1
|
Mechanism underlying the retarded nuclear translocation of androgen receptor splice variants. SCIENCE CHINA-LIFE SCIENCES 2018; 62:257-267. [PMID: 30267260 DOI: 10.1007/s11427-018-9379-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/14/2018] [Indexed: 12/25/2022]
Abstract
As shown in our previous study, two alternatively spliced androgen receptor (AR) variants, which are exclusively expressed in the granulosa cells of patients with polycystic ovary syndrome, exhibit retarded nuclear translocation compared with wild-type AR. However, researchers have not yet determined whether these abnormalities correlate with heat shock protein 90 (HSP90) and importin α (the former is a generally accepted co-chaperone of AR, and the latter is a component of classical nuclear import complexes). Here, these two variants were mainly retained in cytoplasm with HSP90 and importin α in the presence of dihydrotestosterone (DHT), and their levels in nucleus were significantly reduced, according to the immunofluorescence staining. The binding affinity of two AR variants for importin α was consistently decreased, while it was increased in WT-AR following DHT stimulation, leading to reduced nuclear import, particularly for the insertion-AR (Ins-AR). However, the binding affinities of two AR variants for HSP90 were increased in the absence of DHT compared with WT-AR, which functioned to maintain spatial structural stability, particularly for the deletion-AR (Del-AR). Therefore, the retarded nuclear translocation of two AR variants is associated with HSP90 and importin α, and the abnormal binding affinities for them play critical roles in this process.
Collapse
|
2
|
Caligiuri I, Toffoli G, Giordano A, Rizzolio F. pRb controls estrogen receptor alpha protein stability and activity. Oncotarget 2013; 4:875-83. [PMID: 23900261 PMCID: PMC3757244 DOI: 10.18632/oncotarget.1036] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A cross talk between the Estrogen Receptor (ESR1) and the Retinoblastoma (pRb) pathway has been demonstrated to influence the therapeutic response of breast cancer patients but the full mechanism remains poorly understood. Here we show that the N-terminal domain of pRb interacts with the CD domain of ESR1 to allow for the assembly of intermediate complex chaperone proteins HSP90 and p23. We demonstrated that a loss of pRb in human/mouse breast cells decreases the expression of the ESR1 protein through the proteasome pathway. Our work reveals a novel regulatory mechanism of ESR1 basal turnover and activity and an unanticipated relationship with the pRb tumor suppressor.
Collapse
Affiliation(s)
- Isabella Caligiuri
- 1 Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
- 2 Department of Medicine, Surgery and Neuroscience, University of Siena, Siena Italy
- 3 Division of Experimental and Clinical Pharmacology, Department of Molecular Biology and Translational Research, National Cancer Institute and Center for Molecular Biomedicine, Aviano (PN)
| | - Giuseppe Toffoli
- 3 Division of Experimental and Clinical Pharmacology, Department of Molecular Biology and Translational Research, National Cancer Institute and Center for Molecular Biomedicine, Aviano (PN)
| | - Antonio Giordano
- 1 Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
- 2 Department of Medicine, Surgery and Neuroscience, University of Siena, Siena Italy
| | - Flavio Rizzolio
- 1 Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
- 3 Division of Experimental and Clinical Pharmacology, Department of Molecular Biology and Translational Research, National Cancer Institute and Center for Molecular Biomedicine, Aviano (PN)
| |
Collapse
|
3
|
McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Montalto G, Cervello M, Nicoletti F, Fagone P, Malaponte G, Mazzarino MC, Candido S, Libra M, Bäsecke J, Mijatovic S, Maksimovic-Ivanic D, Milella M, Tafuri A, Cocco L, Evangelisti C, Chiarini F, Martelli AM. Mutations and deregulation of Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascades which alter therapy response. Oncotarget 2012; 3:954-87. [PMID: 23006971 PMCID: PMC3660063 DOI: 10.18632/oncotarget.652] [Citation(s) in RCA: 227] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 09/17/2012] [Indexed: 02/07/2023] Open
Abstract
The Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascades are often activated by genetic alterations in upstream signaling molecules such as receptor tyrosine kinases (RTK). Certain components of these pathways, RAS, NF1, BRAF, MEK1, DUSP5, PP2A, PIK3CA, PIK3R1, PIK3R4, PIK3R5, IRS4, AKT, NFKB1, MTOR, PTEN, TSC1, and TSC2 may also be activated/inactivated by mutations or epigenetic silencing. Upstream mutations in one signaling pathway or even in downstream components of the same pathway can alter the sensitivity of the cells to certain small molecule inhibitors. These pathways have profound effects on proliferative, apoptotic and differentiation pathways. Dysregulation of components of these cascades can contribute to: resistance to other pathway inhibitors, chemotherapeutic drug resistance, premature aging as well as other diseases. This review will first describe these pathways and discuss how genetic mutations and epigenetic alterations can result in resistance to various inhibitors.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Iwai A, Bourboulia D, Mollapour M, Jensen-Taubman S, Lee S, Donnelly AC, Yoshida S, Miyajima N, Tsutsumi S, Smith AK, Sun D, Wu X, Blagg BS, Trepel JB, Stetler-Stevenson WG, Neckers L. Combined inhibition of Wee1 and Hsp90 activates intrinsic apoptosis in cancer cells. Cell Cycle 2012; 11:3649-55. [PMID: 22935698 DOI: 10.4161/cc.21926] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Heat shock protein 90 (Hsp90) is an essential, evolutionarily conserved molecular chaperone. Cancer cells rely on Hsp90 to chaperone mutated and/or activated oncoproteins, and its involvement in numerous signaling pathways makes it an attractive target for drug development. Surprisingly, however, the impact of Hsp90 inhibitors on cancer cells is frequently cytostatic in nature, and efforts to enhance the antitumor activity of Hsp90 inhibitors in the clinic remain a significant challenge. In agreement with previous data obtained using Wee1 siRNA, we show that dual pharmacologic inhibition of Wee1 tyrosine kinase and Hsp90 causes cancer cells to undergo apoptosis in vitro and in vivo. Gene expression profiling revealed that induction of the intrinsic apoptotic pathway by this drug combination coincided with transcriptional downregulation of Survivin and Wee1, an outcome not seen in cells treated separately with either agent. At the translational level, expression of these two proteins, as well as activated Akt, was completely abrogated. These data support the hypothesis that Wee1 inhibition sensitizes cancer cells to Hsp90 inhibitors; they establish combined Wee1/Hsp90 inhibition as a novel therapeutic strategy; and they provide a mechanistic rationale for enhancing the pro-apoptotic activity of Hsp90 inhibitors.
Collapse
Affiliation(s)
- Aki Iwai
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Ciocca DR, Arrigo AP, Calderwood SK. Heat shock proteins and heat shock factor 1 in carcinogenesis and tumor development: an update. Arch Toxicol 2012; 87:19-48. [PMID: 22885793 DOI: 10.1007/s00204-012-0918-z] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 07/25/2012] [Indexed: 12/20/2022]
Abstract
Heat shock proteins (HSP) are a subset of the molecular chaperones, best known for their rapid and abundant induction by stress. HSP genes are activated at the transcriptional level by heat shock transcription factor 1 (HSF1). During the progression of many types of cancer, this heat shock transcriptional regulon becomes co-opted by mechanisms that are currently unclear, although evidently triggered in the emerging tumor cell. Concerted activation of HSF1 and the accumulation of HSPs then participate in many of the traits that permit the malignant phenotype. Thus, cancers of many histologies exhibit activated HSF1 and increased HSP levels that may help to deter tumor suppression and evade therapy in the clinic. We review here the extensive work that has been carried out and is still in progress aimed at (1) understanding the oncogenic mechanisms by which HSP genes are switched on, (2) determining the roles of HSF1/HSP in malignant transformation and (3) discovering approaches to therapy based on disrupting the influence of the HSF1-controlled transcriptome in cancer.
Collapse
Affiliation(s)
- Daniel R Ciocca
- Oncology Laboratory, Institute of Experimental Medicine and Biology of Cuyo (IMBECU), Scientific and Technological Center (CCT), CONICET, 5500 Mendoza, Argentina.
| | - Andre Patrick Arrigo
- Apoptosis Cancer and Development, Cancer Research Center of Lyon (CRCL), UMR INSERM 1052-CNRS 5286, Claude Bernard University, Lyon-1, Cheney A Building, Centre Regional Léon Bérard, 28, rue Laennec 69008 LYON, France. ;
| | - Stuart K Calderwood
- Molecular and Cellular Radiation Oncology, Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Boston, MA02215
| |
Collapse
|
6
|
Yemelyanov A, Bhalla P, Yang X, Ugolkov A, Iwadate K, Karseladze A, Budunova I. Differential targeting of androgen and glucocorticoid receptors induces ER stress and apoptosis in prostate cancer cells: a novel therapeutic modality. Cell Cycle 2012; 11:395-406. [PMID: 22223138 DOI: 10.4161/cc.11.2.18945] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Androgen (AR) and glucocorticoid (GR) receptor signaling play opposing roles in prostate tumorigenesis: in prostate, AR acts as an oncogene, and GR is a tumor suppressor. Recently, we found that non-steroidal phyto-chemical Compound A (CpdA) is AR/GR modulator acting as anti-inflammatory anti-androgen. CpdA inhibits AR and prevents GR transactivation while enhancing GR transrepression. GR and AR are controlled by proteasomal degradation. We found that prolonged exposure of LNCaP, LNCaP-GR, DU145 and PC3 prostate carcinoma (PCa) cells to proteasome inhibitor Bortezomib (BZ) caused AR degradation and GR accumulation. BZ enhanced CpdA ability to inhibit AR and to augment GR transrepression. We also found that CpdA+BZ differentially regulated GR/AR to cooperatively suppress PCa cell growth and survival and to induce endoplasmic reticulum stress (ERS). Importantly, CpdA+BZ differentially regulated GR-responsive genes. CpdA+BZ blocked activation of glucocorticoid-responsive pro-survival genes, including SGK1, but activated BZ-induced ERS-related genes BIP/HSPA5 and CHOP /GADD153. Using ChIP, we showed that SGK1, BIP/HSPA5 and CHOP regulation was due to effects of CpdA and CpdA+BZ on GR loading on their promoters. We also found that AR and GR are abundant in advanced PCa from patients treated by androgen ablation and/or chemotherapy: 56% of carcinomas from treated patients expressed both receptors, and the other 27% expressed either GR or AR. Overall, our data validate the concept of dual AR/GR targeting in prostate cancer (PC) and suggest that BZ combination with dual-target steroid receptor modulator CpdA has high potential for PC therapy.
Collapse
Affiliation(s)
- Alexander Yemelyanov
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | | | | | | | | | | | | |
Collapse
|