1
|
Di Giovannantonio M, Hartley F, Elshenawy B, Barberis A, Hudson D, Shafique HS, Allott VES, Harris DA, Lord SR, Haider S, Harris AL, Buffa FM, Harris BHL. Defining hypoxia in cancer: A landmark evaluation of hypoxia gene expression signatures. CELL GENOMICS 2025; 5:100764. [PMID: 39892389 PMCID: PMC11872601 DOI: 10.1016/j.xgen.2025.100764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/04/2024] [Accepted: 01/07/2025] [Indexed: 02/03/2025]
Abstract
Tumor hypoxia drives metabolic shifts, cancer progression, and therapeutic resistance. Challenges in quantifying hypoxia have hindered the exploitation of this potential "Achilles' heel." While gene expression signatures have shown promise as surrogate measures of hypoxia, signature usage is heterogeneous and debated. Here, we present a systematic pan-cancer evaluation of 70 hypoxia signatures and 14 summary scores in 104 cell lines and 5,407 tumor samples using 472 million length-matched random gene signatures. Signature and score choice strongly influenced the prediction of hypoxia in vitro and in vivo. In cell lines, the Tardon signature was highly accurate in both bulk and single-cell data (94% accuracy, interquartile mean). In tumors, the Buffa and Ragnum signatures demonstrated superior performance, with Buffa/mean and Ragnum/interquartile mean emerging as the most promising for prospective clinical trials. This work delivers recommendations for experimental hypoxia detection and patient stratification for hypoxia-targeting therapies, alongside a generalizable framework for signature evaluation.
Collapse
Affiliation(s)
- Matteo Di Giovannantonio
- Computational Biology and Integrative Genomics Lab, Department of Oncology, University of Oxford, Oxford, UK
| | - Fiona Hartley
- Computational Biology and Integrative Genomics Lab, Department of Oncology, University of Oxford, Oxford, UK
| | - Badran Elshenawy
- Computational Biology and Integrative Genomics Lab, Department of Oncology, University of Oxford, Oxford, UK
| | - Alessandro Barberis
- Computational Biology and Integrative Genomics Lab, Department of Oncology, University of Oxford, Oxford, UK
| | - Dan Hudson
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK; The Rosalind Franklin Institute, Didcot, UK
| | | | | | | | - Simon R Lord
- Computational Biology and Integrative Genomics Lab, Department of Oncology, University of Oxford, Oxford, UK
| | - Syed Haider
- Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - Adrian L Harris
- Computational Biology and Integrative Genomics Lab, Department of Oncology, University of Oxford, Oxford, UK
| | - Francesca M Buffa
- Computational Biology and Integrative Genomics Lab, Department of Oncology, University of Oxford, Oxford, UK; CompBio Lab, Department of Computing Sciences, Bocconi University, Milan, Italy; AI and Systems Biology Lab, IFOM - Istituto Fondazione di Oncologia Molecolare ETS, Milan, Italy.
| | - Benjamin H L Harris
- Computational Biology and Integrative Genomics Lab, Department of Oncology, University of Oxford, Oxford, UK; St. Catherine's College, University of Oxford, Oxford, UK; Cutrale Perioperative and Ageing Group, Imperial College London, London, UK.
| |
Collapse
|
2
|
Lambrechts Y, Hatse S, Richard F, Boeckx B, Floris G, Desmedt C, Smeets A, Neven P, Lambrechts D, Wildiers H. Differences in the Tumor Molecular and Microenvironmental Landscape between Early (Non-Metastatic) and De Novo Metastatic Primary Luminal Breast Tumors. Cancers (Basel) 2023; 15:4341. [PMID: 37686617 PMCID: PMC10486668 DOI: 10.3390/cancers15174341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/10/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Background: The molecular mechanisms underlying the de novo metastasis of luminal breast cancer (dnMBC) remain largely unknown. Materials and Methods: Newly diagnosed dnMBC patients (grade 2/3, ER+, PR+/-, HER2-), with available core needle biopsy (CNB), collected from the primary tumor, were selected from our clinical-pathological database. Tumors from dnMBC patients were 1:1 pairwise matched (n = 32) to tumors from newly diagnosed patients who had no distant metastases at baseline (eBC group). RNA was extracted from 5 × 10 µm sections of FFPE CNBs. RNA sequencing was performed using the Illumina platform. Differentially expressed genes (DEG)s were assessed using EdgeR; deconvolution was performed using CIBERSORTx to assess immune cell fractions. A paired Wilcoxon test was used to compare dnMBC and eBC groups and corrected for the false discovery rate. Results: Many regulatory DEGs were significantly downregulated in dnMBC compared to eBC. Also, immune-related and hypoxia-related signatures were significantly upregulated. Paired Wilcoxon analysis showed that the CCL17 and neutrophils fraction were significantly upregulated, whereas the memory B-cell fraction was significantly downregulated in the dnMBC group. Conclusions: Primary luminal tumors of dnMBC patients display significant transcriptomic and immunological differences compared to comparable tumors from eBC patients.
Collapse
Affiliation(s)
- Yentl Lambrechts
- Laboratory of Experimental Oncology (LEO), Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Sigrid Hatse
- Laboratory of Experimental Oncology (LEO), Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - François Richard
- Laboratory for Translational Breast Cancer Research (LTBCR), Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Bram Boeckx
- Laboratory of Translational Genetics, Department of Human Genetics, VIB-KU Leuven, 3000 Leuven, Belgium
- VIB Center for Cancer Biology, 3000 Leuven, Belgium
| | - Giuseppe Floris
- Laboratory for Cell and Tissue Translational Research, Department of Imaging and Radiology, KU Leuven, 3000 Leuven, Belgium
- Department of Pathology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Christine Desmedt
- Laboratory for Translational Breast Cancer Research (LTBCR), Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Ann Smeets
- Department of General Medical Oncology, Multidisciplinary Breast Center, University Hospitals Leuven, 3000 Leuven, Belgium
- Department of Surgical Oncology, University Hospitals Leuven, KU Leuven, 3000 Leuven, Belgium
| | - Patrick Neven
- Department of General Medical Oncology, Multidisciplinary Breast Center, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Diether Lambrechts
- Laboratory of Translational Genetics, Department of Human Genetics, VIB-KU Leuven, 3000 Leuven, Belgium
- VIB Center for Cancer Biology, 3000 Leuven, Belgium
| | - Hans Wildiers
- Laboratory of Experimental Oncology (LEO), Department of Oncology, KU Leuven, 3000 Leuven, Belgium
- Department of General Medical Oncology, Multidisciplinary Breast Center, University Hospitals Leuven, 3000 Leuven, Belgium
| |
Collapse
|
3
|
Cyclic Hypoxia Induces Transcriptomic Changes in Mast Cells Leading to a Hyperresponsive Phenotype after FcεRI Cross-Linking. Cells 2022; 11:cells11142239. [PMID: 35883682 PMCID: PMC9319477 DOI: 10.3390/cells11142239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/19/2022] [Accepted: 06/29/2022] [Indexed: 12/04/2022] Open
Abstract
Mast cells (MCs) play important roles in tumor development, executing pro- or antitumoral functions depending on tumor type and tumor microenvironment (TME) conditions. Cyclic hypoxia (cyH) is a common feature of TME since tumor blood vessels fail to provide a continuous supply of oxygen to the tumor mass. Here, we hypothesized that the localization of MCs in cyH regions within solid tumors could modify their transcriptional profile and activation parameters. Using confocal microscopy, we found an important number of MCs in cyH zones of murine melanoma B16-F1 tumors. Applying microarray analysis to examine the transcriptome of murine bone-marrow-derived MCs (BMMCs) exposed to interleaved cycles of hypoxia and re-oxygenation, we identified altered expression of 2512 genes. Functional enrichment analysis revealed that the transcriptional signature of MCs exposed to cyH is associated with oxidative phosphorylation and the FcεRI signaling pathway. Interestingly, FcεRI-dependent degranulation, calcium mobilization, and PLC-γ activity, as well as Tnf-α, Il-4, and Il-2 gene expression after IgE/antigen challenge were increased in BMMCs exposed to cyH compared with those maintained in normoxia. Taken together, our findings indicate that cyH causes an important phenotypic change in MCs that should be considered in the design of inflammation-targeted therapies to control tumor growth.
Collapse
|
4
|
Liu Q, Palmgren VA, Danen EHJ, Le Dévédec SE. Acute vs. chronic vs. intermittent hypoxia in breast Cancer: a review on its application in in vitro research. Mol Biol Rep 2022; 49:10961-10973. [PMID: 36057753 PMCID: PMC9618509 DOI: 10.1007/s11033-022-07802-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 07/15/2022] [Indexed: 11/25/2022]
Abstract
Hypoxia has been linked to elevated instances of therapeutic resistance in breast cancer. The exposure of proliferating cancer cells to hypoxia has been shown to induce an aggressive phenotype conducive to invasion and metastasis. Regions of the primary tumors in the breast may be exposed to different types of hypoxia including acute, chronic or intermittent. Intermittent hypoxia (IH), also called cyclic hypoxia, is caused by exposure to cycles of hypoxia and reoxygenation (H-R cycles). Importantly, there is currently no consensus amongst the scientific community on the total duration of hypoxia, the oxygen level, and the possible presence of H-R cycles. In this review, we discuss current methods of hypoxia research, to explore how exposure regimes used in experiments are connected to signaling by different hypoxia inducible factors (HIFs) and to distinct cellular responses in the context of the hallmarks of cancer. We highlight discrepancies in the existing literature on hypoxia research within the field of breast cancer in particular and propose a clear definition of acute, chronic, and intermittent hypoxia based on HIF activation and cellular responses: (i) acute hypoxia is when the cells are exposed for no more than 24 h to an environment with 1% O2 or less; (ii) chronic hypoxia is when the cells are exposed for more than 48 h to an environment with 1% O2 or less and (iii) intermittent hypoxia is when the cells are exposed to at least two rounds of hypoxia (1% O2 or less) separated by at least one period of reoxygenation by exposure to normoxia (8.5% O2 or higher). Our review provides for the first time a guideline for definition of hypoxia related terms and a clear foundation for hypoxia related in vitro (breast) cancer research.
Collapse
Affiliation(s)
- Qiuyu Liu
- Division of Drug Discovery and Safety, Leiden Academic Centre of Drug Research, Leiden University, Leiden, The Netherlands
| | - Victoria A.C. Palmgren
- Division of Drug Discovery and Safety, Leiden Academic Centre of Drug Research, Leiden University, Leiden, The Netherlands
| | - Erik HJ Danen
- Division of Drug Discovery and Safety, Leiden Academic Centre of Drug Research, Leiden University, Leiden, The Netherlands
| | - Sylvia E. Le Dévédec
- Division of Drug Discovery and Safety, Leiden Academic Centre of Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
5
|
Histone H2A isoforms: Potential implications in epigenome plasticity and diseases in eukaryotes. J Biosci 2020. [DOI: 10.1007/s12038-019-9985-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
6
|
Shah S, Verma T, Rashid M, Gadewal N, Gupta S. Histone H2A isoforms: Potential implications in epigenome plasticity and diseases in eukaryotes. J Biosci 2020; 45:4. [PMID: 31965982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Epigenetic mechanisms including the post-translational modifications of histones, incorporation of histone variants and DNA methylation have been suggested to play an important role in genome plasticity by allowing the cellular environment to define gene expression and the phenotype of an organism. Studies over the past decade have elucidated how these epigenetic mechanisms are significant in orchestrating various biological processes and contribute to different pathophysiological states. However, the role of histone isoforms and their impact on different phenotypes and physiological processes associated with diseases are not fully clear. This review is focussed on the recent advances in our understanding of the complexity of eukaryotic H2A isoforms and their roles in defining nucleosome organization. We elaborate on their potential roles in genomic complexity and regulation of gene expression, and thereby on their overall contribution towards cellular phenotype and development of diseases.
Collapse
Affiliation(s)
- Sanket Shah
- Epigenetics and Chromatin Biology Group, Caner Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410 210, India
| | | | | | | | | |
Collapse
|
7
|
Singh R, Bassett E, Chakravarti A, Parthun MR. Replication-dependent histone isoforms: a new source of complexity in chromatin structure and function. Nucleic Acids Res 2019; 46:8665-8678. [PMID: 30165676 PMCID: PMC6158624 DOI: 10.1093/nar/gky768] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/24/2018] [Indexed: 12/11/2022] Open
Abstract
Replication-dependent histones are expressed in a cell cycle regulated manner and supply the histones necessary to support DNA replication. In mammals, the replication-dependent histones are encoded by a family of genes that are located in several clusters. In humans, these include 16 genes for histone H2A, 22 genes for histone H2B, 14 genes for histone H3, 14 genes for histone H4 and 6 genes for histone H1. While the proteins encoded by these genes are highly similar, they are not identical. For many years, these genes were thought to encode functionally equivalent histone proteins. However, several lines of evidence have emerged that suggest that the replication-dependent histone genes can have specific functions and may constitute a novel layer of chromatin regulation. This Survey and Summary reviews the literature on replication-dependent histone isoforms and discusses potential mechanisms by which the small variations in primary sequence between the isoforms can alter chromatin function. In addition, we summarize the wealth of data implicating altered regulation of histone isoform expression in cancer.
Collapse
Affiliation(s)
- Rajbir Singh
- Department of Radiation Oncology, The Ohio State University, Columbus, OH 43210, USA
| | - Emily Bassett
- Department of Radiation Oncology, The Ohio State University, Columbus, OH 43210, USA
| | - Arnab Chakravarti
- Department of Radiation Oncology, The Ohio State University, Columbus, OH 43210, USA
| | - Mark R Parthun
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
8
|
Krueger K, Catanese L, Scholz H. Intermittent hypoxia: Friend and foe. Acta Physiol (Oxf) 2019; 226:e13276. [PMID: 30892796 DOI: 10.1111/apha.13276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 03/15/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Katharina Krueger
- Institut für Vegetative Physiologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lorenzo Catanese
- Institut für Vegetative Physiologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Holger Scholz
- Institut für Vegetative Physiologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
9
|
Li S, Liu X, Zhou Y, Acharya A, Savkovic V, Xu C, Wu N, Deng Y, Hu X, Li H, Haak R, Schmidt J, Shang W, Pan H, Shang R, Yu Y, Ziebolz D, Schmalz G. Shared genetic and epigenetic mechanisms between chronic periodontitis and oral squamous cell carcinoma. Oral Oncol 2018; 86:216-224. [DOI: 10.1016/j.oraloncology.2018.09.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 09/15/2018] [Accepted: 09/28/2018] [Indexed: 12/11/2022]
|
10
|
Intermittent hypoxia induces a metastatic phenotype in breast cancer. Oncogene 2018; 37:4214-4225. [DOI: 10.1038/s41388-018-0259-3] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 03/16/2018] [Accepted: 03/21/2018] [Indexed: 01/07/2023]
|
11
|
Strickaert A, Saiselet M, Dom G, De Deken X, Dumont JE, Feron O, Sonveaux P, Maenhaut C. Cancer heterogeneity is not compatible with one unique cancer cell metabolic map. Oncogene 2017; 36:2637-2642. [PMID: 27797377 PMCID: PMC5442421 DOI: 10.1038/onc.2016.411] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/19/2016] [Indexed: 02/06/2023]
Abstract
The Warburg effect and its accompanying metabolic features (anaplerosis, cataplerosis) are presented in textbooks and reviews as a hallmark (general characteristic): the metabolic map of cancer. On the other hand, research articles on specific tumors since a few years emphasize various biological features of different cancers, different cells in a cancer and the dynamic heterogeneity of these cells. We have analysed the research literature of the subject and show the generality of a dynamic, evolving biological and metabolic, spatial and temporal heterogeneity of individual cancers. We conclude that there is no one metabolic map of cancer but several and describe the two extremes of a panel from the hypoxic to the normoxic state. The implications for the significance of general 'omic' studies, and on therapeutic conclusions drawn from them and for the diagnostic use of fractional biopsies is discussed.
Collapse
Affiliation(s)
- A Strickaert
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - M Saiselet
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - G Dom
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - X De Deken
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - J E Dumont
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - O Feron
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCL), Brussels, Belgium
| | - P Sonveaux
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCL), Brussels, Belgium
| | - C Maenhaut
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
12
|
Alhallak K, Rebello LG, Muldoon TJ, Quinn KP, Rajaram N. Optical redox ratio identifies metastatic potential-dependent changes in breast cancer cell metabolism. BIOMEDICAL OPTICS EXPRESS 2016; 7:4364-4374. [PMID: 27895979 PMCID: PMC5119579 DOI: 10.1364/boe.7.004364] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/16/2016] [Accepted: 09/29/2016] [Indexed: 05/20/2023]
Abstract
The development of prognostic indicators of breast cancer metastatic risk could reduce the number of patients receiving chemotherapy for tumors with low metastatic potential. Recent evidence points to a critical role for cell metabolism in driving breast cancer metastasis. Endogenous fluorescence intensity of nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) can provide a label-free method for assessing cell metabolism. We report the optical redox ratio of FAD/(FAD + NADH) of four isogenic triple-negative breast cancer cell lines with varying metastatic potential. Under normoxic conditions, the redox ratio increases with increasing metastatic potential (168FARN>4T07>4T1), indicating a shift to more oxidative metabolism in cells capable of metastasis. Reoxygenation following acute hypoxia increased the redox ratio by 43 ± 9% and 33 ± 4% in the 4T1 and 4T07 cells, respectively; in contrast, the redox ratio decreased 14 ± 7% in the non-metastatic 67NR cell line. These results demonstrate that the optical redox ratio is sensitive to the metabolic adaptability of breast cancer cells with high metastatic potential and could potentially be used to measure dynamic functional changes that are indicative of invasive or metastatic potential.
Collapse
|
13
|
Corbet C, Pinto A, Martherus R, Santiago de Jesus JP, Polet F, Feron O. Acidosis Drives the Reprogramming of Fatty Acid Metabolism in Cancer Cells through Changes in Mitochondrial and Histone Acetylation. Cell Metab 2016; 24:311-23. [PMID: 27508876 DOI: 10.1016/j.cmet.2016.07.003] [Citation(s) in RCA: 255] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/09/2016] [Accepted: 07/05/2016] [Indexed: 12/11/2022]
Abstract
Bioenergetic preferences of cancer cells foster tumor acidosis that in turn leads to dramatic reduction in glycolysis and glucose-derived acetyl-coenzyme A (acetyl-CoA). Here, we show that the main source of this critical two-carbon intermediate becomes fatty acid (FA) oxidation in acidic pH-adapted cancer cells. FA-derived acetyl-CoA not only fuels the tricarboxylic acid (TCA) cycle and supports tumor cell respiration under acidosis, but also contributes to non-enzymatic mitochondrial protein hyperacetylation, thereby restraining complex I activity and ROS production. Also, while oxidative metabolism of glutamine supports the canonical TCA cycle in acidic conditions, reductive carboxylation of glutamine-derived α-ketoglutarate sustains FA synthesis. Concomitance of FA oxidation and synthesis is enabled upon sirtuin-mediated histone deacetylation and consecutive downregulation of acetyl-CoA carboxylase ACC2 making mitochondrial fatty acyl-CoA degradation compatible with cytosolic lipogenesis. Perturbations of these regulatory processes lead to tumor growth inhibitory effects further identifying FA metabolism as a critical determinant of tumor cell proliferation under acidosis.
Collapse
Affiliation(s)
- Cyril Corbet
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, 53 Avenue Mounier B1.53.09, 1200 Brussels, Belgium
| | - Adán Pinto
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, 53 Avenue Mounier B1.53.09, 1200 Brussels, Belgium
| | - Ruben Martherus
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, 53 Avenue Mounier B1.53.09, 1200 Brussels, Belgium
| | - João Pedro Santiago de Jesus
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, 53 Avenue Mounier B1.53.09, 1200 Brussels, Belgium
| | - Florence Polet
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, 53 Avenue Mounier B1.53.09, 1200 Brussels, Belgium
| | - Olivier Feron
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, 53 Avenue Mounier B1.53.09, 1200 Brussels, Belgium.
| |
Collapse
|
14
|
Michiels C, Tellier C, Feron O. Cycling hypoxia: A key feature of the tumor microenvironment. Biochim Biophys Acta Rev Cancer 2016; 1866:76-86. [PMID: 27343712 DOI: 10.1016/j.bbcan.2016.06.004] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 06/18/2016] [Accepted: 06/21/2016] [Indexed: 01/06/2023]
Abstract
A compelling body of evidence indicates that most human solid tumors contain hypoxic areas. Hypoxia is the consequence not only of the chaotic proliferation of cancer cells that places them at distance from the nearest capillary but also of the abnormal structure of the new vasculature network resulting in transient blood flow. Hence two types of hypoxia are observed in tumors: chronic and cycling (intermittent) hypoxia. Most of the current work aims at understanding the role of chronic hypoxia in tumor growth, response to treatment and metastasis. Only recently, cycling hypoxia, with spatial and temporal fluctuations in oxygen levels, has emerged as another key feature of the tumor environment that triggers different responses in comparison to chronic hypoxia. Either type of hypoxia is associated with distinct effects not only in cancer cells but also in stromal cells. In particular, cycling hypoxia has been demonstrated to favor, to a higher extent than chronic hypoxia, angiogenesis, resistance to anti-cancer treatments, intratumoral inflammation and tumor metastasis. These review details these effects as well as the signaling pathway it triggers to switch on specific transcriptomic programs. Understanding the signaling pathways through which cycling hypoxia induces these processes that support the development of an aggressive cancer could convey to the emergence of promising new cancer treatments.
Collapse
Affiliation(s)
- Carine Michiels
- URBC-NARILIS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium.
| | - Céline Tellier
- URBC-NARILIS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
| | - Olivier Feron
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, 53 Avenue Mounier, B1.53.09, B-1200 Brussels, Belgium.
| |
Collapse
|
15
|
Winzer KJ, Buchholz A, Schumacher M, Sauerbrei W. Improving the Prognostic Ability through Better Use of Standard Clinical Data - The Nottingham Prognostic Index as an Example. PLoS One 2016; 11:e0149977. [PMID: 26938061 PMCID: PMC4777365 DOI: 10.1371/journal.pone.0149977] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 02/08/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Prognostic factors and prognostic models play a key role in medical research and patient management. The Nottingham Prognostic Index (NPI) is a well-established prognostic classification scheme for patients with breast cancer. In a very simple way, it combines the information from tumor size, lymph node stage and tumor grade. For the resulting index cutpoints are proposed to classify it into three to six groups with different prognosis. As not all prognostic information from the three and other standard factors is used, we will consider improvement of the prognostic ability using suitable analysis approaches. METHODS AND FINDINGS Reanalyzing overall survival data of 1560 patients from a clinical database by using multivariable fractional polynomials and further modern statistical methods we illustrate suitable multivariable modelling and methods to derive and assess the prognostic ability of an index. Using a REMARK type profile we summarize relevant steps of the analysis. Adding the information from hormonal receptor status and using the full information from the three NPI components, specifically concerning the number of positive lymph nodes, an extended NPI with improved prognostic ability is derived. CONCLUSIONS The prognostic ability of even one of the best established prognostic index in medicine can be improved by using suitable statistical methodology to extract the full information from standard clinical data. This extended version of the NPI can serve as a benchmark to assess the added value of new information, ranging from a new single clinical marker to a derived index from omics data. An established benchmark would also help to harmonize the statistical analyses of such studies and protect against the propagation of many false promises concerning the prognostic value of new measurements. Statistical methods used are generally available and can be used for similar analyses in other diseases.
Collapse
Affiliation(s)
- Klaus-Jürgen Winzer
- Charité–Universitätsmedizin Berlin, Klinik für Gynäkologie mit Brustzentrum, Berlin, Germany
| | - Anika Buchholz
- Universitätsklinikum Freiburg, Institut für Medizinische Biometrie und Statistik, Department für Medizinische Biometrie und Medizinische Informatik, Freiburg, Germany
- Universitätsklinikum Hamburg-Eppendorf, Institut für Medizinische Biometrie und Epidemiologie, Hamburg, Germany
| | - Martin Schumacher
- Universitätsklinikum Freiburg, Institut für Medizinische Biometrie und Statistik, Department für Medizinische Biometrie und Medizinische Informatik, Freiburg, Germany
| | - Willi Sauerbrei
- Universitätsklinikum Freiburg, Institut für Medizinische Biometrie und Statistik, Department für Medizinische Biometrie und Medizinische Informatik, Freiburg, Germany
| |
Collapse
|
16
|
Tellier C, Desmet D, Petit L, Finet L, Graux C, Raes M, Feron O, Michiels C. Cycling hypoxia induces a specific amplified inflammatory phenotype in endothelial cells and enhances tumor-promoting inflammation in vivo. Neoplasia 2015; 17:66-78. [PMID: 25622900 PMCID: PMC4309725 DOI: 10.1016/j.neo.2014.11.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 11/04/2014] [Accepted: 11/06/2014] [Indexed: 12/13/2022] Open
Abstract
Abnormal architecture of the tumor blood network, as well as heterogeneous erythrocyte flow, leads to temporal fluctuations in tissue oxygen tension exposing tumor and stromal cells to cycling hypoxia. Inflammation is another feature of tumor microenvironment and is considered as a new enabling characteristic of tumor progression. As cycling hypoxia is known to participate in tumor aggressiveness, the purpose of this study was to evaluate its role in tumor-promoting inflammation. Firstly, we assessed the impact of cycling hypoxia in vitro on endothelial inflammatory response induced by tumor necrosis factor α. Results showed that endothelial cells exposed to cycling hypoxia displayed an amplified proinflammatory phenotype, characterized by an increased expression of inflammatory cytokines, namely, interleukin (IL)-6 and IL-8; by an increased expression of adhesion molecules, in particular intercellular adhesion molecule-1 (ICAM-1); and consequently by an increase in THP-1 monocyte adhesion. This exacerbation of endothelial inflammatory phenotype occurs through nuclear factor-κB overactivation. Secondly, the role of cycling hypoxia was studied on overall tumor inflammation in vivo in tumor-bearing mice. Results showed that cycling hypoxia led to an enhanced inflammation in tumors as prostaglandin-endoperoxide synthase 2 (PTGS2), IL-6, CXCL1 (C-X-C motif ligand 1), and macrophage inflammatory protein 2 (murine IL-8 functional homologs) mRNA expression was increased and as a higher leukocyte infiltration was evidenced. Furthermore, cycling hypoxia-specific inflammatory phenotype, characterized by a simultaneous (baculoviral inhibitor of apoptosis repeat-containing 5)(low)/PTGS2(high)/ICAM-1(high)/IL-6(high)/IL-8(high) expression, is associated with a poor prognosis in human colon cancer. This new phenotype could thus be used in clinic to more precisely define prognosis for colon cancer patients. In conclusion, our findings evidenced for the first time the involvement of cycling hypoxia in tumor-promoting inflammation amplification.
Collapse
Affiliation(s)
- Céline Tellier
- Unit of Biochemistry and Cellular Biology (URBC), Namur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), 61 Rue de Bruxelles, B-5000 Namur, Belgium
| | - Déborah Desmet
- Unit of Biochemistry and Cellular Biology (URBC), Namur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), 61 Rue de Bruxelles, B-5000 Namur, Belgium
| | - Laurenne Petit
- Unit of Pharmacology and Therapeutics (FATH 5349), University of Louvain Medical School (UCL), 52 Avenue Mounier, B-1200 Bruxelles, Belgium
| | - Laure Finet
- Biobank, CHU Dinant-Mont-Godinne, UCL, 1 Avenue Docteur G.Thérasse, B-5530 Yvoir, Belgium
| | - Carlos Graux
- Biobank, CHU Dinant-Mont-Godinne, UCL, 1 Avenue Docteur G.Thérasse, B-5530 Yvoir, Belgium
| | - Martine Raes
- Unit of Biochemistry and Cellular Biology (URBC), Namur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), 61 Rue de Bruxelles, B-5000 Namur, Belgium
| | - Olivier Feron
- Unit of Pharmacology and Therapeutics (FATH 5349), University of Louvain Medical School (UCL), 52 Avenue Mounier, B-1200 Bruxelles, Belgium
| | - Carine Michiels
- Unit of Biochemistry and Cellular Biology (URBC), Namur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), 61 Rue de Bruxelles, B-5000 Namur, Belgium.
| |
Collapse
|