - Kar K Cheng
- Institute for Applied Health Research, University of Birmingham, Birmingham, United Kingdom
| | | | - Jean-Baptiste Cazier
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom.,Centre for Computational Biology, University of Birmingham, Birmingham, United Kingdom
| | - Richard T Bryan
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Maurice P Zeegers
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom.,Department of Complex Genetics, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
13
|
Baquero JM, Benítez‐Buelga C, Fernández V, Urioste M, García‐Giménez JL, Perona R, Benítez J, Osorio A. A common SNP in the UNG gene decreases ovarian cancer risk in BRCA2 mutation carriers. Mol Oncol 2019; 13:1110-1120. [PMID: 30747491 PMCID: PMC6487686 DOI: 10.1002/1878-0261.12470] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 02/05/2019] [Accepted: 02/05/2019] [Indexed: 12/11/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs) in DNA glycosylase genes involved in the base excision repair (BER) pathway can modify breast and ovarian cancer risk in BRCA1 and BRCA2 mutation carriers. We previously found that SNP rs34259 in the uracil-DNA glycosylase gene (UNG) might decrease ovarian cancer risk in BRCA2 mutation carriers. In the present study, we validated this finding in a larger series of familial breast and ovarian cancer patients to gain insights into how this UNG variant exerts its protective effect. We found that rs34259 is associated with significant UNG downregulation and with lower levels of DNA damage at telomeres. In addition, we found that this SNP is associated with significantly lower oxidative stress susceptibility and lower uracil accumulation at telomeres in BRCA2 mutation carriers. Our findings help to explain the association of this variant with a lower cancer risk in BRCA2 mutation carriers and highlight the importance of genetic changes in BER pathway genes as modifiers of cancer susceptibility for BRCA1 and BRCA2 mutation carriers.
Collapse
Affiliation(s)
- Juan Miguel Baquero
- Human Genetics GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
| | | | - Victoria Fernández
- Human Genetics GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - Miguel Urioste
- Spanish Network on Rare Diseases (CIBERER)MadridSpain
- Familial Cancer Clinical UnitSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - Jose Luis García‐Giménez
- Spanish Network on Rare Diseases (CIBERER)MadridSpain
- Department of PhysiologyFaculty of Medicine and DentistryUniversitat de Valencia, Mixed Unit CIPF‐INCLIVASpain
| | - Rosario Perona
- Spanish Network on Rare Diseases (CIBERER)MadridSpain
- Biomedical Research Institute Alberto Sols (CSIC‐UAM)MadridSpain
| | | | - Javier Benítez
- Human Genetics GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
- Spanish Network on Rare Diseases (CIBERER)MadridSpain
- Genotyping Unit (CEGEN)Spanish National Cancer Research Centre (CNIO)MadridSpain
| | - Ana Osorio
- Human Genetics GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
- Spanish Network on Rare Diseases (CIBERER)MadridSpain
| |
Collapse
|