1
|
Shifting from a Biological-Agnostic Approach to a Molecular-Driven Strategy in Rare Cancers: Ewing Sarcoma Archetype. Biomedicines 2023; 11:biomedicines11030874. [PMID: 36979853 PMCID: PMC10045500 DOI: 10.3390/biomedicines11030874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/24/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Sarcomas of the thoracic cavity are rare entities that predominantly affect children and young adults. They can be very heterogeneous encompassing several different histological entities. Ewing Sarcoma (ES) can potentially arise from every bone, soft tissue, or visceral site in the body. However, it represents an extremely rare finding when it affects the thoracic cavity. It represents the second most frequent type of thoracic sarcoma, after chondrosarcoma. ES arises more frequently in sites that differ from the thoracic cavity, but it displays the same biological features and behavior of extra-thoracic ones. Current management of ES often requires a multidisciplinary treatment approach including surgery, radiotherapy, and systemic therapy, as it can guarantee local and distant disease control, at least transiently, although the long-term outcome remains poor. Unfortunately, due to the paucity of clinical trials purposely designed for this rare malignancy, there are no optimal strategies that can be used for disease recurrence. As a result of its complex biological features, ES might be suitable for emerging biology-based therapeutic strategies. However, a deeper understanding of the molecular mechanisms driving tumor growth and treatment resistance, including those related to oncogenic pathways, epigenetic landscape, and immune microenvironment, is necessary in order to develop new valid therapeutic opportunities. Here, we provide an overview of the most recent therapeutic advances for ES in both the preclinical and clinical settings. We performed a review of the current available literature and of the ongoing clinical trials focusing on new treatment strategies, after failure of conventional multimodal treatments.
Collapse
|
2
|
Haney SL, Feng D, Chhonker YS, Varney ML, Williams JT, Smith LM, Ford JB, Murry DJ, Holstein SA. Evaluation of geranylgeranyl diphosphate synthase inhibition as a novel strategy for the treatment of osteosarcoma and Ewing sarcoma. Drug Dev Res 2023; 84:62-74. [PMID: 36433690 PMCID: PMC9931648 DOI: 10.1002/ddr.22012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/27/2022]
Abstract
Rab GTPases are critical regulators of protein trafficking in the cell. To ensure proper cellular localization and function, Rab proteins must undergo a posttranslational modification, termed geranylgeranylation. In the isoprenoid biosynthesis pathway, the enzyme geranylgeranyl diphosphate synthase (GGDPS) generates the 20-carbon isoprenoid donor (geranylgeranyl pyrophosphate [GGPP]), which is utilized in the prenylation of Rab proteins. We have pursued the development of GGDPS inhibitors (GGSI) as a novel means to target Rab activity in cancer cells. Osteosarcoma (OS) and Ewing sarcoma (ES) are aggressive childhood bone cancers with stagnant survival statistics and limited treatment options. Here we show that GGSI treatment induces markers of the unfolded protein response (UPR) and triggers apoptotic cell death in a variety of OS and ES cell lines. Confirmation that these effects were secondary to cellular depletion of GGPP and disruption of Rab geranylgeranylation was confirmed via experiments using exogenous GGPP or specific geranylgeranyl transferase inhibitors. Furthermore, GGSI treatment disrupts cellular migration and invasion in vitro. Metabolomic profiles of OS and ES cell lines identify distinct changes in purine metabolism in GGSI-treated cells. Lastly, we demonstrate that GGSI treatment slows tumor growth in a mouse model of ES. Collectively, these studies support further development of GGSIs as a novel treatment for OS and ES.
Collapse
Affiliation(s)
- Staci L. Haney
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Dan Feng
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Yashpal S. Chhonker
- Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE
| | - Michelle L. Varney
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Jacob T. Williams
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Lynette M. Smith
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE
| | - James B. Ford
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE
| | - Daryl J. Murry
- Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE
| | - Sarah A. Holstein
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
3
|
Vasileva E, Warren M, Triche TJ, Amatruda JF. Dysregulated heparan sulfate proteoglycan metabolism promotes Ewing sarcoma tumor growth. eLife 2022; 11:69734. [PMID: 35285802 PMCID: PMC8942468 DOI: 10.7554/elife.69734] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 03/13/2022] [Indexed: 11/13/2022] Open
Abstract
The Ewing sarcoma family of tumors is a group of malignant small round blue cell tumors (SRBCTs) that affects children, adolescents, and young adults. The tumors are characterized by reciprocal chromosomal translocations that generate chimeric fusion oncogenes, the most common of which is EWSR1-FLI1. Survival is extremely poor for patients with metastatic or relapsed disease, and no molecularly-targeted therapy for this disease currently exists. The absence of a reliable genetic animal model of Ewing sarcoma has impaired investigation of tumor cell/microenvironmental interactions in vivo. We have developed a new genetic model of Ewing sarcoma based on Cre-inducible expression of human EWSR1-FLI1 in wild type zebrafish, which causes rapid onset of SRBCTs at high penetrance. The tumors express canonical EWSR1-FLI1 target genes and stain for known Ewing sarcoma markers including CD99. Growth of tumors is associated with activation of the MAPK/ERK pathway, which we link to dysregulated extracellular matrix metabolism in general and heparan sulfate catabolism in particular. Targeting heparan sulfate proteoglycans with the specific heparan sulfate antagonist Surfen reduces ERK1/2 signaling and decreases tumorigenicity of Ewing sarcoma cells in vitro and in vivo. These results highlight the important role of the extracellular matrix in Ewing sarcoma tumor growth and the potential of agents targeting proteoglycan metabolism as novel therapies for this disease.
Collapse
Affiliation(s)
- Elena Vasileva
- Cancer and Blood Disease Institute, Children's Hospital of Los Angeles, Los Angeles, United States
| | - Mikako Warren
- Division of Pathology and Laboratory Medicine, Children's Hospital of Los Angeles, Los Angeles, United States
| | - Timothy J Triche
- Division of Pathology and Laboratory Medicine, Children's Hospital of Los Angeles, Los Angeles, United States
| | - James F Amatruda
- Department of Pediatrics, Children's Hospital of Los Angeles, Los Angeles, United States
| |
Collapse
|
4
|
Deshpande RP, Sharma S, Liu Y, Pandey PR, Pei X, Wu K, Wu SY, Tyagi A, Zhao D, Mo YY, Watabe K. LncRNA IPW inhibits growth of ductal carcinoma in situ by downregulating ID2 through miR-29c. Breast Cancer Res 2022; 24:6. [PMID: 35078502 PMCID: PMC8787949 DOI: 10.1186/s13058-022-01504-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/11/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Ductal carcinoma in situ (DCIS) of breast is the noninvasive lesion that has propensity to progress to the malignant form. At present, it is still unknown which lesions can potentially progress to invasive forms. In this study, we aimed to identify key lncRNAs involved in DCIS growth. METHODS We employ disease-related lncProfiler array to identify IPW in specimens of DCIS and matching control samples and validate the observations in three DCIS-non-tumorigenic cell lines. Further, we examine the mechanism of IPW action and the downstream signaling in in vitro and in vivo assays. Importantly, we screened a library containing 390 natural compounds to identify candidate compound selectively inhibiting IPW low DCIS cells. RESULTS We identified lncRNA IPW as a novel tumor suppressor critical for inhibiting DCIS growth. Ectopic expression of IPW in DCIS cells strongly inhibited cell proliferation, colony formation and cell cycle progression while silencing IPW in primary breast cells promoted their growth. Additionally, orthotropic implantation of cells with ectopic expression of IPW exhibited decreased tumor growth in vivo. Mechanistically, IPW epigenetically enhanced miR-29c expression by promoting H3K4me3 enrichment in its promoter region. Furthermore, we identified that miR-29c negatively regulated a stemness promoting gene, ID2, and diminished self-renewal ability of DCIS cells. Importantly, we screened a library containing 390 natural compounds and identified toyocamycin as a compound that selectively inhibited the growth of DCIS with low expression of IPW, while it did not affect DCIS with high IPW expression. Toyocamycin also suppressed genes associated with self-renewal ability and inhibited DCIS growth in vivo. CONCLUSION Our findings revealed a critical role of the IPW-miR-29c-ID2 axis in DCIS formation and suggested potential clinical use of toyocamycin for the treatment of DCIS.
Collapse
MESH Headings
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Carcinoma, Intraductal, Noninfiltrating/drug therapy
- Carcinoma, Intraductal, Noninfiltrating/genetics
- Carcinoma, Intraductal, Noninfiltrating/metabolism
- Cell Line, Tumor
- Female
- Gene Expression Regulation, Neoplastic
- Genes, Tumor Suppressor
- Humans
- Inhibitor of Differentiation Protein 2/metabolism
- MicroRNAs/genetics
- MicroRNAs/metabolism
- RNA, Long Noncoding/genetics
Collapse
Affiliation(s)
| | | | - Yin Liu
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC, 27157, USA
| | - Puspa Raj Pandey
- Frederick National Laboratory for Cancer Research, Frederick, MD, 21701, USA
| | - Xinhong Pei
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC, 27157, USA
| | - Kerui Wu
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC, 27157, USA
| | - Shih-Ying Wu
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC, 27157, USA
| | - Abhishek Tyagi
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC, 27157, USA
| | - Dan Zhao
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC, 27157, USA
| | - Yin-Yuan Mo
- Department of Pharmacology and Toxicology, Cancer Institute, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Kounosuke Watabe
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
5
|
Commentary on: Xbp1s-Ddit3, DNA damage and pulmonary hypertension. Clin Sci (Lond) 2022; 136:163-166. [PMID: 35005770 DOI: 10.1042/cs20211095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 12/20/2021] [Accepted: 01/04/2022] [Indexed: 12/22/2022]
Abstract
In this commentary, we discuss new observations stating that spliced X-box-binding protein 1 (Xbp1s)-DNA damage-inducible transcript 3 (Ddit3) promotes monocrotaline (MCT)-induced pulmonary hypertension (Jiang et al., Clinical Science (2021) 135(21), https://doi.org/10.1042/CS20210612). Xbp1s-Ddit3 is involved in the regulation of endoplasmic reticulum stress but is also associated with DNA damage repair machinery. Pathologic DNA damage repair mechanisms have emerged as critical determinants of pulmonary hypertension development. We discuss the potential relationship among Xbp1s-Ddit3, DNA damage, and pulmonary hypertension. Although Xbp1s-Ddit3 contributes to the regulation of cell proliferation and apoptosis and the development of vascular lesions, whether Xbp1s is a friend or foe remains controversial.
Collapse
|
6
|
Sasa K, Saito T, Kurihara T, Hasegawa N, Sano K, Kubota D, Akaike K, Okubo T, Hayashi T, Takagi T, Yao T, Ishijima M, Suehara Y. IRE1α-XBP1 but not PERK inhibition exerts anti-tumor activity in osteosarcoma. Discov Oncol 2021; 12:57. [PMID: 35201455 PMCID: PMC8777567 DOI: 10.1007/s12672-021-00453-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/16/2021] [Indexed: 11/02/2022] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor. However, the therapeutic results of the advanced cases at the first visit were still extremely poor. Therefore, more effective therapeutic options based on molecular profiling of OS are needed. In this study, we investigated the functions of endoplasmic reticulum (ER) stress activities in OS and elucidated whether ER stress inhibitors could exert antitumor effects. The expression of 84 key genes associated with unfolded protein response (UPR) was assessed in four OS cells (143B, MG63, U2OS and KHOS) by RT2 Profiler PCR Arrays. Based on results, we performed both siRNA and inhibitor assays focusing on IRE1α-XBP1 and PERK pathways. All OS cell lines showed resistance to PERK inhibitors. Furthermore, ATF4 and EIF2A inhibition by siRNA did not affect the survival of OS cell lines. On the other hand, IRE1α-XBP1 inhibition by toyocamycin suppressed OS cell growth (IC50: < 0.075 μM) and cell viability was suppressed in all OS cell lines by silencing XBP1 expression. The expression of XBP1s and XBP1u in OS cell lines and OS surgical samples were confirmed using qPCR. In MG63 and U2OS, toyocamycin decreased the expression level of XBP1s induced by tunicamycin. On the other hand, in 143B and KHOS, stimulation by toyocamycin did not clearly change the expression level of XBP1s induced by tunicamycin. However, morphological apoptotic changes and caspase activation were observed in these two cell lines. Inhibition of the IRE1α-XBP1s pathway is expected to be a promising new target for OS.
Collapse
Affiliation(s)
- Keita Sasa
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University School of Medicine, Tokyo, Japan
- Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan
| | - Tsuyoshi Saito
- Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan.
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Taisei Kurihara
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University School of Medicine, Tokyo, Japan
| | - Nobuhiko Hasegawa
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University School of Medicine, Tokyo, Japan
| | - Kei Sano
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University School of Medicine, Tokyo, Japan
| | - Daisuke Kubota
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University School of Medicine, Tokyo, Japan
| | - Keisuke Akaike
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University School of Medicine, Tokyo, Japan
| | - Taketo Okubo
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University School of Medicine, Tokyo, Japan
| | - Takuo Hayashi
- Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan
| | - Tatsuya Takagi
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University School of Medicine, Tokyo, Japan
| | - Takashi Yao
- Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan
| | - Muneaki Ishijima
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University School of Medicine, Tokyo, Japan
| | - Yoshiyuki Suehara
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University School of Medicine, Tokyo, Japan.
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
7
|
Su S, Chen J, Jiang Y, Wang Y, Vital T, Zhang J, Laggner C, Nguyen KT, Zhu Z, Prevatte AW, Barker NK, Herring LE, Davis IJ, Liu P. SPOP and OTUD7A Control EWS-FLI1 Protein Stability to Govern Ewing Sarcoma Growth. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004846. [PMID: 34060252 PMCID: PMC8292909 DOI: 10.1002/advs.202004846] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/11/2021] [Indexed: 05/08/2023]
Abstract
Chromosomal translocation results in development of an Ewing sarcoma breakpoint region 1-Friend leukemia integration 1 (EWS-FLI1) fusion oncogene in the majority of Ewing sarcoma. The persistent dependence of the tumor for this oncoprotein points to EWS-FLI1 as an ideal drug target. Although EWS-FLI1 transcriptional targets and binding partners are evaluated, the mechanisms regulating EWS-FLI1 protein stability remain elusive. Speckle-type POZ protein (SPOP) and OTU domain-containing protein 7A (OTUD7A) are identified as the bona fide E3 ligase and deubiquitinase, respectively, that control EWS-FLI1 protein turnover in Ewing sarcoma. Casein kinase 1-mediated phosphorylation of the VTSSS degron in the FLI1 domain enhances SPOP activity to degrade EWS-FLI1. Opposing this process, OTUD7A deubiquitinates and stabilizes EWS-FLI1. Depletion of OTUD7A in Ewing sarcoma cell lines reduces EWS-FLI1 protein abundance and impedes Ewing sarcoma growth in vitro and in mice. Performing an artificial-intelligence-based virtual drug screen of a 4-million small molecule library, 7Ai is identified as a potential OTUD7A catalytic inhibitor. 7Ai reduces EWS-FLI1 protein levels and decreases Ewing sarcoma growth in vitro and in a xenograft mouse model. This study supports the therapeutic targeting of OTUD7A as a novel strategy for Ewing sarcoma bearing EWS-FLI1 and related fusions, and may also be applicable to other cancers dependent on aberrant FLI1 expression.
Collapse
Affiliation(s)
- Siyuan Su
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNC27599USA
- Department of Biochemistry and BiophysicsSchool of MedicineThe University of North Carolina at Chapel HillChapel HillNC27599USA
| | - Jianfeng Chen
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNC27599USA
- Department of Biochemistry and BiophysicsSchool of MedicineThe University of North Carolina at Chapel HillChapel HillNC27599USA
| | - Yao Jiang
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNC27599USA
- Present address:
Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Ying Wang
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNC27599USA
- Department of Biochemistry and BiophysicsSchool of MedicineThe University of North Carolina at Chapel HillChapel HillNC27599USA
| | - Tamara Vital
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNC27599USA
- Department of GeneticsThe University of North Carolina at Chapel HillChapel HillNC27599USA
- Department of PediatricsThe University of North Carolina at Chapel HillChapel HillNC 27599USA
| | - Jiaming Zhang
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNC27599USA
- Present address:
Department of Oral Medicine, Infection, and ImmunityHarvard School of Dental MedicineBostonMA02215USA
| | | | | | - Zhichuan Zhu
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNC27599USA
- Department of Biochemistry and BiophysicsSchool of MedicineThe University of North Carolina at Chapel HillChapel HillNC27599USA
| | - Alex W. Prevatte
- UNC Proteomics Core FacilityDepartment of PharmacologyThe University of North Carolina at Chapel HillChapel HillNC27599USA
| | - Natalie K. Barker
- UNC Proteomics Core FacilityDepartment of PharmacologyThe University of North Carolina at Chapel HillChapel HillNC27599USA
| | - Laura E. Herring
- UNC Proteomics Core FacilityDepartment of PharmacologyThe University of North Carolina at Chapel HillChapel HillNC27599USA
| | - Ian J. Davis
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNC27599USA
- Department of GeneticsThe University of North Carolina at Chapel HillChapel HillNC27599USA
- Department of PediatricsThe University of North Carolina at Chapel HillChapel HillNC 27599USA
| | - Pengda Liu
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNC27599USA
- Department of Biochemistry and BiophysicsSchool of MedicineThe University of North Carolina at Chapel HillChapel HillNC27599USA
| |
Collapse
|
8
|
Zhang XT, Hu XB, Wang HL, Kan WJ, Xu L, Wang ZJ, Xiang YQ, Wu WB, Feng B, Li JN, Gao AH, Dong TC, Xia CM, Zhou YB, Li J. Activation of unfolded protein response overcomes Ibrutinib resistance in diffuse large B-cell lymphoma. Acta Pharmacol Sin 2021; 42:814-823. [PMID: 32855532 PMCID: PMC8115113 DOI: 10.1038/s41401-020-00505-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 08/03/2020] [Indexed: 02/01/2023]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most widespread type of non-Hodgkin lymphoma (NHL). As the most aggressive form of the DLBCL, the activated B-cell-like (ABC) subtype is often resistant to standard chemotherapies. Bruton's tyrosine kinase (BTK) inhibitor ibrutinib provides a potential therapeutic approach for the DLBCL but fails to improve the outcome in the phase III trial. In the current study, we investigated the molecular mechanisms underlying ibrutinib resistance and explored new combination therapy with ibrutinib. We generated an ibrutinib-resistant ABC-DLBCL cell line (OCI-ly10-IR) through continuous exposure to ibrutinib. Transcriptome analysis of the parental and ibrutinib-resistant cell lines revealed that the ibrutinib-resistant cells had significantly lower expression of the unfolded protein response (UPR) marker genes. Overexpression of one UPR branch-XBP1s greatly potentiated ibrutinib-induced apoptosis in both sensitive and resistant cells. The UPR inhibitor tauroursodeoxycholic acid (TUDCA) partially reduced the apoptotic rate induced by the ibrutinib in sensitive cells. The UPR activator 2-deoxy-D-glucose (2-DG) in combination with the ibrutinib triggered even greater cell growth inhibition, apoptosis, and stronger calcium (Ca2+) flux inhibition than either of the agents alone. A combination treatment of ibrutinib (15 mg·kg-1·d-1, po.) and 2-DG (500 mg/kg, po, b.i.d.) synergistically retarded tumor growth in NOD/SCID mice bearing OCI-ly10-IR xenograft. In addition, ibrutinib induced the UPR in the sensitive cell lines but not in the resistant cell lines of the DLBCL. There was also a combined synergistic effect in the primary resistant DLBCL cell lines. Overall, our results suggest that targeting the UPR could be a potential combination strategy to overcome ibrutinib resistance in the DLBCL.
Collapse
MESH Headings
- Adenine/analogs & derivatives
- Adenine/therapeutic use
- Animals
- Antineoplastic Agents/therapeutic use
- Apoptosis/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Deoxyglucose/therapeutic use
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/physiology
- Drug Synergism
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/physiopathology
- Mice, Inbred NOD
- Mice, SCID
- Piperidines/therapeutic use
- Unfolded Protein Response/drug effects
- Unfolded Protein Response/physiology
- X-Box Binding Protein 1/genetics
- X-Box Binding Protein 1/metabolism
- Xenograft Model Antitumor Assays
- Mice
Collapse
Affiliation(s)
- Xiao-Tuan Zhang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Xiao-Bei Hu
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Han-Lin Wang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
- School of pharmacy, Fudan University, Shanghai, 201203, China
| | - Wei-Juan Kan
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Lei Xu
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China
| | - Zhi-Jia Wang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmaceutical Science, Jiangnan University, Wuxi, 214122, China
| | - Yu-Qi Xiang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China
| | - Wen-Biao Wu
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Bo Feng
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmaceutical Science, Jiangnan University, Wuxi, 214122, China
| | - Jia-Nan Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - An-Hui Gao
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Tian-Cheng Dong
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Chun-Mei Xia
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yu-Bo Zhou
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China.
| |
Collapse
|
9
|
Wilson R, Gundamaraju R, Vemuri R, Angelucci C, Geraghty D, Gueven N, Eri RD. Identification of Key Pro-Survival Proteins in Isolated Colonic Goblet Cells of Winnie, a Murine Model of Spontaneous Colitis. Inflamm Bowel Dis 2020; 26:80-92. [PMID: 31504521 DOI: 10.1093/ibd/izz179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Accumulating evidence suggests that the goblet cell-derived mucin-2 (Muc2) is a major component of the immune system and that perturbations in Muc2 lead to an ulcerative colitis-like phenotype. The animal model Winnie carries a missense mutation in Muc2 that causes Muc2 misfolding, accumulation in goblet cells, and ER stress. Excessive ER stress is a hallmark of many diseases, including ulcerative colitis, cancer, diabetes and Parkinson's disease. However, rather than committing to cell death, which is the typical outcome of unresolved ER stress, Winnie goblet cells are characterized by hyperproliferation, suggesting additional regulation of this cellular stress response. METHODS To elucidate the molecular mechanisms underlying ulcerative colitis in the Winnie model, we isolated goblet cells from Winnie and wild-type mice and used label-free quantitative proteomics and bioinformatics to understand the functional consequences of Muc2 misfolding and accumulation. RESULTS A large number of changes were identified that highlight a dramatic reprogramming of energy production, including enhanced utilization of butyrate, a key energy source of colonic cells. A major finding was the marked upregulation of the coiled-coil-helix-coiled-coil-helix domain proteins Chchd2, Chchd3, and Chchd6. In particular, we identified and confirmed the upregulation and nuclear translocation of Chchd2, a protein known to inhibit oxidative stress induced apoptosis. CONCLUSIONS This study is the first to apply proteome-level analysis to the preclinical Winnie model of ulcerative colitis. Identification of proteins and pathways affected in isolated Winnie goblet cells provides evidence for novel adaptive mechanisms underlying cell survival under conditions of chronic ER stress.
Collapse
Affiliation(s)
- Richard Wilson
- Central Science Laboratory, University of Tasmania, Hobart, TAS, Australia
| | - Rohit Gundamaraju
- School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| | - Ravichandra Vemuri
- School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| | - Constanza Angelucci
- School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| | - Dominic Geraghty
- School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| | - Nuri Gueven
- Pharmacy, School of Medicine, Faculty of Health, University of Tasmania, Hobart, TAS, Australia
| | - Rajaraman D Eri
- School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| |
Collapse
|
10
|
Jiang H, Gong T, Zhou R. The strategies of targeting the NLRP3 inflammasome to treat inflammatory diseases. Adv Immunol 2019; 145:55-93. [PMID: 32081200 DOI: 10.1016/bs.ai.2019.11.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The NLRP3 inflammasome is a cytoplasmic multiprotein complex, the assembly of which can be initiated in response to various exogenous or endogenous danger signals. Excessive activation of the NLRP3 inflammasome has been implicated in the pathogenesis of a wide variety of human inflammatory diseases, suggesting that the NLRP3 inflammasome is a potential target for the treatment of these diseases. However, clinical drugs targeting the NLRP3 inflammasome are still not available. Recent data have elucidated the different signaling pathways or events that can control NLRP3 inflammasome activation and have provided some potential compounds with anti-NLRP3 inflammasome activity. Here, we summarize the molecular mechanisms and diseases involved in NLRP3 inflammasome activation and discuss the potential strategies targeting different aspects of the NLRP3 inflammasome and its implications for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Hua Jiang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Tao Gong
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
| | - Rongbin Zhou
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China; CAS Centre for Excellence in Cell and Molecular Biology, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
11
|
Dual role of Endoplasmic Reticulum Stress-Mediated Unfolded Protein Response Signaling Pathway in Carcinogenesis. Int J Mol Sci 2019; 20:ijms20184354. [PMID: 31491919 PMCID: PMC6770252 DOI: 10.3390/ijms20184354] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 12/24/2022] Open
Abstract
Cancer constitutes a grave problem nowadays in view of the fact that it has become one of the main causes of death worldwide. Poor clinical prognosis is presumably due to cancer cells metabolism as tumor microenvironment is affected by oxidative stress. This event triggers adequate cellular response and thereby creates appropriate conditions for further cancer progression. Endoplasmic reticulum (ER) stress occurs when the balance between an ability of the ER to fold and transfer proteins and the degradation of the misfolded ones become distorted. Since ER is an organelle relatively sensitive to oxidative damage, aforementioned conditions swiftly cause the activation of the unfolded protein response (UPR) signaling pathway. The output of the UPR, depending on numerous factors, may vary and switch between the pro-survival and the pro-apoptotic branch, and hence it displays opposing effects in deciding the fate of the cancer cell. The role of UPR-related proteins in tumorigenesis, such as binding the immunoglobulin protein (BiP) and inositol-requiring enzyme-1α (IRE1α), activating transcription factor 6 (ATF6) or the protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK), has already been specifically described so far. Nevertheless, due to the paradoxical outcomes of the UPR activation as well as gaps in current knowledge, it still needs to be further investigated. Herein we would like to elicit the actual link between neoplastic diseases and the UPR signaling pathway, considering its major branches and discussing its potential use in the development of a novel, anti-cancer, targeted therapy.
Collapse
|
12
|
Shi W, Chen Z, Li L, Liu H, Zhang R, Cheng Q, Xu D, Wu L. Unravel the molecular mechanism of XBP1 in regulating the biology of cancer cells. J Cancer 2019; 10:2035-2046. [PMID: 31205564 PMCID: PMC6548171 DOI: 10.7150/jca.29421] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 04/02/2019] [Indexed: 02/07/2023] Open
Abstract
Cancer cells are usually exposed to stressful environments, such as hypoxia, nutrient deprivation, and other metabolic dysfunctional regulation, leading to continuous endoplasmic reticulum (ER) stress. As the most conserved branch among the three un-folded protein response (UPR) pathways, Inositol-requiring enzyme 1α (IRE1α)-X-box-binding protein 1 (XBP1) signaling has been implicated in cancer development and progression. Active XBP1 with transactivation domain functions as a transcription factor to regulate the expression of downstream target genes, including many oncogenic factors. The regulatory activity of XBP1 in cell proliferation, apoptosis, metastasis, and drug resistance promotes cell survival, leading to tumorigenesis and tumor progression. In addition, the XBP1 peptides-based vaccination and/or combination with immune-modulatory drug administration have been developed for effective management for several cancers. Potentially, XBP1 is the biomarker of cancer development and progression and the strategy for clinical cancer management.
Collapse
Affiliation(s)
- Weimei Shi
- College of Pharmacy, Gannan Medical University, Ganzhou China, 341000
| | - Zhixi Chen
- College of Pharmacy, Gannan Medical University, Ganzhou China, 341000
| | - Linfu Li
- College of Pharmacy, Gannan Medical University, Ganzhou China, 341000
| | - Hai Liu
- College of Pharmacy, Gannan Medical University, Ganzhou China, 341000
| | - Rui Zhang
- College of Pharmacy, Gannan Medical University, Ganzhou China, 341000
| | - Qilai Cheng
- College of Pharmacy, Gannan Medical University, Ganzhou China, 341000
| | - Daohua Xu
- Department of Pharmacology, Guangdong Medical University, Dongguan China, 523808
| | - Longhuo Wu
- College of Pharmacy, Gannan Medical University, Ganzhou China, 341000
| |
Collapse
|
13
|
Translocator Protein Ligand Protects against Neurodegeneration in the MPTP Mouse Model of Parkinsonism. J Neurosci 2019; 39:3752-3769. [PMID: 30796158 DOI: 10.1523/jneurosci.2070-18.2019] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/11/2019] [Accepted: 01/15/2019] [Indexed: 12/18/2022] Open
Abstract
Parkinson's disease is the second most common neurodegenerative disease, after Alzheimer's disease. Parkinson's disease is a movement disorder with characteristic motor features that arise due to the loss of dopaminergic neurons from the substantia nigra. Although symptomatic treatment by the dopamine precursor levodopa and dopamine agonists can improve motor symptoms, no disease-modifying therapy exists yet. Here, we show that Emapunil (AC-5216, XBD-173), a synthetic ligand of the translocator protein 18, ameliorates degeneration of dopaminergic neurons, preserves striatal dopamine metabolism, and prevents motor dysfunction in female mice treated with the MPTP, as a model of parkinsonism. We found that Emapunil modulates the inositol requiring kinase 1α (IRE α)/X-box binding protein 1 (XBP1) unfolded protein response pathway and induces a shift from pro-inflammatory toward anti-inflammatory microglia activation. Previously, Emapunil was shown to cross the blood-brain barrier and to be safe and well tolerated in a Phase II clinical trial. Therefore, our data suggest that Emapunil may be a promising approach in the treatment of Parkinson's disease.SIGNIFICANCE STATEMENT Our study reveals a beneficial effect of Emapunil on dopaminergic neuron survival, dopamine metabolism, and motor phenotype in the MPTP mouse model of parkinsonism. In addition, our work uncovers molecular networks which mediate neuroprotective effects of Emapunil, including microglial activation state and unfolded protein response pathways. These findings not only contribute to our understanding of biological mechanisms of translocator protein 18 (TSPO) function but also indicate that translocator protein 18 may be a promising therapeutic target. We thus propose to further validate Emapunil in other Parkinson's disease mouse models and subsequently in clinical trials to treat Parkinson's disease.
Collapse
|
14
|
Ishii M, Suehara Y, Sano K, Kohsaka S, Hayashi T, Kazuno S, Akaike K, Mukaihara K, Kim Y, Okubo T, Takamochi K, Takahashi F, Kaneko K, Saito T. Proteomic signatures corresponding to the SS18/SSX fusion gene in synovial sarcoma. Oncotarget 2018; 9:37509-37519. [PMID: 30680066 PMCID: PMC6331019 DOI: 10.18632/oncotarget.26493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 12/10/2018] [Indexed: 01/04/2023] Open
Abstract
Synovial sarcoma (SS) is a malignant soft tissue lesion and most commonly arises in young adults. Chromosomal translocation t(X;18)(p11;q11) results in the formation of SS18/SSX by gene fusion of the SS18 gene on chromosome 18 to either SSX1, SSX2, or SSX4 gene located on chromosome X, which is detected in more than 95% of SSs. Although multiple lines of evidence suggest that the SS18/SSX fusion is the oncogene in this tumor, the protein expression profiles associated with SS18/SSX have yet to be elucidated. In this study, we conducted proteomic studies using SS18/SSX knockdown in three SS cell lines to identify the regulated proteins associated with SS18/SSX in SS. Isobaric tags for relative and absolute quantitation (i-TRAQ) analyses identified approximate 1700–2,000 proteins regulated by the SS18/SSX fusion in each SS cell line. We also analyzed the three profiles to identify proteins that were similarly altered in all 3 cell lines and found 17 consistently upregulated and 18 consistently downregulated proteins, including TAGLN and ACTN4. In addition, network analyses identified several critical pathways including RUNX2 and SMARCA4. RUNX2 and SMARCA4 had the highest ranking in these identified pathways. In addition, we found that expression of TAGLN inhibited cell viability in SS cell lines. Our data suggest that the differentiation and cell growth of SS may be enhanced by the identified proteins induced by SS18/SSX. We believe that the findings obtained in the present functional analyses will help to improve our understanding of the relationship between SS18/SSX and malignant behavior in SS.
Collapse
Affiliation(s)
- Midori Ishii
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Yoshiyuki Suehara
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Kei Sano
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Shinji Kohsaka
- Department of Medical Genomics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takuo Hayashi
- Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan
| | - Saiko Kazuno
- Laboratory of Proteomics and Biomolecular Science, Research Support Center, Juntendo University School of Medicine, Tokyo, Japan
| | - Keisuke Akaike
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Kenta Mukaihara
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Youngji Kim
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Taketo Okubo
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Kazuya Takamochi
- Department of General Thoracic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Fumiyuki Takahashi
- Department of Respiratory Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Kazuo Kaneko
- Department of Medical Genomics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Saito
- Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
15
|
Akaike K, Suehara Y, Kohsaka S, Hayashi T, Tanabe Y, Kazuno S, Mukaihara K, Toda-Ishii M, Kurihara T, Kim Y, Okubo T, Hayashi Y, Takamochi K, Takahashi F, Kaneko K, Ladanyi M, Saito T. PPP2R1A regulated by PAX3/FOXO1 fusion contributes to the acquisition of aggressive behavior in PAX3/FOXO1-positive alveolar rhabdomyosarcoma. Oncotarget 2018; 9:25206-25215. [PMID: 29861864 PMCID: PMC5982774 DOI: 10.18632/oncotarget.25392] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/28/2018] [Indexed: 12/18/2022] Open
Abstract
To better characterize the oncogenic role of the PAX3-FOXO1 fusion protein in the acquisition of aggressive behavior in ARMS, we employed a proteomic approach using a PAX3-FOXO1 knockdown system in ARMS cell lines. This approach revealed a protein list consisting of 107 consistently upregulated and 114 consistently downregulated proteins that were expected to be regulated by PAX3-FOXO1 fusion protein. Furthermore, we identified 16 upregulated and 17 downregulated critical proteins based on a data-mining analysis. We also evaluated the function of PPP2R1A in ARMS cells. The PPP2R1A expression was upregulated at both the mRNA and protein levels by PAX3-FOXO1 silencing. The silencing of PPP2R1A significantly increased the cell growth of all four ARMS cells, suggesting that PPP2R1A still has a tumor suppressive function in ARMS cells; however, the native expression of PPP2R1A was low in the presence of PAX3-FOXO1. In addition, the activation of PP2A-part of which was encoded by PPP2R1A-by FTY720 treatment in ARMS cell lines inhibited cell growth. On the human phospho-kinase array analysis of 46 specific Ser/Thr or Tyr phosphorylation sites on 39 selected proteins, eNOS, AKT1/2/3, RSK1/2/3 and STAT3 phosphorylation were decreased by FTY-720 treatment. These findings suggest that PPP2R1A is a negatively regulated by PAX3-FOXO1 in ARMS. The activation of PP2A-probably in combination with kinase inhibitors-may represent a therapeutic target in ARMS. We believe that the protein expression profile associated with PAX3-FOXO1 would be valuable for discovering new therapeutic targets in ARMS.
Collapse
Affiliation(s)
- Keisuke Akaike
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan.,Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yoshiyuki Suehara
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Shinji Kohsaka
- Department of Medical Genomics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takuo Hayashi
- Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yu Tanabe
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Saiko Kazuno
- Laboratory of Proteomics and Biomolecular Science, Research Support Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kenta Mukaihara
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Midori Toda-Ishii
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Taisei Kurihara
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Youngji Kim
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Taketo Okubo
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Yasuhide Hayashi
- Department of Hematology/Oncology, Gunma Children's Medical Center, Shibukawa, Gunma, Japan
| | - Kazuya Takamochi
- Department of General Thoracic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Fumiyuki Takahashi
- Department of Respiratory Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Kazuo Kaneko
- Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Tsuyoshi Saito
- Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|