1
|
Im JW, Lim JH, Stonik VA, Kwak JY, Jin S, Son M, Bae HR. Stichoposide C and Rhizochalin as Potential Aquaglyceroporin Modulators. Mar Drugs 2024; 22:335. [PMID: 39195451 DOI: 10.3390/md22080335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Aquaporins (AQPs) are a family of integral membrane proteins that selectively transport water and glycerol across the cell membrane. Because AQPs are involved in a wide range of physiological functions and pathophysiological conditions, AQP-based therapeutics may have the broad potential for clinical utility, including for disorders of water and energy balance. However, AQP modulators have not yet been developed as suitable candidates for clinical applications. In this study, to identify potential modulators of AQPs, we screened 31 natural products by measuring the water and glycerol permeability of mouse erythrocyte membranes using a stopped-flow light scattering method. None of the tested natural compounds substantially affected the osmotic water permeability. However, several compounds considerably affected the glycerol permeability. Stichoposide C increased the glycerol permeability of mouse erythrocyte membranes, whereas rhizochalin decreased it at nanomolar concentrations. Immunohistochemistry revealed that AQP7 was the main aquaglyceroporin in mouse erythrocyte membranes. We further verified the effects of stichoposide C and rhizochalin on aquaglyceroporins using human AQP3-expressing keratinocyte cells. Stichoposide C, but not stichoposide D, increased AQP3-mediated transepithelial glycerol transport, whereas the peracetyl aglycon of rhizochalin was the most potent inhibitor of glycerol transport among the tested rhizochalin derivatives. Collectively, stichoposide C and the peracetyl aglycon of rhizochalin might function as modulators of AQP3 and AQP7, and suggests the possibility of these natural products as potential drug candidates for aquaglyceroporin modulators.
Collapse
Affiliation(s)
- Ji Woo Im
- Department of Physiology, Dong-A University College of Medicine, Busan 49201, Republic of Korea
| | - Ju Hyun Lim
- Department of Physiology, Dong-A University College of Medicine, Busan 49201, Republic of Korea
| | - Valentin A Stonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia
| | - Jong-Young Kwak
- Department of Pharmacology, School of Medicine, Ajou University, Suwon 16499, Republic of Korea
| | - Songwan Jin
- Department of Mechanical Engineering, Tech University of Korea, Siheung-si 15073, Gyeonggi-do, Republic of Korea
| | - Minkook Son
- Department of Physiology, Dong-A University College of Medicine, Busan 49201, Republic of Korea
| | - Hae-Rahn Bae
- Department of Physiology, Dong-A University College of Medicine, Busan 49201, Republic of Korea
| |
Collapse
|
2
|
Silchenko AS, Kalinovsky AI, Avilov SA, Popov RS, Chingizova EA, Menchinskaya ES, Zelepuga EA, Tabakmakher KM, Stepanov VG, Kalinin VI. The Composition of Triterpene Glycosides in the Sea Cucumber Psolus peronii: Anticancer Activity of the Glycosides against Three Human Breast Cancer Cell Lines and Quantitative Structure-Activity Relationships (QSAR). Mar Drugs 2024; 22:292. [PMID: 39057402 PMCID: PMC11278233 DOI: 10.3390/md22070292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Eight sulfated triterpene glycosides, peronioside A (1) and psolusosides A (2), B (3), G (4), I (5), L (6), N (7) and P (8), were isolated from the sea cucumber Psolus peronii. Peronioside A (1) is a new glycoside, while compounds 2-8 were found previously in Psolus fabricii, indicating the phylogenetic and systematic closeness of these species of sea cucumbers. The activity of 1-8 against human erythrocytes and their cytotoxicity against the breast cancer cell lines MCF-7, T-47D and triple-negative MDA-MB-231 were tested. The most active against cancer cell compounds, psolusosides A (2) and L (6), which were not cytotoxic to the non-transformed cells of the mammary gland, were chosen to study the inhibition of the migration, formation and growth of colonies of the cancer cell lines. Glycoside 2 effectively inhibited the growth of colonies and the migration of the MDA-MB-231 cell line. Compound 6 blocked the growth of colonies of T-47D cells and showed a pronounced antimigration effect on MDA-MB-231 cells. The quantitative structure-activity relationships (QSAR) indicated the strong impact on the activity of the form and size of the molecules, which is connected to the length and architecture of the carbohydrate chain, the distribution of charge on the molecules' surface and various aspects of hydrogen bond formation, depending on the quantity and positions of the sulfate groups. The QSAR calculations were in good accordance with the observed SAR tendencies.
Collapse
Affiliation(s)
- Alexandra Sergeevna Silchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (A.I.K.); (S.A.A.); (R.S.P.); (E.A.C.); (E.S.M.); (E.A.Z.); (K.M.T.)
| | - Anatoly Ivanovich Kalinovsky
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (A.I.K.); (S.A.A.); (R.S.P.); (E.A.C.); (E.S.M.); (E.A.Z.); (K.M.T.)
| | - Sergey Anatolievich Avilov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (A.I.K.); (S.A.A.); (R.S.P.); (E.A.C.); (E.S.M.); (E.A.Z.); (K.M.T.)
| | - Roman Sergeevich Popov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (A.I.K.); (S.A.A.); (R.S.P.); (E.A.C.); (E.S.M.); (E.A.Z.); (K.M.T.)
| | - Ekaterina Alexandrovna Chingizova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (A.I.K.); (S.A.A.); (R.S.P.); (E.A.C.); (E.S.M.); (E.A.Z.); (K.M.T.)
| | - Ekaterina Sergeevna Menchinskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (A.I.K.); (S.A.A.); (R.S.P.); (E.A.C.); (E.S.M.); (E.A.Z.); (K.M.T.)
| | - Elena Alexandrovna Zelepuga
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (A.I.K.); (S.A.A.); (R.S.P.); (E.A.C.); (E.S.M.); (E.A.Z.); (K.M.T.)
| | - Kseniya Mikhailovna Tabakmakher
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (A.I.K.); (S.A.A.); (R.S.P.); (E.A.C.); (E.S.M.); (E.A.Z.); (K.M.T.)
| | - Vadim Georgievich Stepanov
- Kamchatka Branch of Pacific Institute of Geography, Far Eastern Branch of the Russian Academy of Sciences, Partizanskaya st. 6, 683000 Petropavlovsk-Kamchatsky, Russia;
| | - Vladimir Ivanovich Kalinin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (A.I.K.); (S.A.A.); (R.S.P.); (E.A.C.); (E.S.M.); (E.A.Z.); (K.M.T.)
| |
Collapse
|
3
|
Silchenko AS, Kalinovsky AI, Avilov SA, Popov RS, Dmitrenok PS, Chingizova EA, Menchinskaya ES, Panina EG, Stepanov VG, Kalinin VI, Stonik VA. Djakonoviosides A, A 1, A 2, B 1-B 4 - Triterpene Monosulfated Tetra- and Pentaosides from the Sea Cucumber Cucumaria djakonovi: The First Finding of a Hemiketal Fragment in the Aglycones; Activity against Human Breast Cancer Cell Lines. Int J Mol Sci 2023; 24:11128. [PMID: 37446305 DOI: 10.3390/ijms241311128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Seven new monosulfated triterpene glycosides, djakonoviosides A (1), A1 (2), A2 (3), and B1-B4 (4-7), along with three known glycosides found earlier in the other Cucumaria species, namely okhotoside A1-1, cucumarioside A0-1, and frondoside D, have been isolated from the far eastern sea cucumber Cucumaria djakonovi (Cucumariidae, Dendrochirotida). The structures were established on the basis of extensive analysis of 1D and 2D NMR spectra and confirmed by HR-ESI-MS data. The compounds of groups A and B differ from each other in their carbohydrate chains, namely monosulfated tetrasaccharide chains are inherent to group A and pentasaccharide chains with one sulfate group, branched by C-2 Qui2, are characteristic of group B. The aglycones of djakonoviosides A2 (3), B2 (5), and B4 (7) are characterized by a unique structural feature, a 23,16-hemiketal fragment found first in the sea cucumbers' glycosides. The biosynthetic pathway of its formation is discussed. The set of aglycones of C. djakonovi glycosides was species specific because of the presence of new aglycones. At the same time, the finding in C. djakonovi of the known glycosides isolated earlier from the other species of Cucumaria, as well as the set of carbohydrate chains characteristic of the glycosides of all investigated representatives of the genus Cucumaria, demonstrated the significance of these glycosides as chemotaxonomic markers. The membranolytic actions of compounds 1-7 and known glycosides okhotoside A1-1, cucumarioside A0-1, and frondoside D, isolated from C. djakonovi against human cell lines, including erythrocytes and breast cancer cells (MCF-7, T-47D, and triple negative MDA-MB-231), as well as leukemia HL-60 and the embryonic kidney HEK-293 cell line, have been studied. Okhotoside A1-1 was the most active compound from the series because of the presence of a tetrasaccharide linear chain and holostane aglycone with a 7(8)-double bond and 16β-O-acetoxy group, cucumarioside A0-1, having the same aglycone, was slightly less active because of the presence of branching xylose residue at C-2 Qui2. Generally, the activity of the djakonoviosides of group A was higher than that of the djakonoviosides of group B containing the same aglycones, indicating the significance of a linear chain containing four monosaccharide residues for the demonstration of membranolytic action by the glycosides. All the compounds containing hemiketal fragments, djakonovioside A2 (3), B2 (5), and B4 (7), were almost inactive. The most aggressive triple-negative MDA-MB-231 breast cancer cell line was the most sensitive to the glycosides action when compared with the other cancer cells. Okhotoside A1-1 and cucumarioside A0-1 demonstrated promising effects against MDA-MB-231 cells, significantly inhibiting the migration, as well as the formation and growth, of colonies.
Collapse
Affiliation(s)
- Alexandra S Silchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia
| | - Anatoly I Kalinovsky
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia
| | - Sergey A Avilov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia
| | - Roman S Popov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia
| | - Pavel S Dmitrenok
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia
| | - Ekaterina A Chingizova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia
| | - Ekaterina S Menchinskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia
| | - Elena G Panina
- Kamchatka Branch of Pacific Institute of Geography, Far Eastern Branch of the Russian Academy of Sciences, Partizanskaya st. 6, 683000 Petropavlovsk-Kamchatsky, Russia
| | - Vadim G Stepanov
- Kamchatka Branch of Pacific Institute of Geography, Far Eastern Branch of the Russian Academy of Sciences, Partizanskaya st. 6, 683000 Petropavlovsk-Kamchatsky, Russia
| | - Vladimir I Kalinin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia
| | - Valentin A Stonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia
| |
Collapse
|
4
|
Silchenko AS, Kalinovsky AI, Avilov SA, Andrijaschenko PV, Popov RS, Chingizova EA, Kalinin VI, Dmitrenok PS. Triterpene Glycosides from the Far Eastern Sea Cucumber Psolus chitonoides: Chemical Structures and Cytotoxicities of Chitonoidosides E 1, F, G, and H. Mar Drugs 2021; 19:696. [PMID: 34940695 PMCID: PMC8708177 DOI: 10.3390/md19120696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 02/08/2023] Open
Abstract
Four new triterpene disulfated glycosides, chitonoidosides E1 (1), F (2), G (3), and H (4), were isolated from the Far-Eastern sea cucumber Psolus chitonoides and collected near Bering Island (Commander Islands) at depths of 100-150 m. Among them there are two hexaosides (1 and 3), differing from each other by the terminal (sixth) sugar residue, one pentaoside (4) and one tetraoside (2), characterized by a glycoside architecture of oligosaccharide chains with shortened bottom semi-chains, which is uncommon for sea cucumbers. Some additional distinctive structural features inherent in 1-4 were also found: the aglycone of a recently discovered new type, with 18(20)-ether bond and lacking a lactone in chitonoidoside G (3), glycoside 3-O-methylxylose residue in chitonoidoside E1 (1), which is rarely detected in sea cucumbers, and sulfated by uncommon position 4 terminal 3-O-methylglucose in chitonoidosides F (2) and H (4). The hemolytic activities of compounds 1-4 and chitonoidoside E against human erythrocytes and their cytotoxic action against the human cancer cell lines, adenocarcinoma HeLa, colorectal adenocarcinoma DLD-1, and monocytes THP-1, were studied. The glycoside with hexasaccharide chains (1, 3 and chitonoidoside E) were the most active against erythrocytes. A similar tendency was observed for the cytotoxicity against adenocarcinoma HeLa cells, but the demonstrated effects were moderate. The monocyte THP-1 cell line and erythrocytes were comparably sensitive to the action of the glycosides, but the activity of chitonoidosides E and E1 (1) significantly differed from that of 3 in relation to THP-1 cells. A tetraoside with a shortened bottom semi-chain, chitonoidoside F (2), displayed the weakest membranolytic effect in the series.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Vladimir I. Kalinin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (A.S.S.); (A.I.K.); (S.A.A.); (P.V.A.); (R.S.P.); (E.A.C.)
| | - Pavel S. Dmitrenok
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (A.S.S.); (A.I.K.); (S.A.A.); (P.V.A.); (R.S.P.); (E.A.C.)
| |
Collapse
|
5
|
Zhou Y, Farooqi AA, Xu B. Comprehensive review on signaling pathways of dietary saponins in cancer cells suppression. Crit Rev Food Sci Nutr 2021:1-26. [PMID: 34751072 DOI: 10.1080/10408398.2021.2000933] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Nutrigenomics utilizes high-throughput genomic technologies to reveal changes in gene and protein levels. Excitingly, ever-growing body of scientific findings has provided sufficient evidence about the interplay between diet and genes. Cutting-edge research and advancements in genomics, epigenetics and metabolomics have deepened our understanding on the role of dietary factors in the inhibition of carcinogenesis and metastasis. Dietary saponins, a type of triterpene glycosides, are generally found in Platycodon grandifloras, Dioscorea oppositifolia, asparagus, legumes, and sea cucumber. Wealth of information has started to shed light on pleiotropic mechanistic roles of dietary saponins in cancer prevention and inhibition. In this review, we have attempted to summarize the in vitro research of dietary saponins in the last two decades by searching common databases such as Google Scholar, PubMed, Scopus, and Web of Science. The results showed that dietary saponins exerted anti-cancer activities via regulation of apoptosis, autophagy, arrest cell cycle, anti-proliferation, anti-metastasis, and anti-angiogenesis, by regulation of several critical signaling pathways, including MAPK, PI3K/Akt/mTOR, NF-κB, and VEGF/VEGFR. However, there is no data about the dosage of dietary saponins for practical anti-cancer effects in human bodies. Extensive clinical studies are needed to confirm the effectiveness of dietary saponins for further commercial and medical applications.
Collapse
Affiliation(s)
- Yifan Zhou
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, Guangdong, China.,Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | | | - Baojun Xu
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, Guangdong, China
| |
Collapse
|
6
|
Unusual Structures and Cytotoxicities of Chitonoidosides A, A 1, B, C, D, and E, Six Triterpene Glycosides from the Far Eastern Sea Cucumber Psolus chitonoides. Mar Drugs 2021; 19:md19080449. [PMID: 34436288 PMCID: PMC8398228 DOI: 10.3390/md19080449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 11/17/2022] Open
Abstract
Six new triterpene tetra-, penta- and hexaosides, chitonoidosides A (1), A1 (2), B (3), C (4), D (5), and E (6), containing one or two sulfate groups, have been isolated from the Far-Eastern sea cucumber Psolus chitonoides, collected near Bering Island (Commander Islands) from the depth of 100–150 m. Three of the isolated compounds (1, 3 and 6) are characterized by the unusual aglycone of new type having 18(20)-ether bond and lacking a lactone in contrast with wide spread holostane derivatives. Another unexpected finding is 3-O-methylxylose residue as a terminal unit in the carbohydrate chains of chitonoidosides B (3), C (4), and E (6), which has never been found before in the glycosides from holothurians belonging to the Psolidae family. Moreover, this monosaccharide is sulfated in the compound 4 into unprecedented 3-O-methylxylose 4-O-sulfate residue. Chitonoidoside C (4) is characterized by tetrasaccharide moiety lacking a part of the bottom semi-chain, but having disaccharide fragment attached to C-4 of Xyl1. Such architecture is not common in sea cucumber glycosides. Cytotoxic activities of the compounds 1–5 against mouse and human erythrocytes and human cancer cell lines: adenocarcinoma HeLa, colorectal adenocarcinoma DLD-1, and leukemia promyeloblast HL-60 cells were studied. The cytotoxic effect of chitonoidoside d (5) was the most significant in this series due to the presence of pentasaccharide disulfated sugar chain in combination with holostane aglycone. Surprisingly, the glycosides 1 and 3, comprising the new aglycone without γ-lactone, demonstrated similar activity to the known compounds with holostane aglycones. Chitonoidoside C (4) was less cytotoxic due to the different architecture of the carbohydrate chain compared to the other glycosides and probably due to the presence of a sulfate group at C-4 in 3-O-MeXyl4.
Collapse
|
7
|
Brachtendorf S, El-Hindi K, Grösch S. WITHDRAWN: Ceramide synthases in cancer therapy and chemoresistance. Prog Lipid Res 2019:100992. [PMID: 31442523 DOI: 10.1016/j.plipres.2019.100992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 10/26/2022]
Affiliation(s)
- Sebastian Brachtendorf
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern Kai 7, Frankfurt 60590, Germany
| | - Khadija El-Hindi
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern Kai 7, Frankfurt 60590, Germany
| | - Sabine Grösch
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern Kai 7, Frankfurt 60590, Germany
| |
Collapse
|
8
|
Brachtendorf S, El-Hindi K, Grösch S. Ceramide synthases in cancer therapy and chemoresistance. Prog Lipid Res 2019; 74:160-185. [DOI: 10.1016/j.plipres.2019.04.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 12/24/2022]
|
9
|
Rodrigues ACBDC, Oliveira FPD, Dias RB, Sales CBS, Rocha CAG, Soares MBP, Costa EV, Silva FMAD, Rocha WC, Koolen HHF, Bezerra DP. In vitro and in vivo anti-leukemia activity of the stem bark of Salacia impressifolia (Miers) A. C. Smith (Celastraceae). JOURNAL OF ETHNOPHARMACOLOGY 2019; 231:516-524. [PMID: 30445109 DOI: 10.1016/j.jep.2018.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/18/2018] [Accepted: 11/03/2018] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Salacia impressifolia (Miers) A. C. Smith (family Celastraceae) is a traditional medicinal plant found in the Amazon Rainforest known as "miraruíra", "cipó-miraruíra" or "panu" and is traditionally used to treat dengue, flu, inflammation, pain, diabetes, male impotency, renal affections, rheumatism and cancer. AIM OF THE STUDY The aim of this study was to investigate in vitro and in vivo anti-leukemia activity of the stem bark of S. impressifolia in experimental models. MATERIALS AND METHODS The in vitro cytotoxic activity of extracts, fractions and quinonemethide triterpenes (22-hydroxytingenone, tingenone and pristimerin) from the stem bark of S. impressifolia in cultured cancer cells was determined. The in vivo antitumor activity of the ethyl acetate extract (EAE) and of its fraction (FEAE.3) from the stem bark of S. impressifolia was assessed in C.B-17 severe combined immunodeficient (SCID) mice engrafted with human promyelocytic leukemia HL-60 cells. RESULTS The extract EAE, its fraction FEAE.3, and quinonemethide triterpenes exhibited potent cytotoxicity against cancer cell lines, including in vitro anti-leukemia activity against HL-60 and K-562 cells. Moreover, extract EAE and its fraction FEAE.3 inhibited the in vivo development of HL-60 cells engrafted in C.B-17 SCID mice. Tumor mass inhibition rates were measured as 40.4% and 81.5% for the extract EAE (20 mg/kg) and for its fraction FEAE.3 (20 mg/kg), respectively. CONCLUSIONS Ethyl acetate extract and its fraction from the stem bark of S. impressifolia exhibit in vitro and in vivo anti-leukemia activity that can be attributed to their quinonemethide triterpenes. These data confirm the ethnopharmacological use of this species and may contribute to the development of a novel anticancer herbal medicine.
Collapse
Affiliation(s)
| | - Felipe P de Oliveira
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia 40296-710, Brazil
| | - Rosane B Dias
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia 40296-710, Brazil
| | - Caroline B S Sales
- Department of Biomorphology, Institute of Health Sciences, Federal University of Bahia, Salvador (UFBA), Bahia 40110-902, Brazil
| | - Clarissa A G Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia 40296-710, Brazil
| | - Milena B P Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia 40296-710, Brazil; Center of Biotechnology and Cell Therapy, Hospital São Rafael, Salvador, Bahia 41253-190, Brazil
| | - Emmanoel V Costa
- Department of Chemistry, Federal University of Amazonas (UFAM), Manaus, Amazonas 69077-000, Brazil
| | - Felipe M A da Silva
- Department of Chemistry, Federal University of Amazonas (UFAM), Manaus, Amazonas 69077-000, Brazil
| | - Waldireny C Rocha
- Health and Biotechnology Institute, Federal University of Amazonas (UFAM), Coari, Amazonas 69460-000, Brazil
| | - Hector H F Koolen
- Metabolomics and Mass Spectrometry Research Group, Amazonas State University (UEA), Manaus, Amazonas 690065-130, Brazil
| | - Daniel P Bezerra
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia 40296-710, Brazil.
| |
Collapse
|
10
|
Ru(II)-Thymine Complex Causes Cell Growth Inhibition and Induction of Caspase-Mediated Apoptosis in Human Promyelocytic Leukemia HL-60 Cells. Int J Mol Sci 2018; 19:ijms19061609. [PMID: 29848969 PMCID: PMC6032384 DOI: 10.3390/ijms19061609] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 04/15/2018] [Accepted: 05/02/2018] [Indexed: 01/01/2023] Open
Abstract
Ruthenium-based compounds represent a class of potential antineoplastic drugs. Recently, we designed, synthesized, and identified the Ru(II)-thymine complex [Ru(PPh3)2(Thy)(bipy)]PF6 (where PPh = triphenylphosphine, Thy = thymine and bipy = 2,2′-bipyridine) as a potent cytotoxic agent with the ability to bind to DNA and human and bovine serum albumins. In this study, the underlying cytotoxic mechanism of the [Ru(PPh3)2(Thy)(bipy)]PF6 complex was assessed. This complex displayed potent cytotoxicity in different cancer cell lines; the morphology that is associated with apoptotic cell death, increased internucleosomal DNA fragmentation without cell membrane permeability, loss of the mitochondrial transmembrane potential, increased phosphatidylserine externalization, and caspase-3 activation were observed in human promyelocytic leukemia HL-60 cells that were treated with the complex. Moreover, pretreatment of HL-60 cells with Z-VAD(OMe)-FMK, a pan-caspase inhibitor, partially reduced the apoptosis that was induced by the complex, indicating that the apoptotic cell death occurred through a caspase-mediated pathway. In conclusion, the [Ru(PPh3)2(Thy)(bipy)]PF6 complex displays potent cytotoxicity to different cancer cells and induces caspase-mediated apoptosis in HL-60 cells.
Collapse
|
11
|
Yun SH, Sim EH, Han SH, Han JY, Kim SH, Silchenko AS, Stonik VA, Park JI. Holotoxin A₁ Induces Apoptosis by Activating Acid Sphingomyelinase and Neutral Sphingomyelinase in K562 and Human Primary Leukemia Cells. Mar Drugs 2018; 16:md16040123. [PMID: 29642569 PMCID: PMC5923410 DOI: 10.3390/md16040123] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/29/2018] [Accepted: 04/04/2018] [Indexed: 12/12/2022] Open
Abstract
Marine triterpene glycosides are attractive candidates for the development of anticancer agents. Holotoxin A1 is a triterpene glycoside found in the edible sea cucumber, Apostichopus (Stichopus) japonicus. We previously showed that cladoloside C2, the 25(26)-dihydro derivative of holotoxin A1, induced apoptosis in human leukemia cells by activating ceramide synthase 6. Thus, we hypothesized that holotoxin A1, which is structurally similar to cladoloside C2, might induce apoptosis in human leukemia cells through the same molecular mechanism. In this paper, we compared holotoxin A1 and cladoloside C2 for killing potency and mechanism of action. We found that holotoxin A1 induced apoptosis more potently than cladoloside C2. Moreover, holotoxin A1-induced apoptosis in K562 cells by activating caspase-8 and caspase-3, but not by activating caspase-9. During holotoxin A1 induced apoptosis, acid sphingomyelinase (SMase) and neutral SMase were activated in both K562 cells and human primary leukemia cells. Specifically inhibiting acid SMase and neutral SMаse with chemical inhibitors or siRNAs significantly inhibited holotoxin A1–induced apoptosis. These results indicated that holotoxin A1 might induce apoptosis by activating acid SMase and neutral SMase. In conclusion, holotoxin A1 represents a potential anticancer agent for treating leukemia. Moreover, the aglycone structure of marine triterpene glycosides might affect the mechanism involved in inducing apoptosis.
Collapse
Affiliation(s)
- Seong-Hoon Yun
- Department of Biochemistry, Dong-A University College of Medicine, Busan 49201, Korea.
| | - Eun-Hye Sim
- Department of Biochemistry, Dong-A University College of Medicine, Busan 49201, Korea.
| | - Sang-Heum Han
- Department of Biochemistry, Dong-A University College of Medicine, Busan 49201, Korea.
| | - Jin-Yeong Han
- Department of Laboratory Medicine, Dong-A University College of Medicine, Busan 49201, Korea.
| | - Sung-Hyun Kim
- Department of Internal Medicine, Dong-A University College of Medicine, Busan 49201, Korea.
| | - Alexandra S Silchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia.
| | - Valentin A Stonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia.
| | - Joo-In Park
- Department of Biochemistry, Dong-A University College of Medicine, Busan 49201, Korea.
| |
Collapse
|