1
|
Gautam RK, Laltanpuia, Singh N, Kushwaha S. A particle of concern: explored and proposed underlying mechanisms of microplastic-induced lung damage and pulmonary fibrosis. Inhal Toxicol 2025; 37:1-17. [PMID: 39932476 DOI: 10.1080/08958378.2025.2461048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/27/2025] [Indexed: 02/21/2025]
Abstract
PURPOSE In the past decade, microplastics (MPs) have drawn significant attention as widespread environmental contaminants, with research increasingly highlighting their harmful effects on respiratory health in aquatic and terrestrial organisms. Findings revealed microplastics in human lung tissues, raising concerns about their potential role in damaging lung tissue integrity and contributing to pulmonary fibrosis-a chronic inflammatory condition characterized by scarring of lung epithelial tissues due to accumulated extracellular matrix, triggered by factors such as alcohol, pathogens, genetic mutations, and environmental pollutants. OBJECTIVE In this review, we explore both well-studied and lesser-studied mechanisms and signaling pathways, aiming to shed light on how microplastics might act as mediators that activate distinct, often overlooked signaling cascades. MATERIALS AND METHODS This review searched PubMed and Google Scholar using keywords like "plastic," "microplastic," "lung fibrosis," "pulmonary system," "exposure route," and "signaling pathways," combined with "OR" and "AND" in singular and plural forms. RESULTS These pathways could not only induce lung damage but also play a significant role in the development of pulmonary fibrosis. DISCUSSION AND CONCLUSIONS These signaling pathways could also be targeted to reduce microplastic-induced pulmonary fibrosis, opening new avenues for future treatments.
Collapse
Affiliation(s)
- Rohit Kumar Gautam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow, India
| | - Laltanpuia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow, India
| | - Nishant Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow, India
| | - Sapana Kushwaha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow, India
| |
Collapse
|
2
|
Takam Kamga P, Swalduz A, Costantini A, Julié C, Emile JF, Pérol M, Avrillon V, Ortiz-Cuaran S, de Saintigny P, Leprieur EG. High Circulating Sonic Hedgehog Protein Is Associated With Poor Outcome in EGFR-Mutated Advanced NSCLC Treated With Tyrosine Kinase Inhibitors. Front Oncol 2022; 11:747692. [PMID: 34970481 PMCID: PMC8712335 DOI: 10.3389/fonc.2021.747692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/22/2021] [Indexed: 12/24/2022] Open
Abstract
Introduction Growing preclinical evidence has suggested that the Sonic hedgehog (Shh) pathway is involved in resistance to tyrosine kinase inhibitor (TKI) therapy for EGFR-mutated (EGFRm) non-small cell lung cancer (NSCLC). However, little is known concerning the prognostic value of this pathway in this context. Materials and Methods We investigated the relationship between plasma levels of Shh and EGFRm NSCLC patients’ outcome with EGFR TKIs. We included 74 consecutive patients from two institutions with EGFRm advanced NSCLC treated by EGFR TKI as first-line therapy. Plasma samples were collected longitudinally for each patient and were analyzed for the expression of Shh using an ELISA assay. The activation of the Shh–Gli1 pathway was assessed through immunohistochemistry (IHC) of Gli1 and RT-qPCR analysis of the transcripts of Gli1 target genes in 14 available tumor biopsies collected at diagnosis (baseline). Results Among the 74 patients, only 61 had baseline (diagnosis) plasma samples, while only 49 patients had plasma samples at the first evaluation. Shh protein was detectable in all samples at diagnosis (n = 61, mean = 1,041.2 ± 252.5 pg/ml). Among the 14 available tumor biopsies, nuclear expression of Gli1 was observed in 57.1% (8/14) of patients’ biopsies. Shh was significantly (p < 0.05) enriched in youth (age < 68), male, nonsmokers, patients with a PS > 1, and patients presenting more than 2 metastatic sites and L858R mutation. Higher levels of Shh correlated with poor objective response to TKI, shorter progression-free survival (PFS), and T790M-independent mechanism of resistance. In addition, the rise of plasma Shh levels along the treatment was associated with the emergence of drug resistance in patients presenting an initial good therapy response. Conclusion These data support that higher levels of plasma Shh at diagnosis and increased levels of Shh along the course of the disease are related to the emergence of TKI resistance and poor outcome for EGFR-TKI therapy, suggesting that Shh levels could stand both as a prognostic and as a resistance biomarker for the management of EGFR-mutated NSCLC patients treated with EGFR-TKI.
Collapse
Affiliation(s)
- Paul Takam Kamga
- Université Paris-Saclay, UVSQ, EA 4340 BECCOH, Boulogne-Billancourt, France
| | - Aurélie Swalduz
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France.,Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Adrien Costantini
- Université Paris-Saclay, UVSQ, EA 4340 BECCOH, Boulogne-Billancourt, France.,Department of Respiratory Diseases and Thoracic Oncology, APHP-Hopital Ambroise Pare, Boulogne-Billancourt, France
| | - Catherine Julié
- Université Paris-Saclay, UVSQ, EA 4340 BECCOH, Boulogne-Billancourt, France.,Department of Pathology, APHP-Hopital Ambroise Pare, Boulogne-Billancourt, France
| | - Jean-François Emile
- Université Paris-Saclay, UVSQ, EA 4340 BECCOH, Boulogne-Billancourt, France.,Department of Pathology, APHP-Hopital Ambroise Pare, Boulogne-Billancourt, France
| | - Maurice Pérol
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France
| | - Virginie Avrillon
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Sandra Ortiz-Cuaran
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Pierre de Saintigny
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France.,Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Etienne Giroux Leprieur
- Université Paris-Saclay, UVSQ, EA 4340 BECCOH, Boulogne-Billancourt, France.,Department of Respiratory Diseases and Thoracic Oncology, APHP-Hopital Ambroise Pare, Boulogne-Billancourt, France
| |
Collapse
|
3
|
Mehlman C, Takam Kamga P, Costantini A, Julié C, Dumenil C, Dumoulin J, Ouaknine J, Giraud V, Chinet T, Emile JF, Giroux Leprieur E. Baseline Hedgehog Pathway Activation and Increase of Plasma Wnt1 Protein Are Associated with Resistance to Immune Checkpoint Inhibitors in Advanced Non-Small-Cell Lung Cancer. Cancers (Basel) 2021; 13:cancers13051107. [PMID: 33807552 PMCID: PMC7962040 DOI: 10.3390/cancers13051107] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 12/26/2022] Open
Abstract
Hedgehog (Hh) and Wingless-type (Wnt) pathways are associated with resistance to immune checkpoint inhibitors (ICIs) in preclinical studies. This study aimed to assess the association between expression and activation levels of Wnt and Sonic Hedgehog (Shh) pathways and resistance to ICIs in advanced NSCLC patients treated with ICI. Hh and Wnt pathways activation was assessed by immunohistochemistry (Gli1 and beta-catenin) on corresponding tumor tissues, and by plasma concentrations of Shh and Wnt (Wnt1, Wnt2 and Wnt3) at ICI introduction and at the first clinical evaluation. Sixty-three patients were included, with 36 patients (57.1%) with available tissue. Response rate was lower in Gli1+ NSCLC (20.0%) compared to Gli1 negative (Gli-) NSCLC (55.6%) (p = 0.015). Rate of primary resistance was 69.8%, vs. 31.2%, respectively (p = 0.04), and median progression-free survival (PFS) was 1.9 months (interquartile range (IQR) 1.2-5.7) vs. 6.1 months (1.6-26.0), respectively (p = 0.08). Median PFS and overall survival were shorter in case of increase of Wnt1 concentration during ICI treatment compared to other patients: 3.9 months vs. 11.2 months (p = 0.008), and 15.3 months vs. not reached (p = 0.003). In conclusion, baseline activation of Hh pathway and increase of Wnt1 concentrations during ICI treatment were associated with poor outcome in NSCLC patients treated with ICIs.
Collapse
Affiliation(s)
- Camille Mehlman
- EA 4340 BECCOH, UVSQ, Université Paris-Saclay, 92100 Boulogne-Billancourt, France; (C.M.); (P.T.K.); (A.C.); (C.J.); (T.C.); (J.-F.E.)
| | - Paul Takam Kamga
- EA 4340 BECCOH, UVSQ, Université Paris-Saclay, 92100 Boulogne-Billancourt, France; (C.M.); (P.T.K.); (A.C.); (C.J.); (T.C.); (J.-F.E.)
| | - Adrien Costantini
- EA 4340 BECCOH, UVSQ, Université Paris-Saclay, 92100 Boulogne-Billancourt, France; (C.M.); (P.T.K.); (A.C.); (C.J.); (T.C.); (J.-F.E.)
- Department of Respiratory Diseases and Thoracic Oncology, APHP—Hopital Ambroise Pare, 92100 Boulogne-Billancourt, France; (C.D.); (J.D.); (J.O.); (V.G.)
| | - Catherine Julié
- EA 4340 BECCOH, UVSQ, Université Paris-Saclay, 92100 Boulogne-Billancourt, France; (C.M.); (P.T.K.); (A.C.); (C.J.); (T.C.); (J.-F.E.)
- Department of Pathology, APHP—Hopital Ambroise Pare, 92100 Boulogne-Billancourt, France
| | - Coraline Dumenil
- Department of Respiratory Diseases and Thoracic Oncology, APHP—Hopital Ambroise Pare, 92100 Boulogne-Billancourt, France; (C.D.); (J.D.); (J.O.); (V.G.)
| | - Jennifer Dumoulin
- Department of Respiratory Diseases and Thoracic Oncology, APHP—Hopital Ambroise Pare, 92100 Boulogne-Billancourt, France; (C.D.); (J.D.); (J.O.); (V.G.)
| | - Julia Ouaknine
- Department of Respiratory Diseases and Thoracic Oncology, APHP—Hopital Ambroise Pare, 92100 Boulogne-Billancourt, France; (C.D.); (J.D.); (J.O.); (V.G.)
| | - Violaine Giraud
- Department of Respiratory Diseases and Thoracic Oncology, APHP—Hopital Ambroise Pare, 92100 Boulogne-Billancourt, France; (C.D.); (J.D.); (J.O.); (V.G.)
| | - Thierry Chinet
- EA 4340 BECCOH, UVSQ, Université Paris-Saclay, 92100 Boulogne-Billancourt, France; (C.M.); (P.T.K.); (A.C.); (C.J.); (T.C.); (J.-F.E.)
- Department of Respiratory Diseases and Thoracic Oncology, APHP—Hopital Ambroise Pare, 92100 Boulogne-Billancourt, France; (C.D.); (J.D.); (J.O.); (V.G.)
| | - Jean-François Emile
- EA 4340 BECCOH, UVSQ, Université Paris-Saclay, 92100 Boulogne-Billancourt, France; (C.M.); (P.T.K.); (A.C.); (C.J.); (T.C.); (J.-F.E.)
- Department of Pathology, APHP—Hopital Ambroise Pare, 92100 Boulogne-Billancourt, France
| | - Etienne Giroux Leprieur
- EA 4340 BECCOH, UVSQ, Université Paris-Saclay, 92100 Boulogne-Billancourt, France; (C.M.); (P.T.K.); (A.C.); (C.J.); (T.C.); (J.-F.E.)
- Department of Respiratory Diseases and Thoracic Oncology, APHP—Hopital Ambroise Pare, 92100 Boulogne-Billancourt, France; (C.D.); (J.D.); (J.O.); (V.G.)
- Correspondence: ; Tel.: +33-149-095-802; Fax: +33-149-095-806
| |
Collapse
|
4
|
Ancel J, Belgacemi R, Perotin JM, Diabasana Z, Dury S, Dewolf M, Bonnomet A, Lalun N, Birembaut P, Polette M, Deslée G, Dormoy V. Sonic hedgehog signalling as a potential endobronchial biomarker in COPD. Respir Res 2020; 21:207. [PMID: 32767976 PMCID: PMC7412648 DOI: 10.1186/s12931-020-01478-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 08/02/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The hedgehog (HH) pathway has been associated with chronic obstructive pulmonary disease (COPD) in genome-wide association studies and recent studies suggest that HH signalling could be altered in COPD. We therefore used minimally invasive endobronchial procedures to assess activation of the HH pathway including the main transcription factor, Gli2, and the ligand, Sonic HH (Shh). METHODS Thirty non-COPD patients and 28 COPD patients were included. Bronchial brushings, bronchoalveolar lavage fluid (BALF) and bronchial biopsies were obtained from fiberoptic bronchoscopy. Characterization of cell populations and subcellular localization were evaluated by immunostaining. ELISA and RNAseq analysis were performed to identify Shh proteins in BAL and transcripts on lung tissues from non-COPD and COPD patients with validation in an external and independent cohort. RESULTS Compared to non-COPD patients, COPD patients exhibited a larger proportion of basal cells in bronchial brushings (26 ± 11% vs 13 ± 6%; p < 0.0001). Airway basal cells of COPD subjects presented less intense nuclear staining for Gli2 in bronchial brushings and biopsies (p < 0.05). Bronchial BALF from COPD patients contained lower Shh concentrations than non-COPD BALF (12.5 vs 40.9 pg/mL; p = 0.002); SHH transcripts were also reduced in COPD lungs in the validation cohort (p = 0.0001). CONCLUSION This study demonstrates the feasibility of assessing HH pathway activation in respiratory samples collected by bronchoscopy and identifies impaired bronchial epithelial HH signalling in COPD.
Collapse
Affiliation(s)
- Julien Ancel
- University of Reims Champagne-Ardenne, Inserm, P3Cell UMR-S 1250, SFR CAP-SANTE, 45 rue Cognacq-Jay, 51092, Reims, France.,Department of Pulmonary Medicine, University Hospital of Reims, Hôpital Maison Blanche, 51092, Reims, France
| | - Randa Belgacemi
- University of Reims Champagne-Ardenne, Inserm, P3Cell UMR-S 1250, SFR CAP-SANTE, 45 rue Cognacq-Jay, 51092, Reims, France
| | - Jeanne-Marie Perotin
- University of Reims Champagne-Ardenne, Inserm, P3Cell UMR-S 1250, SFR CAP-SANTE, 45 rue Cognacq-Jay, 51092, Reims, France.,Department of Pulmonary Medicine, University Hospital of Reims, Hôpital Maison Blanche, 51092, Reims, France
| | - Zania Diabasana
- University of Reims Champagne-Ardenne, Inserm, P3Cell UMR-S 1250, SFR CAP-SANTE, 45 rue Cognacq-Jay, 51092, Reims, France
| | - Sandra Dury
- Department of Pulmonary Medicine, University Hospital of Reims, Hôpital Maison Blanche, 51092, Reims, France
| | - Maxime Dewolf
- Department of Pulmonary Medicine, University Hospital of Reims, Hôpital Maison Blanche, 51092, Reims, France
| | - Arnaud Bonnomet
- University of Reims Champagne-Ardenne, Inserm, P3Cell UMR-S 1250, SFR CAP-SANTE, 45 rue Cognacq-Jay, 51092, Reims, France.,Platform of Cellular and Tissular Imaging (PICT), 51097, Reims, France
| | - Nathalie Lalun
- University of Reims Champagne-Ardenne, Inserm, P3Cell UMR-S 1250, SFR CAP-SANTE, 45 rue Cognacq-Jay, 51092, Reims, France
| | - Philippe Birembaut
- University of Reims Champagne-Ardenne, Inserm, P3Cell UMR-S 1250, SFR CAP-SANTE, 45 rue Cognacq-Jay, 51092, Reims, France.,University Hospital of Reims, Hôpital Maison Blanche, Laboratoire de Biopathologie, 51092, Reims, France
| | - Myriam Polette
- University of Reims Champagne-Ardenne, Inserm, P3Cell UMR-S 1250, SFR CAP-SANTE, 45 rue Cognacq-Jay, 51092, Reims, France.,University Hospital of Reims, Hôpital Maison Blanche, Laboratoire de Biopathologie, 51092, Reims, France
| | - Gaëtan Deslée
- University of Reims Champagne-Ardenne, Inserm, P3Cell UMR-S 1250, SFR CAP-SANTE, 45 rue Cognacq-Jay, 51092, Reims, France.,Department of Pulmonary Medicine, University Hospital of Reims, Hôpital Maison Blanche, 51092, Reims, France
| | - Valérian Dormoy
- University of Reims Champagne-Ardenne, Inserm, P3Cell UMR-S 1250, SFR CAP-SANTE, 45 rue Cognacq-Jay, 51092, Reims, France.
| |
Collapse
|
5
|
Martin-Hurtado A, Lastres-Becker I, Cuadrado A, Garcia-Gonzalo FR. NRF2 and Primary Cilia: An Emerging Partnership. Antioxidants (Basel) 2020; 9:antiox9060475. [PMID: 32498260 PMCID: PMC7346227 DOI: 10.3390/antiox9060475] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/30/2020] [Accepted: 05/31/2020] [Indexed: 02/07/2023] Open
Abstract
When not dividing, many cell types target their centrosome to the plasma membrane, where it nucleates assembly of a primary cilium, an antenna-like signaling structure consisting of nine concentric microtubule pairs surrounded by membrane. Primary cilia play important pathophysiological roles in many tissues, their dysfunction being associated with cancer and ciliopathies, a diverse group of congenital human diseases. Several recent studies have unveiled functional connections between primary cilia and NRF2 (nuclear factor erythroid 2-related factor 2), the master transcription factor orchestrating cytoprotective responses to oxidative and other cellular stresses. These NRF2-cilia relationships are reciprocal: primary cilia, by promoting autophagy, downregulate NRF2 activity. In turn, NRF2 transcriptionally regulates genes involved in ciliogenesis and Hedgehog (Hh) signaling, a cilia-dependent pathway with major roles in embryogenesis, stem cell function and tumorigenesis. Nevertheless, while we found that NRF2 stimulates ciliogenesis and Hh signaling, a more recent study reported that NRF2 negatively affects these processes. Herein, we review the available evidence linking NRF2 to primary cilia, suggest possible explanations to reconcile seemingly contradictory data, and discuss what the emerging interplay between primary cilia and NRF2 may mean for human health and disease.
Collapse
Affiliation(s)
- Ana Martin-Hurtado
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBM), UAM-CSIC, 28029 Madrid, Spain; (A.M.-H.); (I.L.-B.); (A.C.)
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
- Instituto de Investigación del Hospital Universitario de La Paz (IdiPAZ), 28047 Madrid, Spain
| | - Isabel Lastres-Becker
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBM), UAM-CSIC, 28029 Madrid, Spain; (A.M.-H.); (I.L.-B.); (A.C.)
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
- Instituto de Investigación del Hospital Universitario de La Paz (IdiPAZ), 28047 Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28013 Madrid, Spain
| | - Antonio Cuadrado
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBM), UAM-CSIC, 28029 Madrid, Spain; (A.M.-H.); (I.L.-B.); (A.C.)
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
- Instituto de Investigación del Hospital Universitario de La Paz (IdiPAZ), 28047 Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28013 Madrid, Spain
| | - Francesc R. Garcia-Gonzalo
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBM), UAM-CSIC, 28029 Madrid, Spain; (A.M.-H.); (I.L.-B.); (A.C.)
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
- Instituto de Investigación del Hospital Universitario de La Paz (IdiPAZ), 28047 Madrid, Spain
- Correspondence:
| |
Collapse
|
6
|
Misra R, Kandoi S, Varadaraj S, Vijayalakshmi S, Nanda A, Verma RS. Nanotheranostics: A tactic for cancer stem cells prognosis and management. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101457] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Wei X, Liu W, Wang JQ, Tang Z. "Hedgehog pathway": a potential target of itraconazole in the treatment of cancer. J Cancer Res Clin Oncol 2020; 146:297-304. [PMID: 31960187 DOI: 10.1007/s00432-019-03117-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/17/2019] [Indexed: 12/13/2022]
Abstract
PURPOSE Itraconazole is an antifungal drug that has been clinically used for over 30 years. In recent years, scholars have discovered that it possesses an anticancer effect. Moreover, its mechanism has been clarified to some degree. What deserves to be mentioned is that itraconazole acting on the Hedgehog pathway has made a new progress in the treatment of cancers. While interestingly, studies have demonstrated that the Hedgehog pathway is largely activated in different cancer cells. RESULT This review tries to highlight the effect of itraconazole on smoothened receptor (SMO) in the Hedgehog pathway, thereby reducing the glioma-associated oncogene homolog (GLI) release and finally exhibiting a range of anticancer effects, promoting apoptosis of cancer cells, and inhibiting proliferation by indirect inhibition of NF-κB pathway and inflammation, moreover, promoting the expression of cyclin-dependent kinase inhibitors, inhibiting the expression of target genes transcribed by GLI such as BCL-2 and Cyclin-D1. Besides, itraconazole increases the number of Bnip3, subsequently, inducing the dissociation of the Beclin-1/BCL-2 binding complex, as a result of ultimately promoting autophagy of cancer cells. CONCLUSION As a new anticancer drug, whether itraconazole eventually entering clinical application requires the joint eforts of all scholars. In any case, an in-depth study on itraconazole will bring new hope for cancer patients in the near future.
Collapse
Affiliation(s)
- Xin Wei
- Acad Integrated Med & College of Pharmacy, Department of Pharmacy, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Wu Liu
- Acad Integrated Med & College of Pharmacy, Department of Pharmacy, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Jia Qi Wang
- Department of Plastic and Reconstructive Surgery, The First Bethune Hospital of Jilin University, Chang Chun, 130021, People's Republic of China
| | - Zeyao Tang
- Acad Integrated Med & College of Pharmacy, Department of Pharmacy, Dalian Medical University, Dalian, 116044, People's Republic of China.
| |
Collapse
|
8
|
Jean D, Jaurand MC. Mesotheliomas in Genetically Engineered Mice Unravel Mechanism of Mesothelial Carcinogenesis. Int J Mol Sci 2018; 19:E2191. [PMID: 30060470 PMCID: PMC6121615 DOI: 10.3390/ijms19082191] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 07/23/2018] [Indexed: 12/14/2022] Open
Abstract
Malignant mesothelioma (MM), a rare and severe cancer, mainly caused as a result of past-asbestos exposure, is presently a public health concern. Current molecular studies aim to improve the outcome of the disease, providing efficient therapies based on the principles of precision medicine. To model the molecular profile of human malignant mesothelioma, animal models have been developed in rodents, wild type animals and genetically engineered mice harbouring mutations in tumour suppressor genes, especially selecting genes known to be inactivated in human malignant mesothelioma. Animals were either exposed or not exposed to asbestos or to other carcinogenic fibres, to understand the mechanism of action of fibres at the molecular level, and the role of the selected genes in mesothelial carcinogenesis. The aim of the manuscript was to compare mesothelioma models to human malignant mesothelioma and to specify the clue genes playing a role in mesothelial carcinogenesis. Collectively, MM models recapitulate the clinical features of human MM. At least two altered genes are needed to induce malignant mesothelioma in mice. Two pathways regulated by Cdkn2a and Trp53 seem independent key players in mesothelial carcinogenesis. Other genes and pathways appear as bona fide modulators of the neoplastic transformation.
Collapse
Affiliation(s)
- Didier Jean
- Inserm, UMR-1162, Génomique Fonctionnelle des Tumeurs Solides, F-75010 Paris, France.
- Université Paris Descartes, Labex Immuno-Oncologie, Sorbonne Paris Cité, F-75000 Paris, France.
- Institut Universitaire d'Hématologie, Université Paris Diderot, Sorbonne Paris Cité, F-75010 Paris, France.
- Université Paris 13, Sorbonne Paris Cité, F-93206 Saint-Denis, France.
| | - Marie-Claude Jaurand
- Inserm, UMR-1162, Génomique Fonctionnelle des Tumeurs Solides, F-75010 Paris, France.
- Université Paris Descartes, Labex Immuno-Oncologie, Sorbonne Paris Cité, F-75000 Paris, France.
- Institut Universitaire d'Hématologie, Université Paris Diderot, Sorbonne Paris Cité, F-75010 Paris, France.
- Université Paris 13, Sorbonne Paris Cité, F-93206 Saint-Denis, France.
| |
Collapse
|