1
|
Rahman R, Selth LA. Cyclin-dependent kinases as mediators of aberrant transcription in prostate cancer. Transl Oncol 2025; 55:102378. [PMID: 40163908 PMCID: PMC11995790 DOI: 10.1016/j.tranon.2025.102378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 03/19/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025] Open
Abstract
Transcriptional control of gene expression is fundamental to all cellular processes. Conversely, transcriptional dysregulation is a hallmark of cancer. While this hallmark is a key driver of all malignancy-related process, it also represents a vulnerability that can be exploited therapeutically. Prostate cancer is a prime example of this phenomenon: it is characterised by aberrant transcription and treated with drugs that influence transcriptional pathways. Indeed, the primary oncogenic driver and therapeutic target of prostate cancer, the androgen receptor (AR), is a transcription factor. Moreover, a plethora of other transcriptional regulators, including transcriptional cyclin-dependent kinases (CDK7, CDK8 and CDK9), MYC and Bromodomain-containing protein 4 (BRD4), play prominent roles in disease progression. In this review, we focus on the roles of transcriptional CDKs in prostate cancer growth, metastasis and therapy resistance and discuss their interplay with AR, MYC and BRD4. Additionally, we explore recent advances in the therapeutic targeting of transcriptional CDKs and propose how these strategies could be effectively harnessed for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Razia Rahman
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, South Australia
| | - Luke A Selth
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, South Australia; Flinders University, Freemasons Centre for Male Health and Wellbeing, Adelaide, South Australia; Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia.
| |
Collapse
|
2
|
Barton WC, Kumari A, Mack ZT, Schools GP, Quintero LM, Choi AS, Rangavajhula K, Arend RC, Broude EV, Mythreye K. Targeting Mediator Kinase Cyclin-Dependent Kinases 8/19 Potentiates Chemotherapeutic Responses, Reverses Tumor Growth, and Prolongs Survival from Ovarian Clear Cell Carcinoma. Cancers (Basel) 2025; 17:941. [PMID: 40149277 PMCID: PMC11940259 DOI: 10.3390/cancers17060941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND/OBJECTIVE Ovarian clear cell carcinomas (OCCCs) are a rare histological subtype of epithelial ovarian cancer characterized by resistance to platinum-based therapy. CDK8/19, a component of the regulatory CDK module associated with Mediator complex, has been implicated in transcriptional reprogramming and drug resistance in various solid tumors. Our study aimed to investigate the therapeutic potential of CDK8/19 kinase inhibition using selective inhibitors SNX631 and SNX631-6 in OCCC treatment, both as monotherapy and in combination with standard chemotherapeutics. METHODS CDK8 and Ki67 levels were evaluated via immunohistochemistry in benign, primary, and metastatic ovarian cancer tissues. The efficacy of SNX631 alone and in combination with cisplatin or paclitaxel was assessed in OCCC cell lines (ES-2, TOV-21-G, RMG-1). In vivo evaluation utilized xenograft models with subcutaneous and intraperitoneal delivery of the OCCC ES2 cells and oral delivery of SNX631-6, with the monitoring of tumor growth, metastatic spread, and survival. RESULTS CDK8 protein levels were elevated in OC tissues, particularly in OCCC primary and metastatic lesions compared to benign tissue. While CDK8/19 inhibition showed limited effects on in vitro cell proliferation, SNX631-6 demonstrated significant antitumor and anti-metastatic activity in vivo. Notably, SNX631-6 enhanced the efficacy of cisplatin, substantially inhibiting tumor growth and extending overall survival. CONCLUSIONS Therapeutically achievable doses of CDK8/19 inhibitors may provide clinical benefit for OCCC patients by inhibiting tumor growth and reversing platinum resistance, potentially addressing a critical treatment challenge in this rare ovarian cancer subtype.
Collapse
Affiliation(s)
- Wade C. Barton
- Division of Gynecologic Oncology, Department of Obstetrics & Gynecology, Heersink School of Medicine, University of Alabama School of Medicine, Birmingham, AL 35294, USA; (W.C.B.); (R.C.A.)
| | - Asha Kumari
- Division of Molecular Cellular Pathology, Department of Pathology, Heersink School of Medicine and O’Neal Comprehensive Cancer Center, University of Alabama Birmingham, Birmingham, AL 35294, USA; (A.K.); (L.M.Q.); (A.S.C.)
| | - Zachary T. Mack
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA; (Z.T.M.); (G.P.S.); (K.R.)
| | - Gary P. Schools
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA; (Z.T.M.); (G.P.S.); (K.R.)
| | - Liz Macias Quintero
- Division of Molecular Cellular Pathology, Department of Pathology, Heersink School of Medicine and O’Neal Comprehensive Cancer Center, University of Alabama Birmingham, Birmingham, AL 35294, USA; (A.K.); (L.M.Q.); (A.S.C.)
| | - Alex Seok Choi
- Division of Molecular Cellular Pathology, Department of Pathology, Heersink School of Medicine and O’Neal Comprehensive Cancer Center, University of Alabama Birmingham, Birmingham, AL 35294, USA; (A.K.); (L.M.Q.); (A.S.C.)
| | - Karthik Rangavajhula
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA; (Z.T.M.); (G.P.S.); (K.R.)
| | - Rebecca C. Arend
- Division of Gynecologic Oncology, Department of Obstetrics & Gynecology, Heersink School of Medicine, University of Alabama School of Medicine, Birmingham, AL 35294, USA; (W.C.B.); (R.C.A.)
| | - Eugenia V. Broude
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA; (Z.T.M.); (G.P.S.); (K.R.)
| | - Karthikeyan Mythreye
- Division of Molecular Cellular Pathology, Department of Pathology, Heersink School of Medicine and O’Neal Comprehensive Cancer Center, University of Alabama Birmingham, Birmingham, AL 35294, USA; (A.K.); (L.M.Q.); (A.S.C.)
| |
Collapse
|
3
|
Khamidullina AI, Yastrebova MA, Bruter AV, Nuzhina JV, Vorobyeva NE, Khrustaleva AM, Varlamova EA, Tyakht AV, Abramenko IE, Ivanova ES, Zamkova MA, Li J, Lim CU, Chen M, Broude EV, Roninson IB, Shtil AA, Tatarskiy VV. CDK8/19 inhibition attenuates G1 arrest induced by BCR-ABL antagonists and accelerates death of chronic myelogenous leukemia cells. Cell Death Discov 2025; 11:62. [PMID: 39955308 PMCID: PMC11830074 DOI: 10.1038/s41420-025-02339-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 01/20/2025] [Accepted: 02/04/2025] [Indexed: 02/17/2025] Open
Abstract
Imatinib mesylate (IM) and other BCR-ABL tyrosine kinase inhibitors (BCR-ABLi) are the mainstay of chronic myelogenous leukemia (CML) treatment. However, activation of circumventing signaling pathways and quiescence may limit BCR-ABLi efficacy. CDK8/19 Mediator kinases have been implicated in the emergence of non-genetic drug resistance. Dissecting the effects of pharmacological CDK8/19 inhibition on CML survival in response to BCR-ABLi, we found that a selective, non-toxic CDK8/19 inhibitor (CDK8/19i) Senexin B (SenB) and other CDK8/19i sensitized K562 cells to different BCR-ABLi via attenuation of cell cycle arrest. In particular, SenB prevented IM-induced upregulation of genes that negatively regulate cell cycle progression. SenB also antagonized IM-activated p27Kip1 elevation thereby diminishing the population of G1-arrested cells. After transient G1 arrest, cells treated with IM + SenB re-entered the S phase, where they were halted and underwent replicative stress. Consequently, the combination of IM and SenB intensified apoptotic cell death, measured by activation of caspase 9 and 3, subsequent cleavage of poly(ADPriboso)polymerase 1, positive Annexin V staining and increase of subG1 fraction. In contrast, IM-treated BCR-ABL-positive KU812 CML cells, which did not induce p27Kip1, readily died regardless of SenB treatment. Thus, CDK8/19i prevent the quiescence-mediated escape from BCR-ABLi-induced apoptosis, suggesting a strategy for avoiding the CML relapse.
Collapse
Affiliation(s)
- Alvina I Khamidullina
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334, Moscow, Russia.
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334, Moscow, Russia.
| | - Margarita A Yastrebova
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334, Moscow, Russia
| | - Alexandra V Bruter
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334, Moscow, Russia
| | - Julia V Nuzhina
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334, Moscow, Russia
| | - Nadezhda E Vorobyeva
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334, Moscow, Russia
| | - Anastasia M Khrustaleva
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334, Moscow, Russia
| | - Ekaterina A Varlamova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334, Moscow, Russia
| | - Alexander V Tyakht
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334, Moscow, Russia
| | - Iaroslav E Abramenko
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334, Moscow, Russia
| | - Ekaterina S Ivanova
- Blokhin National Medical Research Center of Oncology, 24 Kashirskoye shosse, 115522, Moscow, Russia
| | - Maria A Zamkova
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334, Moscow, Russia
- Blokhin National Medical Research Center of Oncology, 24 Kashirskoye shosse, 115522, Moscow, Russia
| | - Jing Li
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, 715 Sumter Street, Columbia, SC, 29208, USA
| | - Chang-Uk Lim
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, 715 Sumter Street, Columbia, SC, 29208, USA
| | - Mengqian Chen
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, 715 Sumter Street, Columbia, SC, 29208, USA
| | - Eugenia V Broude
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, 715 Sumter Street, Columbia, SC, 29208, USA
| | - Igor B Roninson
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, 715 Sumter Street, Columbia, SC, 29208, USA
| | - Alexander A Shtil
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334, Moscow, Russia
- Blokhin National Medical Research Center of Oncology, 24 Kashirskoye shosse, 115522, Moscow, Russia
| | - Victor V Tatarskiy
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334, Moscow, Russia.
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334, Moscow, Russia.
| |
Collapse
|
4
|
Jiang C, Hong Z, Liu S, Hong Z, Dai B. Roles of CDK12 mutations in PCa development and treatment. Biochim Biophys Acta Rev Cancer 2025; 1880:189247. [PMID: 39681197 DOI: 10.1016/j.bbcan.2024.189247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 12/05/2024] [Accepted: 12/11/2024] [Indexed: 12/18/2024]
Abstract
Prostate cancer (PCa) is one of the most common cancers in men, and cyclin-dependent kinase 12 (CDK12) is emerging as a novel star player in the PCa tumorigenesis and progression to castration-resistant prostate cancer (CRPC). In PCa, CDK12 alterations are mostly loss-of-function mutations featuring intronic polyadenylation (IPA), focal tandem duplications (FTDs), and R-loops formation and transcription-replication conflicts (TRCs). The occurrence of IPA can result in homologous recombination deficiency (HRD) and androgen receptor (AR) variation. FTDs induce neoantigens and increase the expression of the AR, MYC, and other hotspot- associated genes. R-loops lead to TRCs and influence various cellular processes, including gene expression and genome stability. Due to the poor prognosis of CDK12-mutant PCa patients and the mediocre response to classic standard therapies, HRD and increased neoantigen levels have provided clinicians with new insights into alternative systematic treatments for this novel PCa phenotype. In this review, we summarize the roles of CDK12 mutations in PCa and discuss their clinical value, suggesting that CDK12 potentially represents a target for further research and the development of clinical strategies for PCa.
Collapse
Affiliation(s)
- Chenye Jiang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Genitourinary Cancer Institute, Shanghai 200032, China
| | - Zhe Hong
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Genitourinary Cancer Institute, Shanghai 200032, China.
| | - Shiwei Liu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Genitourinary Cancer Institute, Shanghai 200032, China
| | - Zongyuan Hong
- Laboratory of Quantitative Pharmacology, Wannan Medical College, Wuhu 241002, China
| | - Bo Dai
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Genitourinary Cancer Institute, Shanghai 200032, China.
| |
Collapse
|
5
|
Andolfi C, Bartolini C, Morales E, Gündoğdu B, Puhr M, Guzman J, Wach S, Taubert H, Aigner A, Eder IE, Handle F, Culig Z. MED12 and CDK8/19 Modulate Androgen Receptor Activity and Enzalutamide Response in Prostate Cancer. Endocrinology 2024; 165:bqae114. [PMID: 39253786 PMCID: PMC11398899 DOI: 10.1210/endocr/bqae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/16/2024] [Accepted: 09/08/2024] [Indexed: 09/11/2024]
Abstract
Prostate cancer progression is driven by androgen receptor (AR) activity, which is a target for therapeutic approaches. Enzalutamide is an AR inhibitor that prolongs the survival of patients with advanced prostate cancer. However, resistance mechanisms arise and impair its efficacy. One of these mechanisms is the expression of AR-V7, a constitutively active AR splice variant. The Mediator complex is a multisubunit protein that modulates gene expression on a genome-wide scale. MED12 and cyclin-dependent kinase (CDK)8, or its paralog CDK19, are components of the kinase module that regulates the proliferation of prostate cancer cells. In this study, we investigated how MED12 and CDK8/19 influence cancer-driven processes in prostate cancer cell lines, focusing on AR activity and the enzalutamide response. We inhibited MED12 expression and CDK8/19 activity in LNCaP (AR+, enzalutamide-sensitive), 22Rv1 (AR-V7+, enzalutamide-resistant), and PC3 (AR-, enzalutamide-insensitive) cells. Both MED12 and CDK8/19 inhibition reduced cell proliferation in all cell lines, and MED12 inhibition reduced proliferation in the respective 3D spheroids. MED12 knockdown significantly inhibited c-Myc protein expression and signaling pathways. In 22Rv1 cells, it consistently inhibited the AR response, prostate-specific antigen (PSA) secretion, AR target genes, and AR-V7 expression. Combined with enzalutamide, MED12 inhibition additively decreased the AR activity in both LNCaP and 22Rv1 cells. CDK8/19 inhibition significantly decreased PSA secretion in LNCaP and 22Rv1 cells and, when combined with enzalutamide, additively reduced proliferation in 22Rv1 cells. Our study revealed that MED12 and CDK8/19 regulate AR activity and that their inhibition may modulate response to enzalutamide in prostate cancer.
Collapse
Affiliation(s)
- Chiara Andolfi
- Department of Urology, Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Caterina Bartolini
- Department of Urology, Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- University of Florence, 50 121 Florence, Italy
| | - Elisa Morales
- Department of Urology, Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Johannes Gutenberg University Mainz, 55122 Mainz, Germany
| | - Büşra Gündoğdu
- Department of Urology, Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Graudate School of Science and Engineering, Yıldız Technical University, 34220 Istanbul, Turkey
| | - Martin Puhr
- Department of Urology, Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Juan Guzman
- Department of Urology and Pediatric Urology, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Sven Wach
- Department of Urology and Pediatric Urology, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Helge Taubert
- Department of Urology and Pediatric Urology, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, 04107 Leipzig, Germany
| | - Iris E Eder
- Department of Urology, Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Florian Handle
- Department of Urology, Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Institute of Pathology, Neuropathology & Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Zoran Culig
- Department of Urology, Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
6
|
Wang Y, Lei C, Wang Q, Zhang X, Zhi L, Liu X. Design and synthesis of 7-azaindole derivatives as potent CDK8 inhibitors for the treatment of acute myeloid leukemia. RSC Med Chem 2024:d4md00465e. [PMID: 39157854 PMCID: PMC11325196 DOI: 10.1039/d4md00465e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 07/16/2024] [Indexed: 08/20/2024] Open
Abstract
It is of great significance to design and synthesize novel structural inhibitors with good antitumor activity. In this study, based on rational design, a total of 42 7-azaindole derivatives as novel CDK8 inhibitors were designed and synthesized. All compounds were screened with antitumor activity and compound 6 (1-(3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)phenyl)-3-(m-tolyl)urea) exhibited the best activity, especially in acute myeloid leukemia (GI50 MV4-11 = 1.97 ± 1.24 μM). This compound also exhibited excellent inhibitory activity against CDK8 (IC50 = 51.3 ± 4.6 nM). Further mechanism studies shown that it could inhibit STAT5 phosphorylation and induce cell cycle arrest in the G1 phase, leading to apoptosis in acute myeloid leukemia cells. In addition, acute toxicity at a dose of 1000 mg kg-1 indicated the low toxicity of this compound.
Collapse
Affiliation(s)
- Yumeng Wang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University Hefei P. R. China
| | - Cencen Lei
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University Hefei P. R. China
| | - Quan Wang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University Hefei P. R. China
| | - Xingxing Zhang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University Hefei P. R. China
| | - Liping Zhi
- School of Health Management, Anhui Medical University Hefei 230032 PR China
| | - Xinhua Liu
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University Hefei P. R. China
| |
Collapse
|
7
|
Xu J, Qi H, Wang Z, Wang L, Steurer B, Cai X, Liu J, Aliper A, Zhang M, Ren F, Zhavoronkov A, Ding X. Discovery of a Novel and Potent Cyclin-Dependent Kinase 8/19 (CDK8/19) Inhibitor for the Treatment of Cancer. J Med Chem 2024; 67:8161-8171. [PMID: 38690856 DOI: 10.1021/acs.jmedchem.4c00248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
The mediator kinases CDK8 and CDK19 control the dynamic transcription of selected genes in response to various signals and have been shown to be hijacked to sustain hyperproliferation by various solid and liquid tumors. CDK8/19 is emerging as a promising anticancer therapeutic target. Here, we report the discovery of compound 12, a novel small molecule CDK8/19 inhibitor. This molecule demonstrated not only decent enzymatic and cellular activities but also remarkable selectivity in CDK and kinome panels. Besides, compound 12 also displayed favorable ADME profiles including low CYP1A2 inhibition, acceptable clearance, and high oral bioavailability in multiple preclinical species. Robust in vivo PD and efficacy studies in mice models further demonstrated its potential use as mono- and combination therapy for the treatment of cancers.
Collapse
Affiliation(s)
- Jianyu Xu
- Insilico Medicine Shanghai Ltd, Suite 902, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Hongyun Qi
- Insilico Medicine Shanghai Ltd, Suite 902, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Zhen Wang
- Insilico Medicine Shanghai Ltd, Suite 902, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Ling Wang
- Insilico Medicine Shanghai Ltd, Suite 902, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Barbara Steurer
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, Hong Kong 999077, China
| | - Xin Cai
- Insilico Medicine Shanghai Ltd, Suite 902, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Jinxin Liu
- Insilico Medicine Shanghai Ltd, Suite 902, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Alex Aliper
- Insilico Medicine AI Limited, Masdar City, Abu Dhabi 145748, UAE
| | - Man Zhang
- Insilico Medicine Shanghai Ltd, Suite 902, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Feng Ren
- Insilico Medicine Shanghai Ltd, Suite 902, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Alex Zhavoronkov
- Insilico Medicine Shanghai Ltd, Suite 902, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
- Insilico Medicine AI Limited, Masdar City, Abu Dhabi 145748, UAE
| | - Xiao Ding
- Insilico Medicine Shanghai Ltd, Suite 902, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| |
Collapse
|
8
|
Li J, Hilimire TA, Liu Y, Wang L, Liang J, Gyorffy B, Sikirzhytski V, Ji H, Zhang L, Cheng C, Ding X, Kerr KR, Dowling CE, Chumanevich AA, Mack ZT, Schools GP, Lim CU, Ellis L, Zi X, Porter DC, Broude EV, McInnes C, Wilding G, Lilly MB, Roninson IB, Chen M. Mediator kinase inhibition reverses castration resistance of advanced prostate cancer. J Clin Invest 2024; 134:e176709. [PMID: 38546787 DOI: 10.1172/jci176709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/22/2024] [Indexed: 04/17/2024] Open
Abstract
Mediator kinases CDK19 and CDK8, pleiotropic regulators of transcriptional reprogramming, are differentially regulated by androgen signaling, but both kinases are upregulated in castration-resistant prostate cancer (CRPC). Genetic or pharmacological inhibition of CDK8 and CDK19 reverses the castration-resistant phenotype and restores the sensitivity of CRPC xenografts to androgen deprivation in vivo. Prolonged CDK8/19 inhibitor treatment combined with castration not only suppressed the growth of CRPC xenografts but also induced tumor regression and cures. Transcriptomic analysis revealed that Mediator kinase inhibition amplified and modulated the effects of castration on gene expression, disrupting CRPC adaptation to androgen deprivation. Mediator kinase inactivation in tumor cells also affected stromal gene expression, indicating that Mediator kinase activity in CRPC molded the tumor microenvironment. The combination of castration and Mediator kinase inhibition downregulated the MYC pathway, and Mediator kinase inhibition suppressed a MYC-driven CRPC tumor model even without castration. CDK8/19 inhibitors showed efficacy in patient-derived xenograft models of CRPC, and a gene signature of Mediator kinase activity correlated with tumor progression and overall survival in clinical samples of metastatic CRPC. These results indicate that Mediator kinases mediated androgen-independent in vivo growth of CRPC, supporting the development of CDK8/19 inhibitors for the treatment of this presently incurable disease.
Collapse
Affiliation(s)
- Jing Li
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Thomas A Hilimire
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
- Senex Biotechnology Inc., Columbia, South Carolina, USA
| | - Yueying Liu
- Division of Hematology-Oncology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Lili Wang
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Jiaxin Liang
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Balazs Gyorffy
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary
- Department of Biophysics, Medical School, University of Pecs, Pecs, Hungary
| | - Vitali Sikirzhytski
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Hao Ji
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Li Zhang
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Chen Cheng
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Xiaokai Ding
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Kendall R Kerr
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Charles E Dowling
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Alexander A Chumanevich
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Zachary T Mack
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Gary P Schools
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Chang-Uk Lim
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Leigh Ellis
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences; Walter Reed National Military Medical Center; Henry M. Jackson Foundation for the Advancement of Military Medicine Inc.; Bethesda, Maryland, USA
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Xiaolin Zi
- Departments of Urology and Pharmaceutical Sciences, University of California, Irvine, California, USA
| | | | - Eugenia V Broude
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Campbell McInnes
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | | | - Michael B Lilly
- Division of Hematology-Oncology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Igor B Roninson
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Mengqian Chen
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
- Senex Biotechnology Inc., Columbia, South Carolina, USA
| |
Collapse
|
9
|
Yin X, He Z, Chen K, Ouyang K, Yang C, Li J, Tang H, Cai M. Unveiling the impact of CDK8 on tumor progression: mechanisms and therapeutic strategies. Front Pharmacol 2024; 15:1386929. [PMID: 38606172 PMCID: PMC11006979 DOI: 10.3389/fphar.2024.1386929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/14/2024] [Indexed: 04/13/2024] Open
Abstract
CDK8 is an important member of the cyclin-dependent kinase family associated with transcription and acts as a key "molecular switch" in the Mediator complex. CDK8 regulates gene expression by phosphorylating transcription factors and can control the transcription process through Mediator complex. Previous studies confirmed that CDK8 is an important oncogenic factor, making it a potential tumor biomarker and a promising target for tumor therapy. However, CDK8 has also been confirmed to be a tumor suppressor, indicating that it not only promotes the development of tumors but may also be involved in tumor suppression. Therefore, the dual role of CDK8 in the process of tumor development is worth further exploration and summary. This comprehensive review delves into the intricate involvement of CDK8 in transcription-related processes, as well as its role in signaling pathways related to tumorigenesis, with a focus on its critical part in driving cancer progression.
Collapse
Affiliation(s)
- Xiaomin Yin
- Department of Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhilong He
- Department of Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Kun Chen
- Department of Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Kai Ouyang
- Department of Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Changxuan Yang
- Department of Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jianjun Li
- Department of Urological Surgical, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Manbo Cai
- Department of Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
10
|
Jang Y, Kang S, Han HH, Kim BG, Cho NH. CD24 induced cellular quiescence-like state and chemoresistance in ovarian cancer cells via miR-130a/301a-dependent CDK19 downregulation. Cell Death Discov 2024; 10:81. [PMID: 38360723 PMCID: PMC10869724 DOI: 10.1038/s41420-024-01858-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024] Open
Abstract
Cancer stem-like cell (CSC) is thought to be responsible for ovarian cancer recurrence. CD24 serves as a CSC marker for ovarian cancer and regulates the expression of miRNAs, which are regulators of CSC phenotypes. Therefore, CD24-regulated miRNAs may play roles in manifesting the CSC phenotypes in ovarian cancer cells. Our miRNA transcriptome analysis showed that 94 miRNAs were up or down-regulated in a CD24-high clone from an ovarian cancer patient compared to a CD24-low one. The CD24-dependent expression trend of the top 7 upregulated miRNAs (miR-199a-3p, 34c, 199a-5p, 130a, 301a, 214, 34b*) was confirmed in other 8 clones (4 clones for each group). CD24 overexpression upregulated the expression of miR-199a-3p, 34c, 199a-5p, 130a, 301a, 214, and 34b* in TOV112D (CD24-low) cells compared to the control, while CD24 knockdown downregulated the expression of miR-199a-3p, 199a-5p, 130a, 301a, and 34b* in OV90 (CD24-high) cells. miR-130a and 301a targeted CDK19, which induced a cellular quiescence-like state (increased G0/G1 phase cell population, decreased cell proliferation, decreased colony formation, and decreased RNA synthesis) and resistance to platinum-based chemotherapeutic agents. CD24 regulated the expression of miR-130a and 301a via STAT4 and YY1 phosphorylation mediated by Src and FAK. miR-130a and 301a were positively correlated in expression with CD24 in ovarian cancer patient tissues and negatively correlated with CDK19. Our results showed that CD24 expression may induce a cellular quiescence-like state and resistance to platinum-based chemotherapeutic agents in ovarian cancer via miR-130a and 301a upregulation. CD24-miR-130a/301a-CDK19 signaling axis could be a prognostic marker for or a potential therapeutic target against ovarian cancer recurrence.
Collapse
Affiliation(s)
- Yeonsue Jang
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Suki Kang
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyun Ho Han
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Urology, Urological Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Baek Gil Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Nam Hoon Cho
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Severance Biomedical Science Institute (SBSI), Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
11
|
Khamidullina AI, Abramenko YE, Bruter AV, Tatarskiy VV. Key Proteins of Replication Stress Response and Cell Cycle Control as Cancer Therapy Targets. Int J Mol Sci 2024; 25:1263. [PMID: 38279263 PMCID: PMC10816012 DOI: 10.3390/ijms25021263] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
Replication stress (RS) is a characteristic state of cancer cells as they tend to exchange precision of replication for fast proliferation and increased genomic instability. To overcome the consequences of improper replication control, malignant cells frequently inactivate parts of their DNA damage response (DDR) pathways (the ATM-CHK2-p53 pathway), while relying on other pathways which help to maintain replication fork stability (ATR-CHK1). This creates a dependency on the remaining DDR pathways, vulnerability to further destabilization of replication and synthetic lethality of DDR inhibitors with common oncogenic alterations such as mutations of TP53, RB1, ATM, amplifications of MYC, CCNE1 and others. The response to RS is normally limited by coordination of cell cycle, transcription and replication. Inhibition of WEE1 and PKMYT1 kinases, which prevent unscheduled mitosis entry, leads to fragility of under-replicated sites. Recent evidence also shows that inhibition of Cyclin-dependent kinases (CDKs), such as CDK4/6, CDK2, CDK8/19 and CDK12/13 can contribute to RS through disruption of DNA repair and replication control. Here, we review the main causes of RS in cancers as well as main therapeutic targets-ATR, CHK1, PARP and their inhibitors.
Collapse
Affiliation(s)
- Alvina I. Khamidullina
- Laboratory of Molecular Oncobiology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia; (A.I.K.); (Y.E.A.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia
| | - Yaroslav E. Abramenko
- Laboratory of Molecular Oncobiology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia; (A.I.K.); (Y.E.A.)
| | - Alexandra V. Bruter
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia
| | - Victor V. Tatarskiy
- Laboratory of Molecular Oncobiology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia; (A.I.K.); (Y.E.A.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia
| |
Collapse
|
12
|
Monavarian M, Page EF, Rajkarnikar R, Kumari A, Macias LQ, Massicano F, Lee NY, Sahoo S, Hempel N, Jolly MK, Ianov L, Worthey E, Singh A, Broude EV, Mythreye K. Development of adaptive anoikis resistance promotes metastasis that can be overcome by CDK8/19 Mediator kinase inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.04.569970. [PMID: 38106208 PMCID: PMC10723298 DOI: 10.1101/2023.12.04.569970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Anoikis resistance or evasion of cell death triggered by cell detachment into suspension is a hallmark of cancer that is concurrent with cell survival and metastasis. The effects of frequent matrix detachment encounters on the development of anoikis resistance in cancer remains poorly defined. Here we show using a panel of ovarian cancer models, that repeated exposure to suspension stress in vitro followed by attached recovery growth leads to the development of anoikis resistance paralleling in vivo development of anoikis resistance in ovarian cancer ascites. This resistance is concurrent with enhanced invasion, chemoresistance and the ability of anoikis adapted cells to metastasize to distant sites. Adapted anoikis resistant cells show a heightened dependency on oxidative phosphorylation and can also evade immune surveillance. We find that such acquired anoikis resistance is not genetic, as acquired resistance persists for a finite duration in the absence of suspension stress. Transcriptional reprogramming is however essential to this process, as acquisition of adaptive anoikis resistance in vitro and in vivo is exquisitely sensitive to inhibition of CDK8/19 Mediator kinase, a pleiotropic regulator of transcriptional reprogramming. Our data demonstrate that growth after recovery from repeated exposure to suspension stress is a direct contributor to metastasis and that inhibition of CDK8/19 Mediator kinase during such adaptation provides a therapeutic opportunity to prevent both local and distant metastasis in cancer.
Collapse
Affiliation(s)
- Mehri Monavarian
- Division of Molecular Cellular Pathology, Department of Pathology, O’Neal Comprehensive Cancer Center, University of Alabama, Heersink School of Medicine, Birmingham, AL, USA
| | - Emily Faith Page
- Division of Molecular Cellular Pathology, Department of Pathology, O’Neal Comprehensive Cancer Center, University of Alabama, Heersink School of Medicine, Birmingham, AL, USA
| | - Resha Rajkarnikar
- Division of Molecular Cellular Pathology, Department of Pathology, O’Neal Comprehensive Cancer Center, University of Alabama, Heersink School of Medicine, Birmingham, AL, USA
| | - Asha Kumari
- Division of Molecular Cellular Pathology, Department of Pathology, O’Neal Comprehensive Cancer Center, University of Alabama, Heersink School of Medicine, Birmingham, AL, USA
| | - Liz Quintero Macias
- Division of Molecular Cellular Pathology, Department of Pathology, O’Neal Comprehensive Cancer Center, University of Alabama, Heersink School of Medicine, Birmingham, AL, USA
| | - Felipe Massicano
- UAB Biological Data Science Core, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nam Y Lee
- Division of Pharmacology, Chemistry and Biochemistry, College of Medicine, University of Arizona, Tucson, AZ, 85721, USA
| | - Sarthak Sahoo
- Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, India
| | - Nadine Hempel
- Department of Medicine, Division of Hematology Oncology, University of Pittsburgh School of Medicine Pittsburgh PA 15213
| | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, India
| | - Lara Ianov
- UAB Biological Data Science Core, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Elizabeth Worthey
- UAB Biological Data Science Core, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering, University of Delaware, Newark, DE 19716, USA
| | - Eugenia V Broude
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Karthikeyan Mythreye
- Division of Molecular Cellular Pathology, Department of Pathology, O’Neal Comprehensive Cancer Center, University of Alabama, Heersink School of Medicine, Birmingham, AL, USA
| |
Collapse
|
13
|
Pluta AJ, Studniarek C, Murphy S, Norbury CJ. Cyclin-dependent kinases: Masters of the eukaryotic universe. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 15:e1816. [PMID: 37718413 PMCID: PMC10909489 DOI: 10.1002/wrna.1816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/21/2023] [Accepted: 08/03/2023] [Indexed: 09/19/2023]
Abstract
A family of structurally related cyclin-dependent protein kinases (CDKs) drives many aspects of eukaryotic cell function. Much of the literature in this area has considered individual members of this family to act primarily either as regulators of the cell cycle, the context in which CDKs were first discovered, or as regulators of transcription. Until recently, CDK7 was the only clear example of a CDK that functions in both processes. However, new data points to several "cell-cycle" CDKs having important roles in transcription and some "transcriptional" CDKs having cell cycle-related targets. For example, novel functions in transcription have been demonstrated for the archetypal cell cycle regulator CDK1. The increasing evidence of the overlap between these two CDK types suggests that they might play a critical role in coordinating the two processes. Here we review the canonical functions of cell-cycle and transcriptional CDKs, and provide an update on how these kinases collaborate to perform important cellular functions. We also provide a brief overview of how dysregulation of CDKs contributes to carcinogenesis, and possible treatment avenues. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Processing > 3' End Processing RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
| | | | - Shona Murphy
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| | - Chris J. Norbury
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| |
Collapse
|
14
|
Chen M, Li J, Zhang L, Wang L, Cheng C, Ji H, Altilia S, Ding X, Cai G, Altomare D, Shtutman M, Byrum SD, Mackintosh SG, Feoktistov A, Soshnikova N, Mogila VA, Tatarskiy V, Erokhin M, Chetverina D, Prawira A, Ni Y, Urban S, McInnes C, Broude EV, Roninson IB. CDK8 and CDK19: positive regulators of signal-induced transcription and negative regulators of Mediator complex proteins. Nucleic Acids Res 2023; 51:7288-7313. [PMID: 37378433 PMCID: PMC10415139 DOI: 10.1093/nar/gkad538] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
We have conducted a detailed transcriptomic, proteomic and phosphoproteomic analysis of CDK8 and its paralog CDK19, alternative enzymatic components of the kinase module associated with transcriptional Mediator complex and implicated in development and diseases. This analysis was performed using genetic modifications of CDK8 and CDK19, selective CDK8/19 small molecule kinase inhibitors and a potent CDK8/19 PROTAC degrader. CDK8/19 inhibition in cells exposed to serum or to agonists of NFκB or protein kinase C (PKC) reduced the induction of signal-responsive genes, indicating a pleiotropic role of Mediator kinases in signal-induced transcriptional reprogramming. CDK8/19 inhibition under basal conditions initially downregulated a small group of genes, most of which were inducible by serum or PKC stimulation. Prolonged CDK8/19 inhibition or mutagenesis upregulated a larger gene set, along with a post-transcriptional increase in the proteins comprising the core Mediator complex and its kinase module. Regulation of both RNA and protein expression required CDK8/19 kinase activities but both enzymes protected their binding partner cyclin C from proteolytic degradation in a kinase-independent manner. Analysis of isogenic cell populations expressing CDK8, CDK19 or their kinase-inactive mutants revealed that CDK8 and CDK19 have the same qualitative effects on protein phosphorylation and gene expression at the RNA and protein levels, whereas differential effects of CDK8 versus CDK19 knockouts were attributable to quantitative differences in their expression and activity rather than different functions.
Collapse
Affiliation(s)
- Mengqian Chen
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
- Senex Biotechnology, Inc. Columbia, SC 29208, USA
| | - Jing Li
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Li Zhang
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Lili Wang
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Chen Cheng
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Hao Ji
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Serena Altilia
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Xiaokai Ding
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Guoshuai Cai
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Diego Altomare
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Michael Shtutman
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Samuel G Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Alexey Feoktistov
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russian Federation
| | - Nataliya Soshnikova
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russian Federation
| | - Vladislav A Mogila
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russian Federation
| | - Victor Tatarskiy
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russian Federation
| | - Maksim Erokhin
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russian Federation
| | - Darya Chetverina
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russian Federation
| | - Angga Prawira
- Department of Infectious Diseases, University Hospital of Heidelberg, Heidelberg, Germany
| | - Yi Ni
- Department of Infectious Diseases, University Hospital of Heidelberg, Heidelberg, Germany
| | - Stephan Urban
- Department of Infectious Diseases, University Hospital of Heidelberg, Heidelberg, Germany
| | - Campbell McInnes
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Eugenia V Broude
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Igor B Roninson
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
15
|
Discovery of a novel oral type Ⅰ CDK8 inhibitor against acute myeloid leukemia. Eur J Med Chem 2023; 251:115214. [PMID: 36889252 DOI: 10.1016/j.ejmech.2023.115214] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 03/08/2023]
Abstract
CDK8 plays a key role in acute myeloid leukemia, colorectal cancer and other cancers. Here, a total of 54 compounds were designed and synthesized. Among them, the most potent one compound 43 (3-(1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide), a novel CDK8 Ⅰ inhibitor, showed strong inhibitory activity against CDK8 (IC50 = 51.9 nM), good kinase selectivity, good anti AML cell proliferation activity (molm-13 GC50 = 1.57 ± 0.59 μM) and low toxicity in vivo (acute toxicity: 2000 mg/kg). Further mechanistic studies revealed that this compound could target CDK8 and then phosphorylate STAT-1 and STAT-5 thereby inhibiting of AML cell proliferation. In addition, compound 43 showed relatively good bioavailability (F = 28.00%) and could inhibit the growth of AML tumors in a dose-dependent manner in vivo. This study facilitates the further development of more potent CDK8 inhibitors for the treatment of the AML.
Collapse
|
16
|
Prieto S, Dubra G, Camasses A, Aznar AB, Begon‐Pescia C, Simboeck E, Pirot N, Gerbe F, Angevin L, Jay P, Krasinska L, Fisher D. CDK8 and CDK19 act redundantly to control the CFTR pathway in the intestinal epithelium. EMBO Rep 2023; 24:e54261. [PMID: 36545778 PMCID: PMC10549226 DOI: 10.15252/embr.202154261] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
CDK8 and CDK19 form a conserved cyclin-dependent kinase subfamily that interacts with the essential transcription complex, Mediator, and also phosphorylates the C-terminal domain of RNA polymerase II. Cells lacking either CDK8 or CDK19 are viable and have limited transcriptional alterations, but whether the two kinases redundantly control cell proliferation and differentiation is unknown. Here, we find in mice that CDK8 is dispensable for regulation of gene expression, normal intestinal homeostasis, and efficient tumourigenesis, and is largely redundant with CDK19 in the control of gene expression. Their combined deletion in intestinal organoids reduces long-term proliferative capacity but is not lethal and allows differentiation. However, double-mutant organoids show mucus accumulation and increased secretion by goblet cells, as well as downregulation of expression of the cystic fibrosis transmembrane conductance regulator (CFTR) and functionality of the CFTR pathway. Pharmacological inhibition of CDK8/19 kinase activity in organoids and in mice recapitulates several of these phenotypes. Thus, the Mediator kinases are not essential for cell proliferation and differentiation in an adult tissue, but they cooperate to regulate specific transcriptional programmes.
Collapse
Affiliation(s)
- Susana Prieto
- IGMMUniversity of Montpellier, CNRS, InsermMontpellierFrance
- Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le CancerParisFrance
| | - Geronimo Dubra
- IGMMUniversity of Montpellier, CNRS, InsermMontpellierFrance
- Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le CancerParisFrance
| | - Alain Camasses
- IGMMUniversity of Montpellier, CNRS, InsermMontpellierFrance
- Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le CancerParisFrance
| | - Ana Bella Aznar
- IGMMUniversity of Montpellier, CNRS, InsermMontpellierFrance
- Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le CancerParisFrance
| | - Christina Begon‐Pescia
- IGMMUniversity of Montpellier, CNRS, InsermMontpellierFrance
- Present address:
LPHIUniversity of MontpellierMontpellierFrance
| | - Elisabeth Simboeck
- IGMMUniversity of Montpellier, CNRS, InsermMontpellierFrance
- Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le CancerParisFrance
- Present address:
UAS Technikum WienViennaAustria
| | - Nelly Pirot
- IRCM, University of Montpellier, ICM, INSERMMontpellierFrance
- BioCampus, RHEMUniversity of Montpellier, CNRS, INSERMMontpellierFrance
| | - François Gerbe
- Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le CancerParisFrance
- IGFUniversity of Montpellier, CNRS, InsermMontpellierFrance
| | - Lucie Angevin
- IGMMUniversity of Montpellier, CNRS, InsermMontpellierFrance
- Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le CancerParisFrance
| | - Philippe Jay
- Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le CancerParisFrance
- IGFUniversity of Montpellier, CNRS, InsermMontpellierFrance
| | - Liliana Krasinska
- IGMMUniversity of Montpellier, CNRS, InsermMontpellierFrance
- Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le CancerParisFrance
| | - Daniel Fisher
- IGMMUniversity of Montpellier, CNRS, InsermMontpellierFrance
- Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le CancerParisFrance
| |
Collapse
|
17
|
Zhang XX, Xiao Y, Yan YY, Wang YM, Jiang H, Wu L, Shi JB, Liu XH. Discovery of the Novel 1 H-Pyrrolo[2,3- b]pyridine Derivative as a Potent Type II CDK8 Inhibitor against Colorectal Cancer. J Med Chem 2022; 65:12095-12123. [PMID: 36068975 DOI: 10.1021/acs.jmedchem.2c00820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Few targeted drugs were approved for treatment of colorectal cancer (CRC). Cyclin-dependent kinase 8 played a vital role in regulating transcription and was a key colorectal oncogene associated to colorectal cancer. Here, through de novo drug design and in depth structure-activity relationship analysis, title compound 22, (3-(3-(1H-pyrrolo[2,3-b]pyridin-5-yl)phenyl)-N-(4-methyl-3-(trifluoromethyl)phenyl)propenamide), was discovered as a potent type II CDK8 inhibitor, which exhibited potent kinase activity with an IC50 value of 48.6 nM and could significantly inhibit tumor growth in xenografts of CRC in vivo. Further mechanism studies indicated that it could target CDK8 to indirectly inhibit β-catenin activity, which caused downregulation of the WNT/β-catenin signal and inducing cell cycle arrest in G2/M and S phases. More importantly, the title compound exhibited low toxicity with good bioavailability (F = 39.8%). These results could provide the reference for design of new type II CDK8 inhibitors against colorectal cancer.
Collapse
Affiliation(s)
- Xing Xing Zhang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Yun Xiao
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Yao Yao Yan
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Yu Meng Wang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Han Jiang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Lei Wu
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Jing-Bo Shi
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Xin Hua Liu
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| |
Collapse
|
18
|
Transcription associated cyclin-dependent kinases as therapeutic targets for prostate cancer. Oncogene 2022; 41:3303-3315. [PMID: 35568739 PMCID: PMC9187515 DOI: 10.1038/s41388-022-02347-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/21/2022] [Accepted: 05/04/2022] [Indexed: 11/08/2022]
Abstract
Transcriptional deregulation has emerged as a hallmark of several cancer types. In metastatic castration-resistant prostate cancer, a stage in which systemic androgen deprivation therapies fail to show clinical benefit, transcriptional addiction to the androgen receptor is maintained in most patients. This has led to increased efforts to find novel therapies that prevent oncogenic transactivation of the androgen receptor. In this context, a group of druggable protein kinases, known as transcription associated cyclin-dependent kinases (tCDKs), show great potential as therapeutic targets. Despite initial reservations about targeting tCDKs due to their ubiquitous and prerequisite nature, preclinical studies showed that selectively inhibiting such kinases could provide sufficient therapeutic window to exert antitumour effects in the absence of systemic toxicity. As a result, several highly specific inhibitors are currently being trialled in solid tumours, including prostate cancer. This article summarises the roles of tCDKs in regulating gene transcription and highlights rationales for their targeting in prostate cancer. It provides an overview of the most recent developments in this therapeutic area, including the most recent clinical advances, and discusses the utility of tCDK inhibitors in combination with established cancer agents.
Collapse
|
19
|
Offermann A, Joerg V, Becker F, Roesch MC, Kang D, Lemster AL, Tharun L, Behrends J, Merseburger AS, Culig Z, Sailer V, Brägelmann J, Kirfel J, Perner S. Inhibition of Cyclin-Dependent Kinase 8/Cyclin-Dependent Kinase 19 Suppresses Its Pro-Oncogenic Effects in Prostate Cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:813-823. [PMID: 35181333 DOI: 10.1016/j.ajpath.2022.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/26/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Progression of prostate cancer (PCa) is characterized by metastasis and castration resistance after response to androgen deprivation. Therapeutic options are limited, causing high morbidity and lethality. Recent work reported pro-oncogenic implications of the Mediator subunits cyclin-dependent kinase (CDK) 8 and 19 for the progression of PCa. The current study explored the underlying molecular mechanisms of CDK8/CDK19 and tested effects of novel CDK8/CDK19 inhibitors. PC3, DU145, LNCaP, and androgen-independent LNCaP Abl were used for in vitro experiments. Two inhibitors and CDK19 overexpression were used to modify CDK8/CDK19 activity. MTT assay, propidium iodide staining, wound healing assay, Boyden chamber assay, and adhesion assay were used to investigate cell viability, cell cycle, migration, and adhesion, respectively. Peptide-kinase screen using the PamGene platform was conducted to identify phosphorylated targets. Combining CDK8/CDK19 inhibitors with anti-androgens led to synergistic antiproliferative effects and sensitized androgen-independent cells to bicalutamide. CDK8/CDK19 inhibition resulted in reduced migration and increased collagen I-dependent adhesion. Phosphorylation of multiple peptides linked to cancer progression was identified to be dependent on CDK8/CDK19. In summary, this study substantially supports recent findings on CDK8/CDK19 in PCa progression. These findings contribute to a better understanding of underlying pro-oncogenic effects, which is needed to develop CDK8/CDK19 as a therapeutic target in PCa.
Collapse
Affiliation(s)
- Anne Offermann
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Vincent Joerg
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Finn Becker
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Marie C Roesch
- Department of Urology, University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Duan Kang
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Anna-Lena Lemster
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Lars Tharun
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Jochen Behrends
- Core Facility Fluorescence Cytometry, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Axel S Merseburger
- Department of Urology, University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Zoran Culig
- Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Verena Sailer
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Johannes Brägelmann
- Molecular Pathology, Institute of Pathology, University Hospital of Cologne, Cologne, Germany; Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, Cologne, Germany; Mildred Scheel School of Oncology, Cologne, University Hospital Cologne, Medical Faculty, Cologne, Germany
| | - Jutta Kirfel
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Sven Perner
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany; Institute of Pathology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany.
| |
Collapse
|
20
|
Fan L, Lei H, Lin Y, Zhou Z, Li J, Wu A, Shu G, Roger S, Yin G. Hotair promotes the migration and proliferation in ovarian cancer by miR-222-3p/CDK19 axis. Cell Mol Life Sci 2022; 79:254. [PMID: 35451651 PMCID: PMC9033702 DOI: 10.1007/s00018-022-04250-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/02/2022] [Accepted: 03/16/2022] [Indexed: 01/19/2023]
Abstract
Previous studies in our laboratory have reported that miR-222-3p was a tumor-suppressive miRNA in OC. This study aims to further understand the regulatory role of miR-222-3p in OC and provide a new mechanism for its prevention and treatment. We first found that miR-222-3p inhibited the migration and proliferation of OC cells. Then, we observed CDK19 was highly expressed in OC and inversely correlated with miR-222-3p. Besides, we observed that miR-222-3p directly binds to the 3′-UTR of CDK19 and inhibits CDK19 translation, thus inhibiting OC cell migration and proliferation in vitro and repressed tumor growth in vivo. We also observed the inhibitory effect of Hotair on miR-222-3p in OC. In addition, Hotair could promote the proliferation and migration of OC cells in vitro and facilitate the growth and metastasis of tumors in vivo. Moreover, Hotair was positively correlated with CDK19 expression. These results suggest Hotair indirectly up-regulates CDK19 through sponging miR-222-3p, which enhances the malignant behavior of OC. This provides a further understanding of the mechanism of the occurrence and development of OC.
Collapse
Affiliation(s)
- Lili Fan
- Department of Pathology, School of Basic Medical Sciences, Xiangya HospitalCentral South UniversityHunan Province, Changsha, 410000, China
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, Guangdong, People's Republic of China
| | - Han Lei
- Department of Pathology, School of Basic Medical Sciences, Xiangya HospitalCentral South UniversityHunan Province, Changsha, 410000, China
| | - Ying Lin
- Department of Pathology, School of Basic Medical Sciences, Xiangya HospitalCentral South UniversityHunan Province, Changsha, 410000, China
| | - Zhengwei Zhou
- Department of Pathology, School of Basic Medical Sciences, Xiangya HospitalCentral South UniversityHunan Province, Changsha, 410000, China
| | - Juanni Li
- Department of Pathology, School of Basic Medical Sciences, Xiangya HospitalCentral South UniversityHunan Province, Changsha, 410000, China
| | - Anqi Wu
- Department of Pathology, School of Basic Medical Sciences, Xiangya HospitalCentral South UniversityHunan Province, Changsha, 410000, China
| | - Guang Shu
- Department of Pathology, School of Basic Medical Sciences, Xiangya HospitalCentral South UniversityHunan Province, Changsha, 410000, China
| | - Sébastien Roger
- EA4245 Transplantation, Immunologie, Inflammation, University of Tours, 37032, Tours, France
| | - Gang Yin
- Department of Pathology, School of Basic Medical Sciences, Xiangya HospitalCentral South UniversityHunan Province, Changsha, 410000, China.
| |
Collapse
|
21
|
Miller KJ, Asim M. Unravelling the Role of Kinases That Underpin Androgen Signalling in Prostate Cancer. Cells 2022; 11:cells11060952. [PMID: 35326402 PMCID: PMC8946764 DOI: 10.3390/cells11060952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/07/2023] Open
Abstract
The androgen receptor (AR) signalling pathway is the key driver in most prostate cancers (PCa), and is underpinned by several kinases both upstream and downstream of the AR. Many popular therapies for PCa that target the AR directly, however, have been circumvented by AR mutation, such as androgen receptor variants. Some upstream kinases promote AR signalling, including those which phosphorylate the AR and others that are AR-regulated, and androgen regulated kinase that can also form feed-forward activation circuits to promotes AR function. All of these kinases represent potentially druggable targets for PCa. There has generally been a divide in reviews reporting on pathways upstream of the AR and those reporting on AR-regulated genes despite the overlap that constitutes the promotion of AR signalling and PCa progression. In this review, we aim to elucidate which kinases—both upstream and AR-regulated—may be therapeutic targets and require future investigation and ongoing trials in developing kinase inhibitors for PCa.
Collapse
|
22
|
CDK19 regulates the proliferation of hematopoietic stem cells and acute myeloid leukemia cells by suppressing p53-mediated transcription of p21. Leukemia 2022; 36:956-969. [PMID: 35110726 DOI: 10.1038/s41375-022-01512-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/07/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023]
Abstract
The cell cycle progression of hematopoietic stem cells (HSCs) and acute myeloid leukemia (AML) cells is precisely controlled by multiple regulatory factors. However, the underlying mechanisms are not fully understood. Here, we find that cyclin-dependent kinase 19 (CDK19), not its paralogue CDK8, is relatively enriched in mouse HSCs, and its expression is more significantly increased than CDK8 after proliferative stresses. Furthermore, SenexinB (a CDK8/19 inhibitor) treatment impairs the proliferation and self-renewal ability of HSCs. Moreover, overexpression of CDK19 promotes HSC function better than CDK8 overexpression. Using CDK19 knockout mice, we observe that CDK19-/- HSCs exhibit similar phenotypes to those of cells treated with SenexinB. Interestingly, the p53 signaling pathway is significantly activated in HSCs lacking CDK19 expression. Further investigations show that CDK19 can interact with p53 to inhibit p53-mediated transcription of p21 in HSCs and treatment with a specific p53 inhibitor (PFTβ) partially rescues the defects of CDK19-null HSCs. Importantly, SenexinB treatment markedly inhibits the proliferation of AML cells. Collectively, our findings indicate that CDK19 is involved in regulating HSC and AML cell proliferation via the p53-p21 pathway, revealing a new mechanism underlying cell cycle regulation in normal and malignant hematopoietic cells.
Collapse
|
23
|
Knab VM, Gotthardt D, Klein K, Grausenburger R, Heller G, Menzl I, Prinz D, Trifinopoulos J, List J, Fux D, Witalisz-Siepracka A, Sexl V. Triple-negative breast cancer cells rely on kinase-independent functions of CDK8 to evade NK-cell-mediated tumor surveillance. Cell Death Dis 2021; 12:991. [PMID: 34689158 PMCID: PMC8542046 DOI: 10.1038/s41419-021-04279-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/24/2021] [Accepted: 10/04/2021] [Indexed: 12/20/2022]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive malignant disease that is responsible for approximately 15% of breast cancers. The standard of care relies on surgery and chemotherapy but the prognosis is poor and there is an urgent need for new therapeutic strategies. Recent in silico studies have revealed an inverse correlation between recurrence-free survival and the level of cyclin-dependent kinase 8 (CDK8) in breast cancer patients. CDK8 is known to have a role in natural killer (NK) cell cytotoxicity, but its function in TNBC progression and immune cell recognition or escape has not been investigated. We have used a murine model of orthotopic breast cancer to study the tumor-intrinsic role of CDK8 in TNBC. Knockdown of CDK8 in TNBC cells impairs tumor regrowth upon surgical removal and prevents metastasis. In the absence of CDK8, the epithelial-to-mesenchymal transition (EMT) is impaired and immune-mediated tumor-cell clearance is facilitated. CDK8 drives EMT in TNBC cells in a kinase-independent manner. In vivo experiments have confirmed that CDK8 is a crucial regulator of NK-cell-mediated immune evasion in TNBC. The studies also show that CDK8 is involved in regulating the checkpoint inhibitor programmed death-ligand 1 (PD-L1). The CDK8-PD-L1 axis is found in mouse and human TNBC cells, underlining the importance of CDK8-driven immune cell evasion in these highly aggressive breast cancer cells. Our data link CDK8 to PD-L1 expression and provide a rationale for investigating the possibility of CDK8-directed therapy for TNBC.
Collapse
Affiliation(s)
- Vanessa Maria Knab
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Dagmar Gotthardt
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Klara Klein
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Reinhard Grausenburger
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Gerwin Heller
- Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Vienna, Austria
| | - Ingeborg Menzl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Daniela Prinz
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Jana Trifinopoulos
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Julia List
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Daniela Fux
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | | | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria.
| |
Collapse
|
24
|
Offermann A, Joerg V, Hupe MC, Becker F, Müller M, Brägelmann J, Kirfel J, Merseburger AS, Sailer V, Tharun L, Perner S. CDK19 as a diagnostic marker for high-grade prostatic intraepithelial neoplasia. Hum Pathol 2021; 117:60-67. [PMID: 34314763 DOI: 10.1016/j.humpath.2021.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/28/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022]
Abstract
High-grade prostatic intraepithelial neoplasia (HGPIN) is a facultative precursor lesion of prostate cancer (PCa). Multifocal HGPIN in needle biopsies in the absence of PCa indicates a higher risk of cancer detection in subsequent biopsies. Therefore, a reliable diagnosis of HGPIN is of high clinical relevance guiding the management of patients with cancer-negative biopsies. Detection of HGPIN is merely based on morphological features while biomarkers aiding in the diagnosis of HGPIN and its differentiation from benign glands and other glandular lesions are lacking yet. Here, we investigated the expression of CDK19 by immunohistochemistry on prostate needle biopsies of 140 patients who were all diagnosed with PCa using whole tissue sections, and compared CDK19 levels between HGPIN, PCa and adjacent benign glands. In addition, CDK19 was compared to AMACR expression in a subset of intraductal carcinomas (IDC) on radical prostatectomy (RP) specimens. HGPIN was present in 65.7% of biopsies and in 88% associated to adjacent PCa. CDK19 overexpression defined as moderate to high CDK19 expression visible at low magnification was found in 82.6% of HGPIN. In contrast, 89.3% of benign glands were CDK19-negative or demonstrated only low CDK19 expression highlighting a high sensitivity and specificity to accurately detect HGPIN based on CDK19 expression levels. CDK19 was overexpressed in 59% of PCa but did not correlate significantly with the expression of intermingled HGPIN. On RP, CDK19 and AMACR showed no significant difference in the detection rate of IDC. In summary, assessment of CDK19 facilitates accurate and simplified diagnosis of HGPIN with high sensitivity and specificity and aides the differentiation to non-neoplastic glandular alterations. Considering the high clinical significance of diagnosis HGPIN that still has a limited reproducibility among pathologists we suggest CDK19 as diagnostic biomarker for HGPIN.
Collapse
Affiliation(s)
- Anne Offermann
- Institute of Pathology, University Hospital Schleswig-Holstein, Luebeck, Germany
| | - Vincent Joerg
- Institute of Pathology, University Hospital Schleswig-Holstein, Luebeck, Germany
| | - Marie C Hupe
- Department of Urology, University Hospital Schleswig-Holstein, Luebeck, Germany
| | - Finn Becker
- Institute of Pathology, University Hospital Schleswig-Holstein, Luebeck, Germany
| | - Marten Müller
- Department of Urology, University Hospital Schleswig-Holstein, Luebeck, Germany
| | - Johannes Brägelmann
- Molecular Pathology, Institute of Pathology, University Hospital of Cologne, Cologne, Germany; Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, Cologne, Germany; Mildred Scheel School of Oncology, Cologne, University Hospital Cologne, Medical Faculty, Cologne, Germany
| | - Jutta Kirfel
- Institute of Pathology, University Hospital Schleswig-Holstein, Luebeck, Germany
| | - Axel S Merseburger
- Department of Urology, University Hospital Schleswig-Holstein, Luebeck, Germany
| | - Verena Sailer
- Institute of Pathology, University Hospital Schleswig-Holstein, Luebeck, Germany
| | - Lars Tharun
- Institute of Pathology, University Hospital Schleswig-Holstein, Luebeck, Germany
| | - Sven Perner
- Institute of Pathology, University Hospital Schleswig-Holstein, Luebeck, Germany; Institute of Pathology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany.
| |
Collapse
|
25
|
Elkady MA, Doghish AS, Elshafei A, Elshafey MM. MicroRNA-567 inhibits cell proliferation and induces cell apoptosis in A549 NSCLC cells by regulating cyclin-dependent kinase 8. Saudi J Biol Sci 2021; 28:2581-2590. [PMID: 33911969 PMCID: PMC8071907 DOI: 10.1016/j.sjbs.2021.02.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 12/15/2022] Open
Abstract
MicroRNA-567 (miR-567) plays a decisive role in cancers whereas its role in non-small cell lung cancer (NSCLC) is still unexplored. This study was therefore planned to explore the regulatory function of miR-567 in A549 NSCLC cells and investigate its possible molecular mechanism that may help in NSCLC treatment. In the current study, miR-567 expression was examined by quantitative real time-polymerase chain reaction (qRT-PCR) in different NSCLC cell lines in addition to normal cell line. A549 NSCLC cells were transfected by miR-567 mimic, miR-567 inhibitor, and negative control siRNA. Cell proliferation was evaluated by MTT and 5-bromo-2'deoxyuridine assays. Cell cycle distribution and apoptosis were studied by flow cytometry. Bioinformatics analysis programs were used to expect the putative target of miR-567. The expression of cyclin-dependent kinase 8 (CDK8) gene at mRNA and protein levels were evaluated by using qRT-PCR and western blotting. Our results found that miR-567 expressions decreased in all the studied NSCLC cells as compared to the normal cell line. A549 cell proliferation was suppressed by miR-567 upregulation while cell apoptosis was promoted. Also, miR-567 upregulation induced cell cycle arrest at sub-G1 and S phases. CDK8 was expected as a target gene of miR-567. MiR-567 upregulation decreased CDK8 mRNA and protein expression while the downregulation of miR-567 increased CDK8 gene expression. These findings revealed that miR-567 may be a tumor suppressor in A549 NSCLC cells through regulating CDK8 gene expression and may serve as a novel therapeutic target for NSCLC treatment.
Collapse
Key Words
- 16HBE, Normal human bronchial epithelial cell line
- ATCC, American type culture collection
- Apoptosis
- BrdU, 5-bromo- 2′-deoxyuridine
- CDK8
- CDK8, Cyclin-dependent kinase 8
- Cell cycle
- Cell proliferation
- DAPI, 4′, 6-Diamidino-2 Phenylindole, Dihydrochloride
- DMEM, Dulbecco’s modified Eagle’s medium
- DMSO, Dimethyl sulfoxide
- FBS, fetal bovine serum
- FITC, Fluorescein isothiocyanate
- LC, Lung cancer
- MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide
- MiR or MiRNA, MicroRNA
- MiR-567
- NSCLC
- NSCLC, Non-small cell lung cancer
- PBS, phosphate buffer saline
- PI, Propidium iodide
- PVDF, Poly-vinylidene fluoride
- RIPA, Radio immunoprecipitation assay
- cDNA, Complementary DNA
- h, Hour
- mRNA, Messenger RNA
- qRT-PCR, Quantitative real time-polymerase chain reaction
Collapse
Affiliation(s)
- Mohamed A. Elkady
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11651, Egypt
| | - Ahmed S. Doghish
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11651, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed Elshafei
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11651, Egypt
| | - Mostafa M. Elshafey
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11651, Egypt
| |
Collapse
|
26
|
Rajagopal P, Jayandharan GR, Krishnan UM. Evaluation of the Anticancer Activity of pH-Sensitive Polyketal Nanoparticles for Acute Myeloid Leukemia. Mol Pharm 2021; 18:2015-2031. [PMID: 33780253 DOI: 10.1021/acs.molpharmaceut.0c01243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Polyketals are a class of acid-responsive polymers that have been relatively less explored for drug delivery applications compared to polyesters. The degradation of these polymers is accelerated in an acidic medium and does not result in acidic byproducts. Their biocompatibility depends on the diol used for the synthesis. The present work aims to synthesize, characterize, and fabricate nanospheres of an aliphatic polyketal for delivery of the nucleotide analogue cytarabine toward the treatment of acute myeloid leukemia (AML). The internalization mechanism of the nanospheres was probed, and its implication on the nuclear localization and escape from the endo-lysosomal compartments were studied. The drug-loaded polyketal nanoparticles reduced the cell viability to a greater extent compared with the free drug. The effect of the drug-loaded polyketal nanoparticles on the differential gene expression of leukemic cells was investigated for the first time to understand their therapeutic implications. It was found that treatment with drug-loaded polyketal nanoparticles downregulated AML-specific genes involved in cell proliferation and recurrence compared to the free drug. The protein expression studies were performed for selected genes obtained from gene expression analysis. Biodistribution studies showed that the poly(cyclohexane-1,4-diyl acetone dimethylene ketal) (PCADK) nanoparticles exhibit prolonged circulation time. Overall, our results suggest that polyketal-based delivery of cytarabine represents a more effective alternative strategy for AML therapy.
Collapse
Affiliation(s)
- Pratheppa Rajagopal
- Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University Thanjavur 613401, India.,School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, India
| | - Giridhara R Jayandharan
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India.,The Mehta Family Centre for Engineering In Medicine, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University Thanjavur 613401, India.,School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, India.,School of Arts, Science & Humanities, SASTRA Deemed University, Thanjavur 613401, India
| |
Collapse
|
27
|
Discovery of a potent, highly selective, and orally bioavailable inhibitor of CDK8 through a structure-based optimisation. Eur J Med Chem 2021; 218:113391. [PMID: 33823391 DOI: 10.1016/j.ejmech.2021.113391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/24/2022]
Abstract
CDK8 is deregulated in multiple types of human cancer and is viewed as a therapeutic target for the treatment of the disease. Accordingly, the search for small-molecule inhibitors of CDK8 is being intensified. Capitalising on our initial discovery of AU1-100, a potent CDK8 inhibitor yet with a limited degree of kinase selectivity, a structure-based optimisation was carried out, with a series of new multi-substituted pyridines rationally designed, chemically prepared and biologically evaluated. Such endeavour has culminated in the identification of 42, a more potent CDK8 inhibitor with superior kinomic selectivity and oral bioavailability. The mechanism underlying the anti-proliferative effect of 42 on MV4-11 cells was studied, revealing that the compound arrested the G1 cell cycle and triggered apoptosis. The low risk of hepato- and cardio-toxicity of 42 was estimated. These findings merit further investigation of 42 as a targeted cancer therapeutic.
Collapse
|
28
|
Yu M, Teo T, Yang Y, Li M, Long Y, Philip S, Noll B, Heinemann GK, Diab S, Eldi P, Mekonnen L, Anshabo AT, Rahaman MH, Milne R, Hayball JD, Wang S. Potent and orally bioavailable CDK8 inhibitors: Design, synthesis, structure-activity relationship analysis and biological evaluation. Eur J Med Chem 2021; 214:113248. [PMID: 33571827 DOI: 10.1016/j.ejmech.2021.113248] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/23/2021] [Accepted: 01/24/2021] [Indexed: 12/23/2022]
Abstract
CDK8 regulates transcription either by phosphorylation of transcription factors or, as part of a four-subunit kinase module, through a reversible association of the kinase module with the Mediator complex, a highly conserved transcriptional coactivator. Deregulation of CDK8 has been found in various types of human cancer, while the role of CDK8 in supressing anti-cancer response of natural killer cells is being understood. Currently, CDK8-targeting cancer drugs are highly sought-after. Herein we detail the discovery of a series of novel pyridine-derived CDK8 inhibitors. Medicinal chemistry optimisation gave rise to 38 (AU1-100), a potent CDK8 inhibitor with oral bioavailability. The compound inhibited the proliferation of MV4-11 acute myeloid leukaemia cells with the kinase activity of cellular CDK8 dampened. No systemic toxicology was observed in the mice treated with 38. These results warrant further pre-clinical studies of 38 as an anti-cancer agent.
Collapse
Affiliation(s)
- Mingfeng Yu
- Drug Discovery and Development, Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Theodosia Teo
- Drug Discovery and Development, Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Yuchao Yang
- Drug Discovery and Development, Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Manjun Li
- Drug Discovery and Development, Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Yi Long
- Drug Discovery and Development, Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Stephen Philip
- Drug Discovery and Development, Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Benjamin Noll
- Drug Discovery and Development, Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Gary K Heinemann
- Drug Discovery and Development, Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Sarah Diab
- Drug Discovery and Development, Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Preethi Eldi
- Experimental Therapeutics, Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Laychiluh Mekonnen
- Drug Discovery and Development, Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Abel T Anshabo
- Drug Discovery and Development, Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Muhammed H Rahaman
- Drug Discovery and Development, Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Robert Milne
- Drug Discovery and Development, Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - John D Hayball
- Experimental Therapeutics, Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Shudong Wang
- Drug Discovery and Development, Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia.
| |
Collapse
|
29
|
Wu D, Zhang Z, Chen X, Yan Y, Liu X. Angel or Devil ? - CDK8 as the new drug target. Eur J Med Chem 2020; 213:113043. [PMID: 33257171 DOI: 10.1016/j.ejmech.2020.113043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/19/2022]
Abstract
Cyclin-dependent kinase 8 (CDK8) plays an momentous role in transcription regulation by forming kinase module or transcription factor phosphorylation. A large number of evidences have identified CDK8 as an important factor in cancer occurrence and development. In addition, CDK8 also participates in the regulation of cancer cell stress response to radiotherapy and chemotherapy, assists tumor cell invasion, metastasis, and drug resistance. Therefore, CDK8 is regarded as a promising target for cancer therapy. Most studies in recent years supported the role of CDK8 as a carcinogen, however, under certain conditions, CDK8 exists as a tumor suppressor. The functional diversity of CDK8 and its exceptional role in different types of cancer have aroused great interest from scientists but even more controversy during the discovery of CDK8 inhibitors. In addition, CDK8 appears to be an effective target for inflammation diseases and immune system disorders. Therefore, we summarized the research results of CDK8, involving physiological/pathogenic mechanisms and the development status of compounds targeting CDK8, provide a reference for the feasibility evaluation of CDK8 as a therapeutic target, and guidance for researchers who are involved in this field for the first time.
Collapse
Affiliation(s)
- Dan Wu
- School of Biological Engineering, Hefei Technology College, Hefei, 238000, PR China
| | - Zhaoyan Zhang
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, PR China
| | - Xing Chen
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, PR China
| | - Yaoyao Yan
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, PR China
| | - Xinhua Liu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, PR China.
| |
Collapse
|
30
|
Systemic Toxicity Reported for CDK8/19 Inhibitors CCT251921 and MSC2530818 Is Not Due to Target Inhibition. Cells 2019; 8:cells8111413. [PMID: 31717492 PMCID: PMC6912361 DOI: 10.3390/cells8111413] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 12/21/2022] Open
Abstract
CDK8/19 kinases, which mediate transcriptional reprogramming, have become an active target for cancer drug discovery. Several small-molecule CDK8/19 inhibitors showed in vivo efficacy and two have entered clinical trials, with no significant toxicities reported. However, Clarke et al. (eLife 2016; 5; e20722) found severe systemic toxicity associated with two potent CDK8/19 inhibitors, Cmpd3 (CCT251921) and Cmpd4 (MSC2530818), and suggested that their toxicity was due to on-target effects. Here, we compared five CDK8/19 inhibitors: Cmpd3, Cmpd4, Senexin B, 16-didehydro-cortistatin A (dCA) and 15w, in different assays. Only Cmpd4 showed striking toxicity in developing zebrafish. In cell-based assays for CDK8 and CDK19 inhibition, Cmpd3, Cmpd4, dCA and 15w showed similar low-nanomolar potency and efficacy against CDK8 and CDK19, while Senexin B was less potent. Only dCA produced sustained inhibition of CDK8/19-dependent gene expression. While toxicity of different compounds did not correlate with their effects on CDK8 and CDK19, kinome profiling identified several off-target kinases for both Cmpd3 and Cmpd4, which could be responsible for their toxicity. Off-target activities could have been achieved in the study of Clarke et al. due to high in vivo doses of Cmpd3 and Cmpd4, chosen for the ability to inhibit STAT1 S727 phosphorylation in tumor xenografts. We show here that STAT1 S727 phosphorylation is induced by various cytokines and stress stimuli in CDK8/19-independent manner, indicating that it is not a reliable pharmacodynamic marker of CDK8/19 activity. These results illustrate the need for careful off-target analysis and dose selection in the development of CDK8/19 inhibitors.
Collapse
|
31
|
Menzl I, Zhang T, Berger-Becvar A, Grausenburger R, Heller G, Prchal-Murphy M, Edlinger L, Knab VM, Uras IZ, Grundschober E, Bauer K, Roth M, Skucha A, Liu Y, Hatcher JM, Liang Y, Kwiatkowski NP, Fux D, Hoelbl-Kovacic A, Kubicek S, Melo JV, Valent P, Weichhart T, Grebien F, Zuber J, Gray NS, Sexl V. A kinase-independent role for CDK8 in BCR-ABL1 + leukemia. Nat Commun 2019; 10:4741. [PMID: 31628323 PMCID: PMC6802219 DOI: 10.1038/s41467-019-12656-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 09/20/2019] [Indexed: 12/19/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) are frequently deregulated in cancer and represent promising drug targets. We provide evidence that CDK8 has a key role in B-ALL. Loss of CDK8 in leukemia mouse models significantly enhances disease latency and prevents disease maintenance. Loss of CDK8 is associated with pronounced transcriptional changes, whereas inhibiting CDK8 kinase activity has minimal effects. Gene set enrichment analysis suggests that the mTOR signaling pathway is deregulated in CDK8-deficient cells and, accordingly, these cells are highly sensitive to mTOR inhibitors. Analysis of large cohorts of human ALL and AML patients reveals a significant correlation between the level of CDK8 and of mTOR pathway members. We have synthesized a small molecule YKL-06-101 that combines mTOR inhibition and degradation of CDK8, and induces cell death in human leukemic cells. We propose that simultaneous CDK8 degradation and mTOR inhibition might represent a potential therapeutic strategy for the treatment of ALL patients. Cyclin-dependent kinases are deregulated in blood cancers. Here, the authors show that CDK8, independent of its kinase activity, regulates mTOR signalling for the maintenance of BCR-ABL1+ leukemia, and that the dual inhibition of CDK8 and mTOR signalling induces apoptosis in these cells.
Collapse
Affiliation(s)
- Ingeborg Menzl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Tinghu Zhang
- Department of Cancer Biology, Department of Biological Chemistry and Molecular Pharmacology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Angelika Berger-Becvar
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Reinhard Grausenburger
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Gerwin Heller
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria.,Department of Medicine I, Medical University of Vienna, Vienna, Austria.,Comprehensive Cancer Center, Vienna, Austria
| | - Michaela Prchal-Murphy
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Leo Edlinger
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Vanessa M Knab
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Iris Z Uras
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Eva Grundschober
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Karin Bauer
- Division of Hematology and Hemostaseology, Department of Internal Medicine I, Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Mareike Roth
- Research Institute of Molecular Pathology, Campus-Vienna-Biocenter 1, Vienna, Austria
| | - Anna Skucha
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria.,Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Yao Liu
- Department of Cancer Biology, Department of Biological Chemistry and Molecular Pharmacology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - John M Hatcher
- Department of Cancer Biology, Department of Biological Chemistry and Molecular Pharmacology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Yanke Liang
- Department of Cancer Biology, Department of Biological Chemistry and Molecular Pharmacology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Nicholas P Kwiatkowski
- Department of Cancer Biology, Department of Biological Chemistry and Molecular Pharmacology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniela Fux
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Andrea Hoelbl-Kovacic
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Stefan Kubicek
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Junia V Melo
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia.,Department of Hematology, Imperial College London, Kensington, London, SW7 2AZ, UK
| | - Peter Valent
- Division of Hematology and Hemostaseology, Department of Internal Medicine I, Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Thomas Weichhart
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Florian Grebien
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria.,Institute for Medical Biochemistry, University of Veterinary Medicine, Vienna, Austria
| | - Johannes Zuber
- Research Institute of Molecular Pathology, Campus-Vienna-Biocenter 1, Vienna, Austria
| | - Nathanael S Gray
- Department of Cancer Biology, Department of Biological Chemistry and Molecular Pharmacology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria.
| |
Collapse
|
32
|
Xing S, Xu Q, Fan X, Wu S, Tian F. Downregulation of miR‑138‑5p promotes non‑small cell lung cancer progression by regulating CDK8. Mol Med Rep 2019; 20:5272-5278. [PMID: 31638208 DOI: 10.3892/mmr.2019.10741] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 07/08/2019] [Indexed: 11/05/2022] Open
Abstract
Dysregulation of microRNAs (miRNAs) is frequently observed during cancer development. Aberrant expression of miRNA‑138‑5p (miR‑138‑5p) has been found in many types of cancer. However, the role and the mechanisms underlying miR‑138‑5p function in non‑small cell lung cancer (NSCLC) progression remain unknown. In the present study, miR‑138‑5p expression was identified to be decreased in tumor tissues compared with matched normal tissues from patients with NSCLC. In addition, low expression of miR‑138‑5p was detected in three NSCLC cell lines compared with a normal lung epithelium cell line. Moreover, CDK8 mRNA expression was increased in tumor tissues compared with matched normal tissues from patients with NSCLC, and an inverse association between miR‑138‑5p and CDK8 was observed. Furthermore, CDK8 was predicted to be a target of miR‑138‑5p. Dual luciferase assay confirmed that miR‑138‑5p could directly bind to the 3' untranslated region of CDK8 mRNA. In A549 cells, overexpression of miR‑138‑5p inhibited cell growth and significantly increased cell apoptosis rates and the number of cells in G0/G1 phase. Moreover, forced overexpression of CDK8 partially reversed miR‑138‑5p mimic‑induced cell growth arrest and alteration of cell apoptosis and cell cycle. In conclusion, the present results suggested that miR‑138‑5p may be a tumor suppressor in NSCLC cells and a promising therapeutic target for treating patients with NSCLC.
Collapse
Affiliation(s)
- Shigang Xing
- Department of Respiratory Medicine, The Central Hospital of Linyi, Linyi, Shandong 276400, P.R. China
| | - Qinghua Xu
- Department of Respiratory Medicine, The Central Hospital of Linyi, Linyi, Shandong 276400, P.R. China
| | - Xinlei Fan
- Department of Internal Medicine, Shandong Medical College, Linyi, Shandong 276000, P.R. China
| | - Shanxia Wu
- Department of Vasculocardiology, The Third People's Hospital of Linyi, Linyi, Shandong 276000, P.R. China
| | - Feng Tian
- Department of Respiratory Medicine, Linyi People's Hospital, Linyi, Shandong 276000, P.R. China
| |
Collapse
|
33
|
Identifying Cancers Impacted by CDK8/19. Cells 2019; 8:cells8080821. [PMID: 31382571 PMCID: PMC6721656 DOI: 10.3390/cells8080821] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/19/2019] [Accepted: 07/29/2019] [Indexed: 02/07/2023] Open
Abstract
CDK8 and CDK19 Mediator kinases are transcriptional co-regulators implicated in several types of cancer. Small-molecule CDK8/19 inhibitors have recently entered or are entering clinical trials, starting with breast cancer and acute myeloid leukemia (AML). To identify other cancers where these novel drugs may provide benefit, we queried genomic and transcriptomic databases for potential impact of CDK8, CDK19, or their binding partner CCNC. sgRNA analysis of a panel of tumor cell lines showed that most tumor types represented in the panel, except for some central nervous system tumors, were not dependent on these genes. In contrast, analysis of clinical samples for alterations in these genes revealed a high frequency of gene amplification in two highly aggressive subtypes of prostate cancer and in some cancers of the GI tract, breast, bladder, and sarcomas. Analysis of survival correlations identified a group of cancers where CDK8 expression correlated with shorter survival (notably breast, prostate, cervical cancers, and esophageal adenocarcinoma). In some cancers (AML, melanoma, ovarian, and others), such correlations were limited to samples with a below-median tumor mutation burden. These results suggest that Mediator kinases are especially important in cancers that are driven primarily by transcriptional rather than mutational changes and warrant an investigation of their role in additional cancer types.
Collapse
|
34
|
Becker F, Joerg V, Hupe MC, Roth D, Krupar R, Lubczyk V, Kuefer R, Sailer V, Duensing S, Kirfel J, Merseburger AS, Brägelmann J, Perner S, Offermann A. Increased mediator complex subunit CDK19 expression associates with aggressive prostate cancer. Int J Cancer 2019; 146:577-588. [PMID: 31271443 DOI: 10.1002/ijc.32551] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/07/2019] [Accepted: 06/24/2019] [Indexed: 12/23/2022]
Abstract
The Mediator complex is a transcriptional regulator interacting with transcription factors and RNA-polymerase-II. Recently, we identified its subunit CDK19 to be specifically expressed in prostate cancer (PCa) and to be functionally implicated in PCa aggressiveness. Aim of our study was to comprehensively characterize the protein expression of CDK19 and its paralog CDK8 in PCa. We performed immunohistochemistry (IHC) for CDK19/CDK8 on a large cohort including needle biopsies from 202 patients, 799 primary tumor foci of radical prostatectomy specimens from 415 patients, 120 locally advanced tumor foci obtained by palliative transurethral resection, 140 lymph node metastases, 67 distant metastases and 82 benigns. Primary tumors were stained for the proliferation marker Ki67, androgen receptor (AR) and ERG. For 376 patients, clinic-pathologic data were available. Primary endpoint was disease-recurrence-free survival (DFS). Nuclear CDK19 and CDK8 expression increases during progression showing the highest intensity in metastatic and castration-resistant tumors. High CDK19 expression on primary tumors correlates with DFS independently from Gleason grade and PSA. Five-year-DFS rates of patients with primary tumors expressing no, moderate and high CDK19 are 73.7, 56.9 and 30.4%, respectively. CDK19 correlates with Gleason grade, T-stage, Ki67 proliferation-index, nuclear AR expression and ERG-status. Therapeutic options for metastatic and castration-resistant PCa remain limited. In the current study, we confirmed an important role of the Mediator subunit CDK19 in advanced PCa supporting current developments to target CDK19 and its paralog CDK8. Furthermore, CDK19 protein expression has the potential to predict disease recurrence independently from established biomarkers thus contributing to individual management for PCa patients.
Collapse
Affiliation(s)
- Finn Becker
- Pathology of the University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany.,Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Vincent Joerg
- Pathology of the University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany.,Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Marie C Hupe
- Department of Urology, University Hospital Schleswig-Holstein, Luebeck, Germany
| | - Doris Roth
- Pathology of the University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany.,Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | | | - Verena Lubczyk
- Department of Pathology, Klinik am Eichert Alb Fils Kliniken, Goeppingen, Germany
| | - Rainer Kuefer
- Department of Urology, Klinik am Eichert Alb Fils Kliniken, Goeppingen, Germany
| | - Verena Sailer
- Pathology of the University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Stefan Duensing
- Molecular Urooncology, Department of Urology, University of Heidelberg School of Medicine, Heidelberg, Germany
| | - Jutta Kirfel
- Pathology of the University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Axel S Merseburger
- Department of Urology, University Hospital Schleswig-Holstein, Luebeck, Germany
| | - Johannes Brägelmann
- Molecular Pathology, Institute of Pathology, University Hospital of Cologne, Cologne, Germany.,Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, Cologne, Germany
| | - Sven Perner
- Pathology of the University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany.,Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Anne Offermann
- Pathology of the University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany.,Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| |
Collapse
|
35
|
Dannappel MV, Sooraj D, Loh JJ, Firestein R. Molecular and in vivo Functions of the CDK8 and CDK19 Kinase Modules. Front Cell Dev Biol 2019; 6:171. [PMID: 30693281 PMCID: PMC6340071 DOI: 10.3389/fcell.2018.00171] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/06/2018] [Indexed: 12/21/2022] Open
Abstract
CDK8 and its paralog, CDK19, collectively termed ‘Mediator Kinase,’ are cyclin-dependent kinases that have been implicated as key rheostats in cellular homeostasis and developmental programming. CDK8 and CDK19 are incorporated, in a mutually exclusive manner, as part of a 4-protein complex called the Mediator kinase module. This module reversibly associates with the Mediator, a 26 subunit protein complex that regulates RNA Polymerase II mediated gene expression. As part of this complex, the Mediator kinases have been implicated in diverse process such as developmental signaling, metabolic homeostasis and in innate immunity. In recent years, dysregulation of Mediator kinase module proteins, including CDK8/19, has been implicated in the development of different human diseases, and in particular cancer. This has led to intense efforts to understand how CDK8/19 regulate diverse biological outputs and develop Mediator kinase inhibitors that can be exploited therapeutically. Herein, we review both context and function of the Mediator kinases at a molecular, cellular and animal level. In so doing, we illuminate emerging concepts underpinning Mediator kinase biology and highlight certain aspects that remain unsolved.
Collapse
Affiliation(s)
- Marius Volker Dannappel
- Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Dhanya Sooraj
- Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Jia Jian Loh
- Hudson Institute of Medical Research, Clayton, VIC, Australia.,Faculty of Science, School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | - Ron Firestein
- Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| |
Collapse
|
36
|
Xi M, Chen T, Wu C, Gao X, Wu Y, Luo X, Du K, Yu L, Cai T, Shen R, Sun H. CDK8 as a therapeutic target for cancers and recent developments in discovery of CDK8 inhibitors. Eur J Med Chem 2018; 164:77-91. [PMID: 30594029 DOI: 10.1016/j.ejmech.2018.11.076] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 02/08/2023]
Abstract
Cyclin-dependent kinases 8 (CDK8) regulates transcriptional process via associating with the mediator complex or phosphorylating transcription factors (TF). Overexpression of CDK8 has been observed in various cancers. It mediates aberrant activation of Wnt/β-catenin signaling pathway, which is initially recognized and best studied in colorectal cancer (CRC). CDK8 acts as an oncogene and represents a potential target for developing novel CDK8 inhibitors in cancer therapeutics. However, other study has revealed its contrary role. The function of CDK8 is context dependent. Even so, a variety of potent and selective CDK8 inhibitors have been discovered after crystal structures were resolved in two states (active or inactive). In this review, we summarize co-crystal structures, biological mechanisms, dysregulation in cancers and recent progress in the field of CDK8 inhibitors, trying to offer an outlook of CDK8 inhibitors in cancer therapy in future.
Collapse
Affiliation(s)
- Meiyang Xi
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Tingkai Chen
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Chunlei Wu
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Xiaozhong Gao
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Yonghua Wu
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Xiang Luo
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Kui Du
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Lemao Yu
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Tao Cai
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Runpu Shen
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Haopeng Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|