1
|
Zhang L, Wang S, Wang L. Pan‑cancer analysis of oncogene SFXN1 to identify its prognostic and immunological roles in lung adenocarcinoma. Oncol Rep 2025; 53:50. [PMID: 40052583 PMCID: PMC11923928 DOI: 10.3892/or.2025.8883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/14/2025] [Indexed: 03/22/2025] Open
Abstract
As cancer incidence and mortality rates continue to rise, the urgency for research in this field has increased globally. Sideroflexin 1 (SFXN1), a pivotal member of the SFXN protein family, serves a crucial role in transporting serine to mitochondria and participates in one‑carbon metabolism, thereby influencing cell proliferation and differentiation. While SFXN1 is linked to lung cancer and glioma, its role in other malignancies remains largely unexplored. Utilizing The Cancer Genome Atlas, Human Protein Atlas, Gene Expression Profiling Interactive Analysis and University of Alabama at Birmingham Cancer Data Analysis Portal databases, the present study investigated the expression patterns, prognostic implications and association with immune cell infiltration of SFXN1. The present findings revealed that SFXN1 was differentially expressed across various tumor types, and exhibited significant associations with clinicopathological features and patient prognosis. Through immune infiltration analysis, a significant correlation between SFXN1 and T cells, B cells and immune checkpoint genes was established in numerous tumor types. Notably, loss‑of‑function experiments demonstrated that silencing of SFXN1 decreased cell proliferation, migration and invasion, while simultaneously increasing apoptosis in lung adenocarcinoma cells. Collectively, these findings suggested that SFXN1 expression could potentially serve as a biomarker for tumor diagnosis and prognosis, also emerging as a novel therapeutic target in cancer immunotherapy. The present study highlights the critical role of SFXN1 in cancer biology and paves the way for future translational efforts aimed at leveraging its potential in clinical oncology.
Collapse
Affiliation(s)
- Liming Zhang
- Department of Thoracic Surgery, Weifang Second People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Shaoqiang Wang
- Department of Thoracic Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Lina Wang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, P.R. China
| |
Collapse
|
2
|
Gomes JV, Nicolau-Neto P, de Almeida JN, Lisboa LB, de Souza-Santos PT, Ribeiro-Pinto LF, Soares-Lima SC, Simão TDA. HOXA7 Expression Is an Independent Prognostic Biomarker in Esophageal Squamous Cell Carcinoma. Genes (Basel) 2024; 15:1430. [PMID: 39596630 PMCID: PMC11593377 DOI: 10.3390/genes15111430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Homeobox (HOX) genes encode conserved transcription factors essential for tissue and organ development and cellular differentiation. In humans, these genes are organized into four clusters: HOXA, HOXB, HOXC, and HOXD. While HOX genes have been extensively studied in cancer biology, their roles in esophageal squamous cell carcinoma (ESCC) remain poorly understood. Given the increasing incidence and high mortality rate of ESCC, exploring the molecular drivers of this tumor is urgent. Methods: Therefore, this study investigated the mutational landscape and expression profiles of HOX genes in ESCC and their differentially expressed targets using ESCC data from The Cancer Genome Atlas (TCGA) and two independent transcriptome datasets. Results: We found that copy number alterations and single nucleotide variations were rare, while seven HOX genes (HOXA2, HOXA7, HOXB13, HOXC9, HOXC10, HOXC13, and HOXD10) were significantly differentially expressed in ESCC compared to paired non-malignant mucosa. Further analysis identified 776 potential HOX target genes differentially expressed in ESCC, many of which are involved in critical cancer pathways such as PI3K-AKT, cell cycle regulation, and epithelial-mesenchymal transition (EMT). The HOXA7 overexpression was associated with poor overall survival rates in ESCC. This finding opens new possibilities for targeted therapies, offering hope for improved patient outcomes. Conclusions: Thus, this study underscored the pivotal role of HOX gene dysregulation in ESCC and classified HOXA7 as a potential prognostic biomarker in this tumor.
Collapse
Affiliation(s)
- Jennifer Vieira Gomes
- Laboratório de Toxicologia e Biologia Molecular, Departamento de Bioquímica, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20550-013, RJ, Brazil; (J.V.G.); (J.N.d.A.); (L.B.L.); (L.F.R.-P.)
| | - Pedro Nicolau-Neto
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer (INCA), Rio de Janeiro 20230-130, RJ, Brazil;
| | - Júlia Nascimento de Almeida
- Laboratório de Toxicologia e Biologia Molecular, Departamento de Bioquímica, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20550-013, RJ, Brazil; (J.V.G.); (J.N.d.A.); (L.B.L.); (L.F.R.-P.)
| | - Lilian Brewer Lisboa
- Laboratório de Toxicologia e Biologia Molecular, Departamento de Bioquímica, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20550-013, RJ, Brazil; (J.V.G.); (J.N.d.A.); (L.B.L.); (L.F.R.-P.)
| | | | - Luis Felipe Ribeiro-Pinto
- Laboratório de Toxicologia e Biologia Molecular, Departamento de Bioquímica, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20550-013, RJ, Brazil; (J.V.G.); (J.N.d.A.); (L.B.L.); (L.F.R.-P.)
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer (INCA), Rio de Janeiro 20230-130, RJ, Brazil;
| | - Sheila Coelho Soares-Lima
- Programa de Pesquisa Clínica e Desenvolvimento Tecnológico, Instituto Nacional de Câncer (INCA), Rio de Janeiro 20230-130, RJ, Brazil;
| | - Tatiana de Almeida Simão
- Laboratório de Toxicologia e Biologia Molecular, Departamento de Bioquímica, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20550-013, RJ, Brazil; (J.V.G.); (J.N.d.A.); (L.B.L.); (L.F.R.-P.)
| |
Collapse
|
3
|
Sharip A, Rakhimova S, Molkenov A, Ashenova A, Kozhamkulov U, Akhmetollayev I, Zinovyev A, Zhukov Y, Omarov M, Tuleutaev M, Rakhmetova V, Terwilliger JD, Lee JH, Zhumadilov Z, Akilzhanova A, Kairov U. Transcriptome profiling and analysis of patients with esophageal squamous cell carcinoma from Kazakhstan. Front Genet 2024; 15:1249751. [PMID: 38562378 PMCID: PMC10982404 DOI: 10.3389/fgene.2024.1249751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is the predominant subtype of esophageal cancer in Central Asia, often diagnosed at advanced stages. Understanding population-specific patterns of ESCC is crucial for tailored treatments. This study aimed to unravel ESCC's genetic basis in Kazakhstani patients and identify potential biomarkers for early diagnosis and targeted therapies. ESCC patients from Kazakhstan were studied. We analyzed histological subtypes and conducted in-depth transcriptome sequencing. Differential gene expression analysis was performed, and significantly dysregulated pathways were identified using KEGG pathway analysis (p-value < 0.05). Protein-protein interaction networks were constructed to elucidate key modules and their functions. Among Kazakhstani patients, ESCC with moderate dysplasia was the most prevalent subtype. We identified 42 significantly upregulated and two significantly downregulated KEGG pathways, highlighting molecular mechanisms driving ESCC pathogenesis. Immune-related pathways, such as viral protein interaction with cytokines, rheumatoid arthritis, and oxidative phosphorylation, were elevated, suggesting immune system involvement. Conversely, downregulated pathways were associated with extracellular matrix degradation, crucial in cancer invasion and metastasis. Protein-protein interaction network analysis revealed four distinct modules with specific functions, implicating pathways in esophageal cancer development. High-throughput transcriptome sequencing elucidated critical molecular pathways underlying esophageal carcinogenesis in Kazakhstani patients. Insights into dysregulated pathways offer potential for early diagnosis and precision treatment strategies for ESCC. Understanding population-specific patterns is essential for personalized approaches to ESCC management.
Collapse
Affiliation(s)
- Aigul Sharip
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Saule Rakhimova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Askhat Molkenov
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Ainur Ashenova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Ulan Kozhamkulov
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | | | | | - Yuri Zhukov
- Multidisciplinary Medical Center, Astana, Kazakhstan
| | - Marat Omarov
- Multidisciplinary Medical Center, Astana, Kazakhstan
| | | | - Venera Rakhmetova
- Department of Internal Diseases, Astana Medical University, Astana, Kazakhstan
| | - Joseph D. Terwilliger
- Sergiеvsky Center, Columbia University, New York, NY, United States
- Division of Medical Genetics, New York State Psychiatric Institute, New York, NY, United States
- Department of Psychiatry and Department of Genetics and Development, Columbia University, New York, NY, United States
| | - Joseph H. Lee
- Sergiеvsky Center, Columbia University, New York, NY, United States
- Departments of Epidemiology and Neurology, Columbia University, New York, NY, United States
| | - Zhaxybay Zhumadilov
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- School of Medicine, Nazarbayev University, Astana, Kazakhstan
| | - Ainur Akilzhanova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Ulykbek Kairov
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| |
Collapse
|
4
|
Alotaibi A, Gadekar VP, Gundla PS, Mandarthi S, Jayendra N, Tungekar A, Lavanya BV, Bhagavath AK, Cordero MAW, Pitkaniemi J, Niazi SK, Upadhya R, Bepari A, Hebbar P. Global comparative transcriptomes uncover novel and population-specific gene expression in esophageal squamous cell carcinoma. Infect Agent Cancer 2023; 18:47. [PMID: 37641095 PMCID: PMC10463703 DOI: 10.1186/s13027-023-00525-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) has a poor prognosis and is one of the deadliest gastrointestinal malignancies. Despite numerous transcriptomics studies to understand its molecular basis, the impact of population-specific differences on this disease remains unexplored. AIMS This study aimed to investigate the population-specific differences in gene expression patterns among ESCC samples obtained from six distinct global populations, identify differentially expressed genes (DEGs) and their associated pathways, and identify potential biomarkers for ESCC diagnosis and prognosis. In addition, this study deciphers population specific microbial and chemical risk factors in ESCC. METHODS We compared the gene expression patterns of ESCC samples from six different global populations by analyzing microarray datasets. To identify DEGs, we conducted stringent quality control and employed linear modeling. We cross-compared the resulting DEG lists of each populations along with ESCC ATLAS to identify known and novel DEGs. We performed a survival analysis using The Cancer Genome Atlas Program (TCGA) data to identify potential biomarkers for ESCC diagnosis and prognosis among the novel DEGs. Finally, we performed comparative functional enrichment and toxicogenomic analysis. RESULTS Here we report 19 genes with distinct expression patterns among populations, indicating population-specific variations in ESCC. Additionally, we discovered 166 novel DEGs, such as ENDOU, SLCO1B3, KCNS3, IFI35, among others. The survival analysis identified three novel genes (CHRM3, CREG2, H2AC6) critical for ESCC survival. Notably, our findings showed that ECM-related gene ontology terms and pathways were significantly enriched among the DEGs in ESCC. We also found population-specific variations in immune response and microbial infection-related pathways which included genes enriched for HPV, Ameobiosis, Leishmaniosis, and Human Cytomegaloviruses. Our toxicogenomic analysis identified tobacco smoking as the primary risk factor and cisplatin as the main drug chemical interacting with the maximum number of DEGs across populations. CONCLUSION This study provides new insights into population-specific differences in gene expression patterns and their associated pathways in ESCC. Our findings suggest that changes in extracellular matrix (ECM) organization may be crucial to the development and progression of this cancer, and that environmental and genetic factors play important roles in the disease. The novel DEGs identified may serve as potential biomarkers for diagnosis, prognosis and treatment.
Collapse
Grants
- 43- PRFA-P-8 the Deanship of Scientific Research, Princess Nourah bint Abdulrahman University, through the Program of Research Project Funding After Publication
- 43- PRFA-P-8 the Deanship of Scientific Research, Princess Nourah bint Abdulrahman University, through the Program of Research Project Funding After Publication
- 43- PRFA-P-8 the Deanship of Scientific Research, Princess Nourah bint Abdulrahman University, through the Program of Research Project Funding After Publication
- 43- PRFA-P-8 the Deanship of Scientific Research, Princess Nourah bint Abdulrahman University, through the Program of Research Project Funding After Publication
- 43- PRFA-P-8 the Deanship of Scientific Research, Princess Nourah bint Abdulrahman University, through the Program of Research Project Funding After Publication
- 43- PRFA-P-8 the Deanship of Scientific Research, Princess Nourah bint Abdulrahman University, through the Program of Research Project Funding After Publication
- 43- PRFA-P-8 the Deanship of Scientific Research, Princess Nourah bint Abdulrahman University, through the Program of Research Project Funding After Publication
Collapse
Affiliation(s)
- Amal Alotaibi
- Basic Science Department, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | | | | | - Sumana Mandarthi
- Mbiomics LLC, 16192 Coastal Highway, Lewes, DE, 19958, USA
- Meta Biosciences Pvt Ltd, Manipal-GOK Bioincubator, Manipal, India
| | - Nidhi Jayendra
- Mbiomics LLC, 16192 Coastal Highway, Lewes, DE, 19958, USA
| | - Asna Tungekar
- Mbiomics LLC, 16192 Coastal Highway, Lewes, DE, 19958, USA
| | - B V Lavanya
- Mbiomics LLC, 16192 Coastal Highway, Lewes, DE, 19958, USA
| | - Ashok Kumar Bhagavath
- Department of Cellular and Molecular Biology, University of Texas Health Science Center, Tyler, TX, USA
| | - Mary Anne Wong Cordero
- Basic Science Department, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Janne Pitkaniemi
- Finnish Cancer Registry, Unioninkatu 22, 00130, Helsinki, Finland
- Department of Public Health, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Shaik Kalimulla Niazi
- Department of Preparatory Health Sciences, Riyadh Elm University, Riyadh, Saudi Arabia
| | - Raghavendra Upadhya
- Manipal Center for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, India
| | - Asmatanzeem Bepari
- Basic Science Department, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
| | - Prashantha Hebbar
- Mbiomics LLC, 16192 Coastal Highway, Lewes, DE, 19958, USA.
- Manipal Center for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, India.
- Meta Biosciences Pvt Ltd, Manipal-GOK Bioincubator, Manipal, India.
| |
Collapse
|
5
|
Mangalaparthi KK, Patel K, Khan AA, Nair B, Kumar RV, Prasad TSK, Sidransky D, Chatterjee A, Pandey A, Gowda H. Molecular Characterization of Esophageal Squamous Cell Carcinoma Using Quantitative Proteomics. Cancers (Basel) 2023; 15:3302. [PMID: 37444412 DOI: 10.3390/cancers15133302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 07/15/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a heterogeneous cancer associated with a poor prognosis in advanced stages. In India, it is the sixth most common cause of cancer-related mortality. In this study, we employed high-resolution mass spectrometry-based quantitative proteomics to characterize the differential protein expression pattern associated with ESCC. We identified several differentially expressed proteins including PDPN, TOP2A, POSTN and MMP2 that were overexpressed in ESCC. In addition, we identified downregulation of esophagus tissue-enriched proteins such as SLURP1, PADI1, CSTA, small proline-rich proteins such as SPRR3, SPRR2A, SPRR1A, KRT4, and KRT13, involved in squamous cell differentiation. We identified several overexpressed proteins mapped to the 3q24-29 chromosomal region, aligning with CNV alterations in this region reported in several published studies. Among these, we identified overexpression of SOX2, TP63, IGF2BP2 and RNF13 that are encoded by genes in the 3q26 region. Functional enrichment analysis revealed proteins involved in cell cycle pathways, DNA replication, spliceosome, and DNA repair pathways. We identified the overexpression of multiple proteins that play a major role in alleviating ER stress, including SYVN1 and SEL1L. The SYVN1/SEL1L complex is an essential part of the ER quality control machinery clearing misfolded proteins from the ER. SYVN1 is an E3 ubiquitin ligase that ubiquitinates ER-resident proteins. Interestingly, there are also other non-canonical substrates of SYVN1 which are known to play a crucial role in tumor progression. Thus, SYVN1 could be a potential therapeutic target in ESCC.
Collapse
Affiliation(s)
- Kiran K Mangalaparthi
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 691001, India
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Krishna Patel
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 691001, India
| | - Aafaque Ahmad Khan
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
| | - Bipin Nair
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 691001, India
| | - Rekha V Kumar
- Department of Pathology, Kidwai Memorial Institute of Oncology, Bangalore 560066, India
| | - Thottethodi Subrahmanya Keshav Prasad
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 691001, India
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - David Sidransky
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Otolaryngology and Head & Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Aditi Chatterjee
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 691001, India
- Manipal Academy of Higher Education, Manipal 576104, India
| | - Akhilesh Pandey
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
- Manipal Academy of Higher Education, Manipal 576104, India
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Center for Molecular Medicine, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore 560029, India
| | - Harsha Gowda
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 691001, India
- Manipal Academy of Higher Education, Manipal 576104, India
| |
Collapse
|
6
|
Alotaibi A, Gadekar VP, Gundla PS, Mandarthi S, Ravi S, Mallya D, Tungekar A, Lavanya BV, Bhagavath AK, Cordero MW, Pitkaniemi J, Seetharam RN, Bepari A, Hebbar P. A comprehensive analysis of mRNA expression profiles of Esophageal Squamous Cell Carcinoma reveals downregulation of Desmoglein 1 and crucial genomic targets. Cancer Biomark 2023; 38:465-487. [PMID: 38073377 DOI: 10.3233/cbm-230145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
AIM Esophageal Squamous Cell Carcinoma (ESCC) is a histological subtype of esophageal cancer that begins in the squamous cells in the esophagus. In only 19% of the ESCC-diagnosed patients, a five-year survival rate has been seen. This necessitates the identification of high-confidence biomarkers for early diagnosis, prognosis, and potential therapeutic targets for the mitigation of ESCC. METHOD We performed a meta-analysis of 10 mRNA datasets and identified consistently perturbed genes across the studies. Then, integrated with ESCC ATLAS to segregate 'core' genes to identify consequences of primary gene perturbation events leading to gene-gene interactions and dysregulated molecular signaling pathways. Further, by integrating with toxicogenomics data, inferences were drawn for gene interaction with environmental exposures, trace elements, chemical carcinogens, and drug chemicals. We also deduce the clinical outcomes of candidate genes based on survival analysis using the ESCC related dataset in The Cancer Genome Atlas. RESULT We identified 237 known and 18 novel perturbed candidate genes. Desmoglein 1 (DSG1) is one such gene that we found significantly downregulated (Fold Change =-1.89, p-value = 8.2e-06) in ESCC across six different datasets. Further, we identified 31 'core' genes (that either harbor genetic variants or are regulated by epigenetic modifications) and found regulating key biological pathways via adjoining genes in gene-gene interaction networks. Functional enrichment analysis showed dysregulated biological processes and pathways including "Extracellular matrix", "Collagen trimmer" and "HPV infection" are significantly overrepresented in our candidate genes. Based on the toxicogenomic inferences from Comparative Toxicogenomics Database we report the key genes that interacted with risk factors such as tobacco smoking, zinc, nitroso benzylmethylamine, and drug chemicals such as cisplatin, Fluorouracil, and Mitomycin in relation to ESCC. We also point to the STC2 gene that shows a high risk for mortality in ESCC patients. CONCLUSION We identified novel perturbed genes in relation to ESCC and explored their interaction network. DSG1 is one such gene, its association with microbiota and a clinical presentation seen commonly with ESCC hints that it is a good candidate for early diagnostic marker. Besides, in this study we highlight candidate genes and their molecular connections to risk factors, biological pathways, drug chemicals, and the survival probability of ESCC patients.
Collapse
Affiliation(s)
- Amal Alotaibi
- Basic Science Department, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
- Basic Science Department, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Veerendra P Gadekar
- Mbiomics LLC, Lewes DE, USA
- Basic Science Department, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | | | | | | | | | | | | | - Ashok Kumar Bhagavath
- Department of Cellular and Molecular Biology, University of Texas Health Science Center, Tyler, Texas, TX, USA
| | - MaryAnne Wong Cordero
- Basic Science Department, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Janne Pitkaniemi
- Finnish Cancer Registry, Helsinki, Finland
- Department of Public Health, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Raviraja N Seetharam
- Manipal Center for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, India
| | - Asmatanzeem Bepari
- Basic Science Department, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Prashantha Hebbar
- Mbiomics LLC, Lewes DE, USA
- Manipal Center for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, India
- Meta Biosciences Pvt Ltd., Manipal - GOK Bioincubator, Advanced Research Center, Manipal, India
| |
Collapse
|
7
|
Udhaya Kumar S, Balasundaram A, Anu Preethi V, Chatterjee S, Kameshwari Gollakota GV, Kashyap MK, George Priya Doss C, Zayed H. Integrative ontology and pathway-based approach identifies distinct molecular signatures in transcriptomes of esophageal squamous cell carcinoma. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 131:177-206. [PMID: 35871890 DOI: 10.1016/bs.apcsb.2022.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) remains a serious concern globally due to many factors that including late diagnosis, lack of an ideal biomarker for diagnosis and prognosis, and high rate of mortality. In this study, we aimed to identify the essential dysregulated genes and molecular signatures associated with the progression and development of ESCC. The dataset with 15 ESCCs and the 15 adjacent normal tissue samples from the surrounding histopathologically tumor-free mucosa was selected. We applied bioinformatics pipelines including various topological parameters from MCODE, CytoNCA, and cytoHubba to prioritize the most significantly associated DEGs with ESCC. We performed functional enrichment annotation for the identified DEGs using DAVID and MetaCore™ GeneGo platforms. Furthermore, we validated the essential core genes in TCGA and GTEx datasets between the normal mucosa and ESCC for their expression levels. These DEGs were primarily enriched in positive regulation of transferase activity, negative regulation of organelle organization, cell cycle mitosis/S-phase transition, spindle organization/assembly, development, and regulation of angiogenesis. Subsequently, the DEGs were associated with the pathways such as oocyte meiosis, cell cycle, and DNA replication. Our study identified the eight-core genes (AURKA, AURKB, MCM2, CDC20, TPX2, PLK1, FOXM1, and MCM7) that are highly expressed among the ESCC, and TCGA dataset. The multigene comparison and principal component analysis resulted in elevated signals for the AURKA, MCM2, CDC20, TPX2, PLK1, and FOXM1. Overall, our study reported GO profiles and molecular signatures that might help researchers to grasp the pathological mechanisms underlying ESCC development and eventually provide novel therapeutic and diagnostic strategies.
Collapse
Affiliation(s)
- S Udhaya Kumar
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Ambritha Balasundaram
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - V Anu Preethi
- School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, India
| | - Sayoni Chatterjee
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - G V Kameshwari Gollakota
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Manoj Kumar Kashyap
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Gurugram, India
| | - C George Priya Doss
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India.
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health and Sciences, Qatar University, QU Health, Doha, Qatar.
| |
Collapse
|
8
|
Luo H, Yi T, Huang D, Chen X, Li X, Wan Q, Huang H, Huang H, Wei H, Song Y, Que T, Hu R, Huang H, Luo K, Li C, Qin C, Zheng C, Lan C, Chen W, Zhou D, Luo Q. circ_PTN contributes to -cisplatin resistance in glioblastoma via PI3K/AKT signaling through the miR-542-3p/PIK3R3 pathway. MOLECULAR THERAPY - NUCLEIC ACIDS 2021; 26:1255-1269. [PMID: 34853725 PMCID: PMC8607136 DOI: 10.1016/j.omtn.2021.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/31/2021] [Indexed: 10/24/2022]
|
9
|
Su J, Wu G, Ye Y, Zhang J, Zeng L, Huang X, Zheng Y, Bai R, Zhuang L, Li M, Pan L, Deng J, Li R, Deng S, Zhang S, Zuo Z, Liu Z, Lin J, Lin D, Zheng J. NSUN2-mediated RNA 5-methylcytosine promotes esophageal squamous cell carcinoma progression via LIN28B-dependent GRB2 mRNA stabilization. Oncogene 2021; 40:5814-5828. [PMID: 34345012 PMCID: PMC8484015 DOI: 10.1038/s41388-021-01978-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/18/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023]
Abstract
5-Methylcytosine (m5C) is a posttranscriptional RNA modification participating in many critical bioprocesses, but its functions in human cancer remain unclear. Here, by detecting the transcriptome-wide m5C profiling in esophageal squamous cell carcinoma (ESCC), we showed increased m5C methylation in ESCC tumors due to the overexpressed m5C methyltransferase NSUN2. Aberrant expression of NSUN2 was positively regulated by E2F Transcription Factor 1 (E2F1). High NSUN2 levels predicted poor survival of ESCC patients. Moreover, silencing NSUN2 suppressed ESCC tumorigenesis and progression in Nsun2 knockout mouse models. Mechanistically, NSUN2 induced m5C modification of growth factor receptor-bound protein 2 (GRB2) and stabilized its mRNA, which was mediated by a novel m5C mediator, protein lin-28 homolog B (LIN28B). Elevated GRB2 levels increased the activation of PI3K/AKT and ERK/MAPK signalling. These results demonstrate that NSUN2 enhances the initiation and progression of ESCC via m5C-LIN28B dependent stabilization of GRB2 transcript, providing a promising epitranscriptomic-targeted therapeutic strategy for ESCC.
Collapse
Affiliation(s)
- Jiachun Su
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Guandi Wu
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ying Ye
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jialiang Zhang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lingxing Zeng
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xudong Huang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yanfen Zheng
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ruihong Bai
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lisha Zhuang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Mei Li
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ling Pan
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Junge Deng
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Rui Li
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shuang Deng
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shaoping Zhang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhixiang Zuo
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zexian Liu
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Junzhong Lin
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
- Department of Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Dongxin Lin
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China.
| | - Jian Zheng
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
10
|
Cai Z, Wei Y, Chen S, Gong Y, Fu Y, Dai X, Zhou Y, Yang H, Tang L, Liu H. Screening and identification of key biomarkers in alimentary tract cancers: A bioinformatic analysis. Cancer Biomark 2021; 29:221-233. [PMID: 32623389 DOI: 10.3233/cbm-201580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Alimentary tract cancers (ATCs) are the most malignant cancers in the world. Numerous studies have revealed the tumorigenesis, diagnosis and treatment of ATCs, but many mechanisms remain to be explored. METHODS To identify the key genes of ATCs, microarray datasets of oesophageal cancer, gastric cancer and colorectal cancer were obtained from the Gene Expression Omnibus (GEO) database. In total, 207 differentially expressed genes (DEGs) were screened. KEGG and GO function enrichment analyses were conducted, and a protein-protein interaction (PPI) network was generated and gene modules analysis was performed using STRING and Cytoscape. RESULTS Five hub genes were screened, and the associated biological processes indicated that these genes were mainly enriched in cellular processes, protein binding and metabolic processes. Clinical survival analysis showed that COL10A1 and KIF14 may be significantly associated with the tumorigenesis or pathology grade of ATCs. In addition, relative human ATC cell lines along with blood samples and tumour tissues of ATC patients were obtained. The data proved that high expression of COL10A1 and KIF14 was associated with tumorigenesis and could be detected in blood. CONCLUSION In conclusion, the identification of hub genes in the present study helped us to elucidate the molecular mechanisms of tumorigenesis and identify potential diagnostic indicators and targeted treatment for ATCs.
Collapse
Affiliation(s)
- Zeling Cai
- Genter of General Surgery, The Affiliated Haimen People's Hospital of Nantong University, Nantong, Jiangsu, China.,Genter of General Surgery, The Affiliated Haimen People's Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yi Wei
- Center of Gastrointestinal Disease, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China.,Genter of General Surgery, The Affiliated Haimen People's Hospital of Nantong University, Nantong, Jiangsu, China
| | - Shuai Chen
- Center of Gastrointestinal Disease, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China.,Genter of General Surgery, The Affiliated Haimen People's Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yu Gong
- Center of Gastrointestinal Disease, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Yue Fu
- Center of Gastrointestinal Disease, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Xianghua Dai
- Genter of General Surgery, The Affiliated Haimen People's Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yan Zhou
- Center of Gastrointestinal Disease, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Haojun Yang
- Center of Gastrointestinal Disease, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Liming Tang
- Center of Gastrointestinal Disease, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Hanyang Liu
- Center of Gastrointestinal Disease, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
11
|
Talukdar FR, Soares Lima SC, Khoueiry R, Laskar RS, Cuenin C, Sorroche BP, Boisson AC, Abedi-Ardekani B, Carreira C, Menya D, Dzamalala CP, Assefa M, Aseffa A, Miranda-Gonçalves V, Jerónimo C, Henrique RM, Shakeri R, Malekzadeh R, Gasmelseed N, Ellaithi M, Gangane N, Middleton DRS, Le Calvez-Kelm F, Ghantous A, Roux ML, Schüz J, McCormack V, Parker MI, Pinto LFR, Herceg Z. Genome-Wide DNA Methylation Profiling of Esophageal Squamous Cell Carcinoma from Global High-Incidence Regions Identifies Crucial Genes and Potential Cancer Markers. Cancer Res 2021; 81:2612-2624. [PMID: 33741694 DOI: 10.1158/0008-5472.can-20-3445] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/04/2021] [Accepted: 03/18/2021] [Indexed: 12/24/2022]
Abstract
Epigenetic mechanisms such as aberrant DNA methylation (DNAme) are known to drive esophageal squamous cell carcinoma (ESCC), yet they remain poorly understood. Here, we studied tumor-specific DNAme in ESCC cases from nine high-incidence countries of Africa, Asia, and South America. Infinium MethylationEPIC array was performed on 108 tumors and 51 normal tissues adjacent to the tumors (NAT) in the discovery phase, and targeted pyrosequencing was performed on 132 tumors and 36 NAT in the replication phase. Top genes for replication were prioritized by weighting methylation results using RNA-sequencing data from The Cancer Genome Atlas and GTEx and validated by qPCR. Methylome analysis comparing tumor and NAT identified 6,796 differentially methylated positions (DMP) and 866 differential methylated regions (DMR), with a 30% methylation (Δβ) difference. The majority of identified DMPs and DMRs were hypermethylated in tumors, particularly in promoters and gene-body regions of genes involved in transcription activation. The top three prioritized genes for replication, PAX9, SIM2, and THSD4, had similar methylation differences in the discovery and replication sets. These genes were exclusively expressed in normal esophageal tissues in GTEx and downregulated in tumors. The specificity and sensitivity of these DNAme events in discriminating tumors from NAT were assessed. Our study identified novel, robust, and crucial tumor-specific DNAme events in ESCC tumors across several high-incidence populations of the world. Methylome changes identified in this study may serve as potential targets for biomarker discovery and warrant further functional characterization. SIGNIFICANCE: This largest genome-wide DNA methylation study on ESCC from high-incidence populations of the world identifies functionally relevant and robust DNAme events that could serve as potential tumor-specific markers. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/10/2612/F1.large.jpg.
Collapse
Affiliation(s)
| | - Sheila C Soares Lima
- Department of Molecular Carcinogenesis, Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| | - Rita Khoueiry
- International Agency for Research on Cancer, Lyon, France
| | | | - Cyrille Cuenin
- International Agency for Research on Cancer, Lyon, France
| | - Bruna Pereira Sorroche
- International Agency for Research on Cancer, Lyon, France
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
| | | | | | | | | | | | | | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Vera Miranda-Gonçalves
- Department of Pathology and Cancer Biology and Epigenetics Group, Portuguese Oncology Institute of Porto and Biomedical Sciences Institute of University of Porto, Porto, Portugal
| | - Carmen Jerónimo
- Department of Pathology and Cancer Biology and Epigenetics Group, Portuguese Oncology Institute of Porto and Biomedical Sciences Institute of University of Porto, Porto, Portugal
| | - Rui M Henrique
- Department of Pathology and Cancer Biology and Epigenetics Group, Portuguese Oncology Institute of Porto and Biomedical Sciences Institute of University of Porto, Porto, Portugal
| | - Ramin Shakeri
- Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Malekzadeh
- Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nagla Gasmelseed
- Department of Molecular Biology, National Cancer Institute, University of Gezira, Gezira, Sudan
| | - Mona Ellaithi
- Department of Histopathology and Cytology, Al-Neelain University, Khartoum, Sudan
| | - Nitin Gangane
- Mahatma Gandhi Institute of Medical Sciences, Sevagram, India
| | | | | | - Akram Ghantous
- International Agency for Research on Cancer, Lyon, France
| | | | - Joachim Schüz
- International Agency for Research on Cancer, Lyon, France
| | | | - M Iqbal Parker
- Integrative Biomedical Sciences and IDM, University of Cape Town, Cape Town, South Africa
| | | | - Zdenko Herceg
- International Agency for Research on Cancer, Lyon, France.
| |
Collapse
|
12
|
Oliveira-Barros EGD, Branco LC, Da Costa NM, Nicolau-Neto P, Palmero C, Pontes B, Ferreira do Amaral R, Alves-Leon SV, Marcondes de Souza J, Romão L, Fernandes PV, Martins I, Takiya CM, Ribeiro Pinto LF, Palumbo A, Nasciutti LE. GLIPR1 and SPARC expression profile reveals a signature associated with prostate Cancer Brain metastasis. Mol Cell Endocrinol 2021; 528:111230. [PMID: 33675864 DOI: 10.1016/j.mce.2021.111230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023]
Abstract
Despite advances in treatment of lethal prostate cancer, the incidence of prostate cancer brain metastases is increasing. In this sense, we analyzed the molecular profile, as well as the functional consequences involved in the reciprocal interactions between prostate tumor cells and human astrocytes. We observed that the DU145 cells, but not the LNCaP cells or the RWPE-1 cells, exhibited more pronounced, malignant and invasive phenotypes along their interactions with astrocytes. Moreover, global gene expression analysis revealed several genes that were differently expressed in our co-culture models with the overexpression of GLIPR1 and SPARC potentially representing a molecular signature associated with the invasion of central nervous system by prostate malignant cells. Further, these results were corroborated by immunohistochemistry and in silico analysis. Thus, we conjecture that the data here presented may increase the knowledge about the molecular mechanisms associated with the invasion of CNS by prostate malignant cells.
Collapse
Affiliation(s)
- Eliane Gouvêa de Oliveira-Barros
- Programa de Pesquisa Em Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária-Ilha do Fundão, Rio de Janeiro, CEP 21941-902, Brazil; Laboratório de Biologia Celular, Departamento de Biologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora (UFJF), Rua José Lourenço Kelmer-Campus, São Pedro, Juiz de Fora, CEP: 36036-900, Brazil.
| | - Luíza Castello Branco
- Programa de Pesquisa Em Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária-Ilha do Fundão, Rio de Janeiro, CEP 21941-902, Brazil.
| | - Nathalia Meireles Da Costa
- Programa de Carcinogênese Molecular, Centro de Pesquisas, Instituto Nacional de Câncer (INCA), Rua André Cavalcanti, 37-Centro, Rio de Janeiro, CEP 20231-050, Brazil.
| | - Pedro Nicolau-Neto
- Programa de Carcinogênese Molecular, Centro de Pesquisas, Instituto Nacional de Câncer (INCA), Rua André Cavalcanti, 37-Centro, Rio de Janeiro, CEP 20231-050, Brazil.
| | - Celia Palmero
- Programa de Pesquisa Em Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária-Ilha do Fundão, Rio de Janeiro, CEP 21941-902, Brazil; UFRJ/Polo Macaé, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Bruno Pontes
- Programa de Pesquisa Em Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária-Ilha do Fundão, Rio de Janeiro, CEP 21941-902, Brazil; Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária-Ilha do Fundão, Rio de Janeiro, CEP 21941-902, Brazil.
| | - Rackele Ferreira do Amaral
- Programa de Pesquisa Em Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária-Ilha do Fundão, Rio de Janeiro, CEP 21941-902, Brazil.
| | - Soniza Vieira Alves-Leon
- Hospital Universitário Clementino Fraga Filho (HUCFF), Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária-Ilha do Fundão, Rio de Janeiro, CEP 21941-902, Brazil.
| | - Jorge Marcondes de Souza
- Hospital Universitário Clementino Fraga Filho (HUCFF), Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária-Ilha do Fundão, Rio de Janeiro, CEP 21941-902, Brazil.
| | - Luciana Romão
- Programa de Pesquisa Em Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária-Ilha do Fundão, Rio de Janeiro, CEP 21941-902, Brazil.
| | - Priscila Valverde Fernandes
- Divisão de Patologia, Instituto Nacional de Câncer (INCA), Rua Cordeiro da Graça, 156 - Santo Cristo, Rio de Janeiro, CEP: 20220 -040, Brazil.
| | - Ivanir Martins
- Divisão de Patologia, Instituto Nacional de Câncer (INCA), Rua Cordeiro da Graça, 156 - Santo Cristo, Rio de Janeiro, CEP: 20220 -040, Brazil.
| | - Christina Maeda Takiya
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária-Ilha do Fundão, Rio de Janeiro, CEP 21941-902, Brazil.
| | - Luis Felipe Ribeiro Pinto
- Programa de Carcinogênese Molecular, Centro de Pesquisas, Instituto Nacional de Câncer (INCA), Rua André Cavalcanti, 37-Centro, Rio de Janeiro, CEP 20231-050, Brazil.
| | - Antonio Palumbo
- Programa de Pesquisa Em Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária-Ilha do Fundão, Rio de Janeiro, CEP 21941-902, Brazil.
| | - Luiz Eurico Nasciutti
- Programa de Pesquisa Em Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária-Ilha do Fundão, Rio de Janeiro, CEP 21941-902, Brazil.
| |
Collapse
|
13
|
Lu T, Xu R, Li Q, Zhao JY, Peng B, Zhang H, Guo JD, Zhang SQ, Li HW, Wang J, Zhang LY. Systematic profiling of ferroptosis gene signatures predicts prognostic factors in esophageal squamous cell carcinoma. MOLECULAR THERAPY-ONCOLYTICS 2021; 21:134-143. [PMID: 33981829 PMCID: PMC8080401 DOI: 10.1016/j.omto.2021.02.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/17/2021] [Indexed: 02/07/2023]
Abstract
We developed a predictive model associated with ferroptosis to provide a more comprehensive view of esophageal squamous cell carcinoma (ESCC) immunotherapy. Gene expression data and corresponding clinical outcomes were obtained from the GEO and The Cancer Genome Atlas (TCGA) databases, and a ferroptosis-related gene set was obtained from the FerrDb database. We identified 45 ferroptosis-related genes that were differentially expressed, including enrichment in genes involved in the immune system process. We established a ferroptosis-related gene-based prognostic model based on the results of univariate Cox regression and multivariate Cox regression analyses, with an area under the curve (AUC) of 0.76 (3 years). We found that the patients with low-risk scores showed a higher proportion of CD8+ T cells, CD4+ memory activated T cells, etc. Finally, a predictive ferroptosis-related prognostic nomogram, which included the predictive values of age, gender, grade, TNM stage, and risk score, was established to predict overall survival. In sum, we developed a ferroptosis-related gene-based prognostic model that provides novel insights into the prediction of ESCC prognosis and identifies the relevance of the immune microenvironment for patient outcomes.
Collapse
Affiliation(s)
- Tong Lu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Ran Xu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Qi Li
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin 150081, China
| | - Jia-Ying Zhao
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Bo Peng
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Han Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Ji-da Guo
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Sheng-Qiang Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Hua-Wei Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Jun Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Lin-You Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| |
Collapse
|
14
|
Identifying the p65-Dependent Effect of Sulforaphene on Esophageal Squamous Cell Carcinoma Progression via Bioinformatics Analysis. Int J Mol Sci 2020; 22:ijms22010060. [PMID: 33374641 PMCID: PMC7793474 DOI: 10.3390/ijms22010060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
Understanding the mechanism by which sulforaphene (SFE) affects esophageal squamous cell carcinoma (ESCC) contributes to the application of this isothiocyanate as a chemotherapeutic agent. Thus, we attempted to investigate SFE regulation of ESCC characteristics more deeply. We performed gene set enrichment analysis (GSEA) on microarray data of SFE-treated ESCC cells and found that differentially expressed genes are enriched in TNFα_Signaling_via_the_NFκB_Pathway. Coupled with the expression profile data from the GSE20347 and GSE75241 datasets, we narrowed the set to 8 genes, 4 of which (C-X-C motif chemokine ligand 10 (CXCL10), TNF alpha induced protein 3 (TNFAIP3), inhibin subunit beta A (INHBA), and plasminogen activator, urokinase (PLAU)) were verified as the targets of SFE. RNA-sequence (RNA-seq) data of 182 ESCC samples from The Cancer Genome Atlas (TCGA) were grouped into two phenotypes for GSEA according to the expression of CXCL10, TNFAIP3, INHBA, and PLAU. The enrichment results proved that they were all involved in the NFκB pathway. ChIP-seq analyses obtained from the Cistrome database indicated that NFκB-p65 is likely to control the transcription of CXCL10, TNFAIP3, INHBA, and PLAU, and considering TNFAIP3 and PLAU are the most significantly differentially expressed genes, we used chromatin immunoprecipitation-polymerase chain reaction (ChIP-PCR) to verify the regulation of p65 on their expression. The results demonstrated that SFE suppresses ESCC progression by down-regulating TNFAIP3 and PLAU expression in a p65-dependent manner.
Collapse
|
15
|
Barros LRC, Souza-Santos PTD, Pretti MAM, Vieira GF, Bragatte MADS, Mendes MFDA, De Freitas MV, Scherer NDM, De Oliveira IM, Rapozo DCM, Fernandes PV, Simão TDA, Soares-Lima SC, Boroni M, Ribeiro Pinto LF, Bonamino MH. High infiltration of B cells in tertiary lymphoid structures, TCR oligoclonality, and neoantigens are part of esophageal squamous cell carcinoma microenvironment. J Leukoc Biol 2020; 108:1307-1318. [PMID: 32827331 DOI: 10.1002/jlb.5ma0720-710rrr] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/26/2020] [Accepted: 07/29/2020] [Indexed: 12/16/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCA) exhibits high intratumoral molecular heterogeneity posing a challenge to cancer therapy. Immune checkpoint blockade therapy has been approved for this disease, but with modest results. RNA-Seq data from paired tumor and surrounding nonmalignant tissue from 14 patients diagnosed with ESCA without previous treatment and from The Cancer Genome Atlas-ESCA cohort were analyzed. Herein, we investigated ESCA immune landscape including mutation-derived neoantigens and immune cell subpopulations. Tumor-associated antigen expression was determined by in silico analyses and confirmed by immunohistochemistry showing that PRAME, CEACAM4, and MAGEA11 proteins are expressed on tumors. Immune checkpoint molecules gene expression was higher in the tumor compared with surrounding nonmalignant tissue, but its expression varies greatly among patients. TCR repertoire and BCR transcripts analysis evidenced low clonal diversity with one TCR clone predicted to be specific for a MAGEA11-derived peptide. A high number of B-cell clones infiltrating the tumors and the abundance of these cells in tertiary lymphoid structures observed in ESCA tumors support B cells as a potential immune modulator in this tumor.
Collapse
Affiliation(s)
| | | | - Marco Antonio Marques Pretti
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer-INCA, Rio de Janeiro, Brazil.,Laboratório de Bioinformática e Biologia Computacional, Instituto Nacional de Câncer, INCA
| | - Gustavo Fioravanti Vieira
- Programa de Pós-Graduação em Saúde e Desenvolvimento Humano, Universidade La Salle, Canoas, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Marcelo Alves De Souza Bragatte
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Marcus Fabiano De Almeida Mendes
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Martiela Vaz De Freitas
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | | | | | | | | | - Tatiana De Almeida Simão
- Departamento de Bioquímica, IBRAG, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Mariana Boroni
- Laboratório de Bioinformática e Biologia Computacional, Instituto Nacional de Câncer, INCA
| | - Luis Felipe Ribeiro Pinto
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer-INCA, Rio de Janeiro, Brazil.,Departamento de Bioquímica, IBRAG, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Martin Hernan Bonamino
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer-INCA, Rio de Janeiro, Brazil.,Vice-Presidência de Pesquisa e Coleções Biológicas (VPPCB), Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Ni Q, Chen Z, Zheng Q, Xie D, Li JJ, Cheng S, Ma X. Epithelial V-like antigen 1 promotes hepatocellular carcinoma growth and metastasis via the ERBB-PI3K-AKT pathway. Cancer Sci 2020; 111:1500-1513. [PMID: 31997489 PMCID: PMC7226218 DOI: 10.1111/cas.14331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/07/2020] [Accepted: 01/13/2020] [Indexed: 12/17/2022] Open
Abstract
The role of epithelial V‐like antigen 1 (EVA1) has been well studied in thymic development and homostasis; however, its putative relationship with cancer remains largely unknown. Therefore, here we investigated the role of EVA1 in hepatocellular carcinoma. Interestingly, EVA1 expression was significantly increased in hepatocellular carcinoma (HCC) and was also associated with a poor prognosis and recurrence in HCC patients. Overexpression of EVA1 promoted cell growth, invasion and migration in vitro. Consistently, knockdown of EVA1 expression inhibited proliferation and migration in vitro, while repressing metastasis of HCC cells in vivo. RNA‐seq analysis indicated that EVA1 is able to upregulate the expression of genes in the ERBB3‐PI3K pathway. Accordingly, an increased level of AKT phosphorylation was detected in HCC cells after EVA1 overexpression. LY294002, a PI3K inhibitor, inhibited AKT phosphorylation and rescued the tumor‐promoting effect of EVA1 overexpression. Altogether, the present study has revealed the oncogenic role of EVA1 during HCC progression and metastasis through the ERBB‐PI3K‐AKT signaling pathway, reiterating the potential use of EVA1 as a therapeutic target and/or prognostic marker for HCC.
Collapse
Affiliation(s)
- QianZhi Ni
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhenhua Chen
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Qianwen Zheng
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Dong Xie
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Jing-Jing Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shuqun Cheng
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Xingyuan Ma
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
17
|
Nicolau-Neto P, de Souza-Santos PT, Severo Ramundo M, Valverde P, Martins I, Costa Santos I, Dias F, de Almeida Simão T, Ribeiro Pinto LF. Transcriptome Analysis Identifies ALCAM Overexpression as a Prognosis Biomarker in Laryngeal Squamous Cell Carcinoma. Cancers (Basel) 2020; 12:cancers12020470. [PMID: 32085563 PMCID: PMC7072229 DOI: 10.3390/cancers12020470] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Laryngeal squamous cell carcinoma (LSCC) is one of the most incident tumors in the world, especially in developing countries, such as Brazil. Different from other tumors, LSCC prognosis did not improve during the past four decades. Therefore, the objective of this study was to develop biomarkers that can predict LSCC patient's prognosis. RESULTS Transcriptome analysis pointed out 287 overexpressed genes in LSCC in comparison to adjacent mucosa. Among these, a gene-pattern signature was created with 24 genes associated with prognosis. The Bayesian clustering of both Brazil and The Cancer Genome Atlas (TCGA) data pointed out clusters of samples possessing significative differences in the prognosis, and the expression panel of three genes (ALCAM, GBP6, and ME1) was capable to distinguish patients with worse prognosis with an accuracy of 97%. Survival analyses with TCGA data highlighted ALCAM gene expression as an independent prognostic factor for LSCC. This was further confirmed through immunohistochemistry, using a validation set of Brazilian patients. ALCAM expression was not associated with prognosis for other head and neck tumor sites. CONCLUSION ALCAM overexpression seems to be an independent prognosis biomarker for LSCC patients.
Collapse
Affiliation(s)
- Pedro Nicolau-Neto
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer—INCA, Rua Andre Cavalcanti 37, Rio de Janeiro, RJ CEP 20231-050, Brazil; (P.N.-N.); (M.S.R.)
| | - Paulo Thiago de Souza-Santos
- Laboratório de Hanseníase, Instituto Oswaldo Cruz—Fiocruz, Av. Brasil, 4365 - Manguinhos, Rio de Janeiro, RJ CEP 21040-900, Brazil;
| | - Mariana Severo Ramundo
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer—INCA, Rua Andre Cavalcanti 37, Rio de Janeiro, RJ CEP 20231-050, Brazil; (P.N.-N.); (M.S.R.)
| | - Priscila Valverde
- Divisão de Patologia, Instituto Nacional de Câncer—INCA, Rua Cordeiro da Graça, 156, Rio de Janeiro, RJ CEP 20220-400, Brazil; (P.V.); (I.M.)
| | - Ivanir Martins
- Divisão de Patologia, Instituto Nacional de Câncer—INCA, Rua Cordeiro da Graça, 156, Rio de Janeiro, RJ CEP 20220-400, Brazil; (P.V.); (I.M.)
| | - Izabella Costa Santos
- Seção de Cirurgia de Cabeça e Pescoço, Instituto Nacional de Câncer—INCA, Praça da Cruz Vermelha, Rio de Janeiro, RJ CEP 20230130, Brazil; (I.C.S.); (F.D.)
| | - Fernando Dias
- Seção de Cirurgia de Cabeça e Pescoço, Instituto Nacional de Câncer—INCA, Praça da Cruz Vermelha, Rio de Janeiro, RJ CEP 20230130, Brazil; (I.C.S.); (F.D.)
| | - Tatiana de Almeida Simão
- Departamento de Bioquímica, IBRAG, Universidade do Estado do Rio de Janeiro, Av. 28 de Setembro 87, Fundos, Pavilhão Américo Piquet Carneiro-4º andar, Rio de Janeiro, RJ CEP 20551-030, Brazil;
| | - Luis Felipe Ribeiro Pinto
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer—INCA, Rua Andre Cavalcanti 37, Rio de Janeiro, RJ CEP 20231-050, Brazil; (P.N.-N.); (M.S.R.)
- Departamento de Bioquímica, IBRAG, Universidade do Estado do Rio de Janeiro, Av. 28 de Setembro 87, Fundos, Pavilhão Américo Piquet Carneiro-4º andar, Rio de Janeiro, RJ CEP 20551-030, Brazil;
- Correspondence: ; Tel.: +55-21-3207-6598
| |
Collapse
|
18
|
Couto-Vieira J, Nicolau-Neto P, Costa EP, Figueira FF, Simão TDA, Okorokova-Façanha AL, Ribeiro Pinto LF, Façanha AR. Multi-cancer V-ATPase molecular signatures: A distinctive balance of subunit C isoforms in esophageal carcinoma. EBioMedicine 2020; 51:102581. [PMID: 31901859 PMCID: PMC6948166 DOI: 10.1016/j.ebiom.2019.11.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 01/05/2023] Open
Abstract
Background V-ATPases are hetero-oligomeric enzymes consisting of 13 subunits and playing key roles in ion homeostasis and signaling. Differential expression of these proton pumps has been implicated in carcinogenesis and metastasis. To elucidate putative molecular signatures underlying these phenomena, we evaluated the expression of V-ATPase genes in esophageal squamous cell carcinoma (ESCC) and extended the analysis to other cancers. Methods Expression of all V-ATPase genes were analyzed in ESCC by a microarray data and in different types of tumors available from public databases. Expression of C isoforms was validated by qRT-PCR in paired ESCC samples. Findings A differential expression pattern of V-ATPase genes was found in different tumors, with combinations in up- and down-regulation leading to an imbalance in the expression ratios of their isoforms. Particularly, a high C1 and low C2 expression pattern accurately discriminated ESCC from normal tissues. Structural modeling of C2a isoform uncovered motifs for oncogenic kinases in an additional peptide stretch, and an actin-biding domain downstream to this sequence. Interpretation Altogether these data revealed that the expression ratios of subunits/isoforms could form a conformational code that controls the H+ pump regulation and interactions related to tumorigenesis. This study establishes a paradigm change by uncovering multi-cancer molecular signatures present in the V-ATPase structure, from which future studies must address the complexity of the onco-related V-ATPase assemblies as a whole, rather than targeting changes in specific subunit isoforms. Funding This work was supported by grants from CNPq and FAPERJ-Brazil.
Collapse
Affiliation(s)
- Juliana Couto-Vieira
- Laboratório de Biologia Celular e Tecidual, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Pedro Nicolau-Neto
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer - INCA, Rio de Janeiro, RJ, Brazil
| | - Evenilton Pessoa Costa
- Laboratório de Biologia Celular e Tecidual, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Frederico Firme Figueira
- Laboratório de Biologia Celular e Tecidual, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | | | - Anna Lvovna Okorokova-Façanha
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Luis Felipe Ribeiro Pinto
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer - INCA, Rio de Janeiro, RJ, Brazil; Departamento de Bioquímica, Universidade Estadual do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Arnoldo Rocha Façanha
- Laboratório de Biologia Celular e Tecidual, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil.
| |
Collapse
|
19
|
Zeng R, Liang Y, Farooq MU, Zhang Y, Ei HH, Tang Z, Zheng T, Su Y, Ye X, Jia X, Zhu J. Alterations in transcriptome and antioxidant activity of naturally aged mice exposed to selenium-rich rice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:17834-17844. [PMID: 31037530 DOI: 10.1007/s11356-019-05226-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 04/17/2019] [Indexed: 06/09/2023]
Abstract
Selenium (Se) is a vital element which leads to strong antioxidation in animals and humans. However, the mechanism underlying natural cereal Se-induced biological changes is not well understood. This study intended to explore the gene differential expression in naturally aged mice exposed to selenium by RNA-Seq technique. A total spectrum of 53 differentially expressed genes was quantified in mice heart tissues treated with Se-rich and general rice. The GO functional annotation of differentially expressed genes disclosed the enrichment of cellular process, ionic binding, biological regulation, and catalytic activity. One hundred twenty-three differential pathways (cardiovascular diseases, immune system, transport and catabolism, longevity regulating, and PI3K-AKT signaling) were identified according to KEGG metabolic terms. Afterwards, the effect of Se-rich rice on the antioxidant activity was assessed. The selenium-rich diet increased the total antioxidant capacity (T-AOC), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) in mice serum and livers while significantly reduces methane dicarboxylic aldehyde (MDA) contents. FOXO1 and FOXO3 genes, which acted as the regulators of apoptosis and the antioxidant enzyme, were significantly enhanced in mice when fed with Se-rich rice. In short, the present findings disclosed the alluring insights of organic and inorganic selenium sources on certain biological processes and antioxidant activity of living bodies. However, long-term trials are still required to draw a definitive conclusion, including risks and benefit analysis for various management strategies.
Collapse
Affiliation(s)
- Rui Zeng
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yuanke Liang
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Muhammad Umer Farooq
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yujie Zhang
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Hla Hla Ei
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhichen Tang
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Tengda Zheng
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yang Su
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaoying Ye
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaomei Jia
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jianqing Zhu
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
20
|
Vallejo-Díaz J, Chagoyen M, Olazabal-Morán M, González-García A, Carrera AC. The Opposing Roles of PIK3R1/p85α and PIK3R2/p85β in Cancer. Trends Cancer 2019; 5:233-244. [PMID: 30961830 DOI: 10.1016/j.trecan.2019.02.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/11/2019] [Accepted: 02/15/2019] [Indexed: 01/04/2023]
Abstract
Dysregulation of the PI3K/PTEN pathway is a frequent event in cancer, and PIK3CA and PTEN are the most commonly mutated genes after TP53. PIK3R1 is the predominant regulatory isoform of PI3K. PIK3R2 is an ubiquitous isoform that has been so far overlooked, but data from The Cancer Genome Atlas shows that increased expression of PIK3R2 is also frequent in cancer. In contrast to PIK3R1, which is a tumor-suppressor gene, PIK3R2 is an oncogene. We review here the opposing roles of PIK3R1 and PIK3R2 in cancer, the regulatory mechanisms that control PIK3R2 expression, and emerging therapeutic approaches targeting PIK3R2.
Collapse
Affiliation(s)
- Jesús Vallejo-Díaz
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Cantoblanco, Madrid E-28049, Spain
| | - Monica Chagoyen
- Department of Systems Biology, Centro Nacional de Biotecnología, CSIC, Universidad Autónoma de Madrid, Cantoblanco, Madrid E-28049, Spain
| | - Manuel Olazabal-Morán
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Cantoblanco, Madrid E-28049, Spain
| | - Ana González-García
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Cantoblanco, Madrid E-28049, Spain
| | - Ana Clara Carrera
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Cantoblanco, Madrid E-28049, Spain.
| |
Collapse
|
21
|
Li J, Liu X, Li C, Wang W. miR-224-5p inhibits proliferation, migration, and invasion by targeting PIK3R3/AKT3 in uveal melanoma. J Cell Biochem 2019; 120:12412-12421. [PMID: 30825222 DOI: 10.1002/jcb.28507] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/10/2018] [Accepted: 12/14/2018] [Indexed: 12/27/2022]
Abstract
Uveal melanoma (UM) is the most common primary intraocular malignancy in adults. Accumulating investigations have identified the aberrant expression of miRNAs (microRNAs) in UM, such as miR-181, miR-20a, miR-144, miR-146a. The purpose of this study is to investigate the biological function of miR-224-5p in UM. The expression of miR-224-5p, PIK3R3, and AKT3 in 30 tumor tissues and paired adjacent noncancerous tissues were analyzed using Western blot analysis and quantitative real-time polymerase chain reaction (qRT-PCR) assays. Cell proliferation assay, transwell assay, and wound healing assay were used to measure the effects of miR-224-5p on the motility of UM in vitro. Western blot analysis and luciferase assays were used to detect the expression of PIK3R3 and AKT3 as miR-224-5p downstream targets. The results of Western blot analysis and qRT-PCR assays indicated that the expression of miR-224-5p was lower in UM tissues compared to normal tissue, while the expression of PIK3R3 and AKT3 were simultaneously increased. Upregulation of miR-224-5p significantly inhibited capacities of proliferation, invasion, and migration of OCM-1A cells and decreased expression of PIK3R3 and AKT3. Luciferase assay demonstrated PIK3R3 and AKT3 as downstream targets of miR-224-5p. Moreover, upregulating PIK3R3 and AKT3 restrained miR-224-5p-induced inhibition of the motility of OCM-1A cells. Thus, our study proved that miR-224-5p was involved in proliferation, invasion, and migration of UM cells via regulation the expression of PIK3R3 and AKT3. And the results also established a miR-224-5p/PIK3R3/PI3K/AKT axis in the regulation of UM progression, providing an experimental basis for further exploring the miR-224-5p as a therapeutic and diagnosis target for patients with UM.
Collapse
Affiliation(s)
- Jianchang Li
- Department of Ophthalmology, The Affiliated Huaian No. 1 People's Hospital, Nanjing Medical University, Huai'an, China
| | - Xiuming Liu
- Department of Ophthalmology, The Affiliated Huaian No. 1 People's Hospital, Nanjing Medical University, Huai'an, China
| | - Chaopeng Li
- Department of Ophthalmology, The Affiliated Huaian No. 1 People's Hospital, Nanjing Medical University, Huai'an, China
| | - Wenqi Wang
- Department of Ophthalmology, The Affiliated Huaian No. 1 People's Hospital, Nanjing Medical University, Huai'an, China
| |
Collapse
|
22
|
Souza-Santos PTD, Soares Lima SC, Nicolau-Neto P, Boroni M, Meireles Da Costa N, Brewer L, Menezes AN, Furtado C, Moreira MAM, Seuanez HN, de Almeida Simão T, Ribeiro Pinto LF. Mutations, Differential Gene Expression, and Chimeric Transcripts in Esophageal Squamous Cell Carcinoma Show High Heterogeneity. Transl Oncol 2018; 11:1283-1291. [PMID: 30172240 PMCID: PMC6121831 DOI: 10.1016/j.tranon.2018.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/03/2018] [Accepted: 08/03/2018] [Indexed: 12/27/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a frequent and lethal neoplasia. As recent advances in targeted therapy have not improved ESCC prognosis, characterization of molecular alterations associated to this tumor is of foremost relevance. In this study, we analyze, for the first time, the complete genomic profile of ESCC by RNA-seq. TP53 was the most frequently mutated gene in the investigation and validation sets (78.6% and 67.4%, respectively). Differential expression analysis between tumor and nontumor adjacent mucosa showed 6698 differentially expressed genes, most of which were overexpressed (74%). Enrichment analysis identified overrepresentation of Wnt pathway, with overexpressed activators and underexpressed inactivators, suggesting activation of canonical and noncanonical Wnt signaling pathways. Higher WNT7B expression was associated with poor prognosis. Twenty-one gene fusions were identified in 50% of tumors, none of which involving the same genes in different patients; 71% of fusions involved syntenic genes. Comparisons with TCGA data showed co-amplification of seven gene pairs involved in fusions in the present study (~33%), suggesting that these rearrangements might have been driven by chromoanagenesis. In conclusion, genomic alterations in ESCC are highly heterogeneous, impacting negatively in target therapy development.
Collapse
Affiliation(s)
- Paulo Thiago de Souza-Santos
- Molecular Carcinogenesis Program, Instituto Nacional de Câncer-INCA, Rua Andre Cavalcanti, 37-6° andar, Centro, Rio de Janeiro, RJ, Brasil, 20231-050.
| | - Sheila Coelho Soares Lima
- Molecular Carcinogenesis Program, Instituto Nacional de Câncer-INCA, Rua Andre Cavalcanti, 37-6° andar, Centro, Rio de Janeiro, RJ, Brasil, 20231-050.
| | - Pedro Nicolau-Neto
- Molecular Carcinogenesis Program, Instituto Nacional de Câncer-INCA, Rua Andre Cavalcanti, 37-6° andar, Centro, Rio de Janeiro, RJ, Brasil, 20231-050.
| | - Mariana Boroni
- Bioinformatics and Computational Biology Laboratory, Instituto Nacional de Câncer-INCA, Rua Andre Cavalcanti, 37-1° andar, Centro, Rio de Janeiro, RJ, Brasil, 20231-050.
| | - Nathalia Meireles Da Costa
- Molecular Carcinogenesis Program, Instituto Nacional de Câncer-INCA, Rua Andre Cavalcanti, 37-6° andar, Centro, Rio de Janeiro, RJ, Brasil, 20231-050.
| | - Lilian Brewer
- Biochemistry Department, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Boulevard 28 de Setembro, 77-Maracanã, Rio de Janeiro, RJ, Brasil, 20551-030.
| | - Albert Nobre Menezes
- College of Medical and Dental Sciences, University of Birmingham, Vicent Drive, Edgbaston, Birmingham, B15 2TT, UK.
| | - Carolina Furtado
- Genetics Program, Instituto Nacional de Câncer-INCA, Rua Andre Cavalcanti, 37-4° andar, Centro, Rio de Janeiro, RJ, Brasil, 20231-050.
| | - Miguel Angelo Martins Moreira
- Genetics Program, Instituto Nacional de Câncer-INCA, Rua Andre Cavalcanti, 37-4° andar, Centro, Rio de Janeiro, RJ, Brasil, 20231-050.
| | - Hector N Seuanez
- Genetics Program, Instituto Nacional de Câncer-INCA, Rua Andre Cavalcanti, 37-4° andar, Centro, Rio de Janeiro, RJ, Brasil, 20231-050.
| | - Tatiana de Almeida Simão
- Biochemistry Department, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Boulevard 28 de Setembro, 77-Maracanã, Rio de Janeiro, RJ, Brasil, 20551-030.
| | - Luis Felipe Ribeiro Pinto
- Molecular Carcinogenesis Program, Instituto Nacional de Câncer-INCA, Rua Andre Cavalcanti, 37-6° andar, Centro, Rio de Janeiro, RJ, Brasil, 20231-050; Biochemistry Department, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Boulevard 28 de Setembro, 77-Maracanã, Rio de Janeiro, RJ, Brasil, 20551-030.
| |
Collapse
|