1
|
AlHilli MM, Sangwan N, Myers A, Tewari S, Lindner DJ, Cresci GAM, Reizes O. The effects of dietary fat on gut microbial composition and function in ovarian cancer. RESEARCH SQUARE 2025:rs.3.rs-5904007. [PMID: 39975892 PMCID: PMC11838760 DOI: 10.21203/rs.3.rs-5904007/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Objectives The gut microbiome (GM) is pivotal in regulating inflammation, immune responses, and cancer progression. This study investigates the effects of a ketogenic diet (KD) and a high-fat/low-carbohydrate (HF/LC) diet on GM alterations and tumor growth in a syngeneic mouse model of high-grade serous ovarian cancer (EOC). Methods Thirty female C57BL/6J mice injected with KPCA cells were randomized into KD, HF/LC, and low-fat/high-carbohydrate (LF/HC) diet groups. Tumor growth was monitored with live, in vivo imaging. Stool samples were collected at the time of euthanasia and analyzed by 16SrRNA sequencing and shotgun metagenomic sequencing was performed to identify differential microbial taxonomic composition and metabolic function. Results Our findings revealed that KD and HF/LC diets significantly accelerated EOC tumor growth compared to the LF/HC diet in a xenograft model. GM diversity was markedly reduced in KD and HF/LC-fed mice, correlating with increased tumor growth, whereas LF/HC-fed mice showed higher GM diversity. Metagenomic analyses identified distinct alterations in microbial taxa including Bacteroides, Lachnospiracae bacterium, Bacterium_D16_50, and Enterococcus faecalis predominantly abundant in HF/LC-fed mice, Dubsiella_newyorkensis predominantly abundant in LF/HC-fed, and KD fed mice showing a higher abundance of Akkermansiaand Bacteroides. Functional pathways across diet groups indicated polyamine biosynthesis and fatty acid oxidation pathways were enriched in HF/LC-fed mice. Conclusions These results highlight the intricate relationship between diet, the gut microbiome, and tumor metabolism. The potential role of dietary interventions in cancer prevention and treatment warrants further investigation.
Collapse
|
2
|
Han EJ, Ahn JS, Choi YJ, Kim DH, Choi JS, Chung HJ. Exploring the gut microbiome: A potential biomarker for cancer diagnosis, prognosis, and therapy. Biochim Biophys Acta Rev Cancer 2025; 1880:189251. [PMID: 39719176 DOI: 10.1016/j.bbcan.2024.189251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 12/26/2024]
Abstract
The gut microbiome, a complex community of trillions of microorganisms in the intestines, is crucial in maintaining human health. Recent advancements in microbiome research have unveiled a compelling link between the gut microbiome and cancer development and progression. Alterations in the composition and function of the gut microbiome, known as dysbiosis, have been implicated in various types of cancer, including, esophageal, liver, colon, pancreatic, and gastrointestinal. However, the specific gut microbial strains associated with the development or progression of cancers in various tissues remain largely unclear. Here, we summarize current research findings on the gut microbiome of multiple cancers. This review aims to identify key gut microbial targets that closely influence cancer development based on current research findings. To accurately evaluate the effectiveness of the gut microbiome as a clinical tool for cancer, further research is needed to explore its potential as a biomarker and therapeutic strategy.
Collapse
Affiliation(s)
- Eui-Jeong Han
- Gwangju Center, Korea Basic Science Institute, Gwangju 61751, Republic of Korea
| | - Ji-Seon Ahn
- Gwangju Center, Korea Basic Science Institute, Gwangju 61751, Republic of Korea
| | - Yu-Jin Choi
- Gwangju Center, Korea Basic Science Institute, Gwangju 61751, Republic of Korea
| | - Da-Hye Kim
- Gwangju Center, Korea Basic Science Institute, Gwangju 61751, Republic of Korea
| | - Jong-Soon Choi
- Research Center for Materials Analysis, Korea Basic Science Institute, Daejeon 34133, Republic of Korea; College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hea-Jong Chung
- Gwangju Center, Korea Basic Science Institute, Gwangju 61751, Republic of Korea.
| |
Collapse
|
3
|
Altrawy A, Khalifa MM, Abdelmaksoud A, Khaled Y, Saleh ZM, Sobhy H, Abdel-Ghany S, Alqosaibi A, Al-Muhanna A, Almulhim J, El-Hashash A, Sabit H, Arneth B. Metabolites in the Dance: Deciphering Gut-Microbiota-Mediated Metabolic Reprogramming of the Breast Tumor Microenvironment. Cancers (Basel) 2024; 16:4132. [PMID: 39766032 PMCID: PMC11674667 DOI: 10.3390/cancers16244132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/29/2024] [Accepted: 12/08/2024] [Indexed: 01/05/2025] Open
Abstract
Breast cancer (BC), a major cause of death among women worldwide, has traditionally been linked to genetic and environmental factors. However, emerging research highlights the gut microbiome's significant role in shaping BC development, progression, and treatment outcomes. This review explores the intricate relationship between the gut microbiota and the breast tumor microenvironment, emphasizing how these microbes influence immune responses, inflammation, and metabolic pathways. Certain bacterial species in the gut either contribute to or hinder BC progression by producing metabolites that affect hormone metabolism, immune system pathways, and cellular signaling. An imbalance in gut bacteria, known as dysbiosis, has been associated with a heightened risk of BC, with metabolites like short-chain fatty acids (SCFAs) and enzymes such as β-glucuronidase playing key roles in this process. Additionally, the gut microbiota can impact the effectiveness of chemotherapy, as certain bacteria can degrade drugs like gemcitabine and irinotecan, leading to reduced treatment efficacy. Understanding the complex interactions between gut bacteria and BC may pave the way for innovative treatment approaches, including personalized microbiome-targeted therapies, such as probiotics and fecal microbiota transplants, offering new hope for more effective prevention, diagnosis, and treatment of BC.
Collapse
Affiliation(s)
- Afaf Altrawy
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P. O. Box 77, Egypt; (A.A.); (M.M.K.); (H.S.); (H.S.)
| | - Maye M. Khalifa
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P. O. Box 77, Egypt; (A.A.); (M.M.K.); (H.S.); (H.S.)
| | - Asmaa Abdelmaksoud
- Department of Pharmaceutical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P. O. Box 77, Egypt;
| | - Yomna Khaled
- Department of Bioinformatics and Functional Genomics, College of Biotechnology, Misr University for Science and Technology, Giza P. O. Box 77, Egypt;
| | - Zeinab M. Saleh
- Department of Agriculture Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P. O. Box 77, Egypt;
| | - Hager Sobhy
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P. O. Box 77, Egypt; (A.A.); (M.M.K.); (H.S.); (H.S.)
| | - Shaimaa Abdel-Ghany
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P. O. Box 77, Egypt;
| | - Amany Alqosaibi
- Department of Biology, College of Science, Imam Abdulrahman bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Afnan Al-Muhanna
- King Fahad Hospital of the University, Alkhobar, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Jawaher Almulhim
- Department of Biological Sciences, King Faisal University, Alahsa 31982, Saudi Arabia;
| | - Ahmed El-Hashash
- Department of Biomedicine, Texas A&M University, College Station, TX 77840, USA;
| | - Hussein Sabit
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P. O. Box 77, Egypt; (A.A.); (M.M.K.); (H.S.); (H.S.)
| | - Borros Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Philipps University Marburg, Baldinger Str., 35043 Marburg, Germany
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Justus Liebig University, Feulgen Str., 35392 Giessen, Germany
| |
Collapse
|
4
|
Wang X, Gao H, Zeng Y, Chen J. Exploring the relationship between gut microbiota and breast diseases using Mendelian randomization analysis. Front Med (Lausanne) 2024; 11:1450298. [PMID: 39697203 PMCID: PMC11654425 DOI: 10.3389/fmed.2024.1450298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/28/2024] [Indexed: 12/20/2024] Open
Abstract
Background Growing evidence suggests a relationship between gut microbiota composition and breast diseases, although the precise nature of this association remains uncertain. To investigate the causal relationship between gut microbiota and breast diseases, we utilized two-way Mendelian randomization (MR) analysis. Methods Four common diseases were included as outcomes: breast cancer, breast cysts, inflammatory disorders of the breast, and infections of the breast associated with childbirth, along with their subtypes. Genetic data on gut microbiota were extracted from genome-wide association studies (GWAS). The primary approach used to investigate the association between these genetic factors and gut microbiota was the inverse-variance-weighted (IVW) method with random-effects types. Sensitivity analyses, such as Cochran's Q test, the MR-Egger intercept test, and leave-one-out analysis, were conducted to ensure the stability and reliability of the MR findings. Results We discovered plausible causal links between 20 microbial categories and the breast diseases, with a significance level of p < 0.05. Notably, Family.Rikenellaceae (p: 0.0013) maintained a significant inverse relationship with overall breast cancer (BC), after the Bonferroni correction. In the reverse MR analysis, interactions were observed between Genus.Adlercreutzia and estrogen receptor-positive cancer. In addition, Genus.Sellimonas, Family.Rikenellaceae, and Genus.Paraprevotella were associated with ER+ and overall breast cancer, whereas Genus.Dorea was linked to both estrogen receptor-negative and overall breast cancer. Family.Prevotellaceae was the only category correlated with inflammatory breast disorders. Moreover, Genus Eubacteriumruminantiumgroup, Genus.Lactococcus, and Family.Alcaligenaceae were associated with breast cysts, while Genus.Anaerofilum, Genus.Butyricimonas, Order.Coriobacteriales, Order.Pasteurellales, and Order.Verrucomicrobiales showed significant associations with infections of the breast associated with childbirth. No evidence of heterogeneity or horizontal pleiotropy was found. Conclusion Our Mendelian randomization analysis confirmed a causal relationship between gut microbiota and breast diseases. Early stool tests may be a viable method for screening diseases to identify people at higher risk of breast diseases.
Collapse
Affiliation(s)
- Xin Wang
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Breast Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Haoyu Gao
- Division of Cardiovascular Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yiyao Zeng
- Department of Cardiology, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, Jiangsu, China
| | - Jie Chen
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Breast Disease Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Huang L, Jiang C, Yan M, Wan W, Li S, Xiang Z, Wu J. The oral-gut microbiome axis in breast cancer: from basic research to therapeutic applications. Front Cell Infect Microbiol 2024; 14:1413266. [PMID: 39639864 PMCID: PMC11617537 DOI: 10.3389/fcimb.2024.1413266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 11/01/2024] [Indexed: 12/07/2024] Open
Abstract
As a complicated and heterogeneous condition, breast cancer (BC) has posed a tremendous public health challenge across the world. Recent studies have uncovered the crucial effect of human microbiota on various perspectives of health and disease, which include cancer. The oral-gut microbiome axis, particularly, have been implicated in the occurrence and development of colorectal cancer through their intricate interactions with host immune system and modulation of systemic inflammation. However, the research concerning the impact of oral-gut microbiome axis on BC remains scarce. This study focused on comprehensively reviewing and summarizing the latest ideas about the potential bidirectional relation of the gut with oral microbiota in BC, emphasizing their potential impact on tumorigenesis, treatment response, and overall patient outcomes. This review can reveal the prospect of tumor microecology and propose a novel viewpoint that the oral-gut microbiome axis can be a breakthrough point in future BC studies.
Collapse
Affiliation(s)
- Lan Huang
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Chun Jiang
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Meina Yan
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Weimin Wan
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Shuxiang Li
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Ze Xiang
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jian Wu
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| |
Collapse
|
6
|
McCune E, Sharma A, Johnson B, O'Meara T, Theiner S, Campos M, Heditsian D, Brain S, Gilbert JA, Esserman L, Campbell MJ. Gut and oral microbial compositional differences in women with breast cancer, women with ductal carcinoma in situ, and healthy women. mSystems 2024; 9:e0123724. [PMID: 39470189 PMCID: PMC11575313 DOI: 10.1128/msystems.01237-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/05/2024] [Indexed: 10/30/2024] Open
Abstract
This study characterized and compared the fecal and oral microbiota from women with early-stage breast cancer (BC), women with ductal carcinoma in situ (DCIS), and healthy women. Fecal and oral samples were collected from newly diagnosed patients prior to any therapy and characterized using 16S rRNA sequencing. Measures of gut microbial alpha diversity were significantly lower in the BC vs healthy cohort. Beta diversity differed significantly between the BC or DCIS and healthy groups, and several differentially abundant taxa were identified. Clustering (non-negative matrix factorization) of the gut microbiota identified five bacterial guilds dominated by Prevotella, Enterobacteriaceae, Akkermansia, Clostridiales, or Bacteroides. The Bacteroides and Enterobacteriaceae guilds were significantly more abundant in the BC cohort compared to healthy controls, whereas the Clostridiales guild was more abundant in the healthy group. Finally, prediction of functional pathways identified 23 pathways that differed between the BC and healthy gut microbiota including lipopolysaccharide biosynthesis, glycan biosynthesis and metabolism, lipid metabolism, and sphingolipid metabolism. In contrast to the gut microbiomes, there were no significant differences in alpha or beta diversity in the oral microbiomes, and very few differentially abundant taxa were observed. Non-negative matrix factorization analysis of the oral microbiota samples identified seven guilds dominated by Veillonella, Prevotella, Gemellaceae, Haemophilus, Neisseria, Propionibacterium, and Streptococcus; however, none of these guilds were differentially associated with the different cohorts. Our results suggest that alterations in the gut microbiota may provide the basis for interventions targeting the gut microbiome to improve treatment outcomes and long-term prognosis. IMPORTANCE Emerging evidence suggests that the gut microbiota may play a role in breast cancer. Few studies have evaluated both the gut and oral microbiomes in women with breast cancer (BC), and none have characterized these microbiomes in women with ductal carcinoma in situ (DCIS). We surveyed the gut and oral microbiomes from women with BC or DCIS and healthy women and identified compositional and functional features of the gut microbiota that differed between these cohorts. In contrast, very few differential features were identified in the oral microbiota. Understanding the role of gut bacteria in BC and DCIS may open up new opportunities for the development of novel markers for early detection (or markers of susceptibility) as well as new strategies for prevention and/or treatment.
Collapse
Affiliation(s)
- Emma McCune
- Department of Surgery, University of California, San Francisco, California, USA
| | - Anukriti Sharma
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Breanna Johnson
- Department of Surgery, University of California, San Francisco, California, USA
| | - Tess O'Meara
- Department of Surgery, University of California, San Francisco, California, USA
| | - Sarah Theiner
- Department of Surgery, University of California, San Francisco, California, USA
| | - Maribel Campos
- Department of Surgery, University of California, San Francisco, California, USA
| | - Diane Heditsian
- Department of Surgery, University of California, San Francisco, California, USA
| | - Susie Brain
- Department of Surgery, University of California, San Francisco, California, USA
| | - Jack A Gilbert
- Department of Pediatrics, University of California, San Diego, California, USA
| | - Laura Esserman
- Department of Surgery, University of California, San Francisco, California, USA
| | - Michael J Campbell
- Department of Surgery, University of California, San Francisco, California, USA
| |
Collapse
|
7
|
Ruiz-Marín CM, Isabel Álvarez-Mercado A, Plaza-Díaz J, Rodríguez-Lara A, Gallart-Aragón T, Sánchez-Barrón MT, Lartategui SDR, Alcaide-Lucena M, Fernández MF, Fontana L. A Clustering Study of Sociodemographic Data, Dietary Patterns, and Gut Microbiota in Healthy and Breast Cancer Women Participating in the MICROMA Study. Mol Nutr Food Res 2024; 68:e2400253. [PMID: 38950423 DOI: 10.1002/mnfr.202400253] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/09/2024] [Indexed: 07/03/2024]
Abstract
SCOPE This work is part of the clinical study NCT03885648 registered in ClinicalTrials.gov, aimed at studying the relationship among breast cancer, microbiota, and exposure to environmental pollutants. As a first step, we characterized and evaluated risk factors of the participants. METHODS AND RESULTS A case-control study was designed with breast cancer (cases, n = 122) and healthy women (controls, n = 56) recruited in two hospitals of Andalusia (Southern Spain). Participants answered questionnaires of Mediterranean diet adherence and food frequency. Data were collected from medical histories and microbiota was analyzed on stool samples. Most cases (78.2%) were diagnosed as stages I and II. Cases had higher age, body mass index (BMI), glucose, cholesterol, and potassium values than controls. Cases exhibited higher adherence to the Mediterranean diet and their food consumption was closer to that dietary pattern. A hierarchical cluster analysis revealed that the Bacillota/Bacteroidota ratio was the most relevant variable in women with breast cancer, which was higher in this group compared with controls. CONCLUSION Although cases exhibited higher adherence to the Mediterranean diet compared with controls, they presented features and microbiota alterations typical of the metabolic syndrome, probably due to their higher BMI and reflecting changes in their lifestyle around the time of diagnosis.
Collapse
Affiliation(s)
- Carmen María Ruiz-Marín
- Unit of Mammary Pathology, General Surgery Service, University Hospital of Jaén, Jaén, Spain
| | - Ana Isabel Álvarez-Mercado
- Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, Parque Tecnológico Ciencias de la Salud, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Departament of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain
| | - Julio Plaza-Díaz
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Spain
| | - Avilene Rodríguez-Lara
- Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, Parque Tecnológico Ciencias de la Salud, University of Granada, Granada, Spain
| | - Tania Gallart-Aragón
- Unit of Mammary Pathology, General Surgery Service, University Hospital Clínico San Cecilio, Granada, Spain
| | | | | | - Miriam Alcaide-Lucena
- Unit of Mammary Pathology, General Surgery Service, University Hospital Clínico San Cecilio, Granada, Spain
| | - Mariana F Fernández
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Department of Radiology and Physical Medicine, School of Medicine, University of Granada, Granada, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Luis Fontana
- Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, Parque Tecnológico Ciencias de la Salud, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Spain
| |
Collapse
|
8
|
Naik A, Godbole M. Elucidating the Intricate Roles of Gut and Breast Microbiomes in Breast Cancer Metastasis to the Bone. Cancer Rep (Hoboken) 2024; 7:e70005. [PMID: 39188104 PMCID: PMC11347752 DOI: 10.1002/cnr2.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 07/10/2024] [Accepted: 08/11/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Breast cancer is the most predominant and heterogeneous cancer in women. Moreover, breast cancer has a high prevalence to metastasize to distant organs, such as the brain, lungs, and bones. Patients with breast cancer metastasis to the bones have poor overall and relapse-free survival. Moreover, treatment using chemotherapy and immunotherapy is ineffective in preventing or reducing cancer metastasis. RECENT FINDINGS Microorganisms residing in the gut and breast, termed as the resident microbiome, have a significant influence on the formation and progression of breast cancer. Recent studies have identified some microorganisms that induce breast cancer metastasis to the bone. These organisms utilize multiple mechanisms, including induction of epithelial-mesenchymal transition, steroid hormone metabolism, immune modification, bone remodeling, and secretion of microbial products that alter tumor microenvironment, and enhance propensity of breast cancer cells to metastasize. However, their involvement makes these microorganisms suitable as novel therapeutic targets. Thus, studies are underway to prevent and reduce breast cancer metastasis to distant organs, including the bone, using chemotherapeutic or immunotherapeutic drugs, along with probiotics, antibiotics or fecal microbiota transplantation. CONCLUSIONS The present review describes association of gut and breast microbiomes with bone metastases. We have elaborated on the mechanisms utilized by breast and gut microbiomes that induce breast cancer metastasis, especially to the bone. The review also highlights the current treatment options that may target both the microbiomes for preventing or reducing breast cancer metastases. Finally, we have specified the necessity of maintaining a diverse gut microbiome to prevent dysbiosis, which otherwise may induce breast carcinogenesis and metastasis especially to the bone. The review may facilitate more detailed investigations of the causal associations between these microbiomes and bone metastases. Moreover, the potential treatment options described in the review may promote discussions and research on the modes to improve survival of patients with breast cancer by targeting the gut and breast microbiomes.
Collapse
Affiliation(s)
- Amruta Naik
- Department of Biosciences and Technology, School of Science and Environmental StudiesDr. Vishwanath Karad MIT World Peace UniversityPuneIndia
| | - Mukul S. Godbole
- Department of Biosciences and Technology, School of Science and Environmental StudiesDr. Vishwanath Karad MIT World Peace UniversityPuneIndia
| |
Collapse
|
9
|
Gómez García AM, López Muñoz F, García-Rico E. The Microbiota in Cancer: A Secondary Player or a Protagonist? Curr Issues Mol Biol 2024; 46:7812-7831. [PMID: 39194680 DOI: 10.3390/cimb46080463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 08/29/2024] Open
Abstract
The intestinal microbiota and the human body are in a permanent interaction. There is a symbiotic relationship in which the microbiota plays a vitally important role in the performance of numerous functions, including digestion, metabolism, the development of lymphoid tissue, defensive functions, and other processes. It is a true metabolic organ essential for life and has potential involvement in various pathological states, including cancer and pathologies other than those of a digestive nature. A growing topic of great interest for its implications is the relationship between the microbiota and cancer. Dysbiosis plays a role in oncogenesis, tumor progression, and even the response to cancer treatment. The effect of the microbiota on tumor development goes beyond a local effect having a systemic effect. Another aspect of great interest regarding the intestinal microbiota is its relationship with drugs, modifying their activity. There is increasing evidence that the microbiota influences the therapeutic activity and side effects of antineoplastic drugs and also modulates the response of several tumors to antineoplastic therapy through immunological circuits. These data suggest the manipulation of the microbiota as a possible adjuvant to improve oncological treatment. Is it possible to manipulate the microbiota for therapeutic purposes?
Collapse
Affiliation(s)
- Ana María Gómez García
- Internal Medicine Unit, Hospital Universitario HM Madrid, 28015 Madrid, Spain
- Facultad HM de Ciencias de la Salud de la Universidad Camilo José Cela, 28692 Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, 28015 Madrid, Spain
| | - Francisco López Muñoz
- Facultad HM de Ciencias de la Salud de la Universidad Camilo José Cela, 28692 Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, 28015 Madrid, Spain
| | - Eduardo García-Rico
- Facultad HM de Ciencias de la Salud de la Universidad Camilo José Cela, 28692 Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, 28015 Madrid, Spain
- Medical Oncology Unit, Hospital Universitario HM Torrelodones, 28250 Torrelodones, Spain
| |
Collapse
|
10
|
Liang Y, Zhang Q, Yu J, Hu W, Xu S, Xiao Y, Ding H, Zhou J, Chen H. Tumour-associated and non-tumour-associated bacteria co-abundance groups in colorectal cancer. BMC Microbiol 2024; 24:242. [PMID: 38961349 PMCID: PMC11223424 DOI: 10.1186/s12866-024-03402-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND & AIMS Gut microbiota is closely related to the occurrence and development of colorectal cancer (CRC). However, the differences in bacterial co-abundance groups (CAGs) between tumor tissue (TT) and normal tissue (NT), as well as their associations with clinical features, are needed to be clarified. METHODS Bacterial 16 S rRNA sequencing was performed by using TT samples and NT samples of 251 patients with colorectal cancer. Microbial diversity, taxonomic characteristics, microbial composition, and functional pathways were compared between TT and NT. Hierarchical clustering was used to construct CAGs. RESULTS Four CAGs were grouped in the hierarchical cluster analysis. CAG 2, which was mainly comprised of pathogenic bacteria, was significantly enriched in TT samples (2.27% in TT vs. 0.78% in NT, p < 0.0001). CAG 4, which was mainly comprised of non-pathogenic bacteria, was significantly enriched in NT samples (0.62% in TT vs. 0.79% in NT, p = 0.0004). In addition, CAG 2 was also significantly associated with tumor microsatellite instability (13.2% in unstable vs. 2.0% in stable, p = 0.016), and CAG 4 was positively correlated with the level of CA199 (r = 0.17, p = 0.009). CONCLUSIONS Our research will deepen our understanding of the interactions among multiple bacteria and offer insights into the potential mechanism of NT to TT transition.
Collapse
Affiliation(s)
- Yuxuan Liang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Qingrong Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Jing Yu
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenyan Hu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Sihua Xu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yiyuan Xiao
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Hui Ding
- Department of General Surgery, First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Jiaming Zhou
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Haitao Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China.
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
11
|
Cui C, Yang T, Wang S, Jia Z, Zhao L, Han X, Sun X, Zong J, Wang S, Chen D. Discussion on the relationship between gut microbiota and glioma through Mendelian randomization test based on the brain gut axis. PLoS One 2024; 19:e0304403. [PMID: 38809931 PMCID: PMC11135782 DOI: 10.1371/journal.pone.0304403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/11/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND In the realm of Gut-Brain axis research, existing evidence points to a complex bidirectional regulatory mechanism between gut microbiota and the brain. However, the question of whether a causal relationship exists between gut microbiota and specific types of brain tumors, such as gliomas, remains unresolved. To address this gap, we employed publicly available Genome-Wide Association Study (GWAS) and MIOBEN databases, conducting an in-depth analysis using Two-Sample Mendelian Randomization (MR). METHOD We carried out two sets of MR analyses. The preliminary analysis included fewer instrumental variables due to a high genome-wide statistical significance threshold (5×10-8). To enable a more comprehensive and detailed analysis, we adjusted the significance threshold to 1×10-5. We performed linkage disequilibrium analysis (R2 <0.001, clumping distance = 10,000kb) and detailed screening of palindromic SNPs, followed by MR analysis and validation through sensitivity analysis. RESULTS Our findings reveal a causal relationship between gut microbiota and gliomas. Further confirmation via Inverse Variance Weighting (IVW) identified eight specific microbial communities related to gliomas. Notably, the Peptostreptococcaceae and Olsenella communities appear to have a protective effect, reducing glioma risk. CONCLUSION This study not only confirms the causal link between gut microbiota and gliomas but also suggests a new avenue for future glioma treatment.
Collapse
Affiliation(s)
- Chenzhi Cui
- Graduate school, Dalian Medical University, Dalian, Dalian, China
- Department of Neurosurgery, Dalian Municipal Central Hospital, Dalian, China
| | - Tianke Yang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- College of Integrative Medicine, Dalian Medical University, Dalian, China
| | - ShengYu Wang
- Medical Laboratory Technology, College of Medical Laboratory, Dalian Medical University, Dalian, China
| | - Zhuqiang Jia
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Naqu People’s Hospital, Tibet, China
| | - Lin Zhao
- Department of Quality Management, Dalian Municipal Central Hospital, Dalian, China
| | - Xin Han
- Naqu People’s Hospital, Tibet, China
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaohong Sun
- Department of Nursing, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Junwei Zong
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shouyu Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Dong Chen
- Graduate school, Dalian Medical University, Dalian, Dalian, China
- Department of Neurosurgery, Dalian Municipal Central Hospital, Dalian, China
| |
Collapse
|
12
|
Mashtoub S, Ullah S, Collinson A, Singh GR, Clark (Adnyamathanha) J, Leemaqz S, Paltiel O, Roder DM, Saxon B, McKinnon R, Pandol SJ, Roberts CT, Barreto SG. Childhood Cancer Incidence and Survival in South Australia and the Northern Territory, 1990-2017, with Emphasis on Indigenous Peoples. Cancers (Basel) 2024; 16:2057. [PMID: 38893175 PMCID: PMC11171054 DOI: 10.3390/cancers16112057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND & AIMS Reports of a rise in childhood cancer incidence in Australia and globally prompted the investigation of cancer incidence and survival in South Australia (SA) and the Northern Territory (NT) over a 28-year period, with emphasis on Indigenous peoples. METHODS This cross-sectional analysis of two prospective longitudinal databases, the SA and NT Cancer Registries (1990-2017), included all reported cases of childhood cancers. Poisson regression provided estimates of incidence rate ratios and survival was modelled using Cox proportional hazard models for children aged <5 and ≥5 years. RESULTS A total of 895 patients across SA (N = 753) and the NT (N = 142) were ascertained. Overall and in the NT, childhood cancer incidence was higher in males compared with females (IRR 1.19 [1.04-1.35] and 1.43 [1.02-2.01], respectively). Lymphocytic leukemia was the most reported cancer type across all locations. With reference to the 1990-1999 era (181.67/100,000), cancer incidence remained unchanged across subsequent eras in the combined cohort (SA and NT) (2000-2009: 190.55/100,000; 1.06 [0.91-1.25]; 2010-2017: 210.00/100,000; 1.15 [0.98-1.35]); similar outcomes were reflected in SA and NT cohorts. Cancer incidence amongst non-Indigenous children significantly decreased from the 1990-1999 era (278.32/100,000) to the 2000-2009 era (162.92/100,000; 0.58 [0.35-0.97]). Amongst 39 Indigenous children in the NT, incidence rates remained unchanged across eras (p > 0.05). With reference to the 1990-1999 era, overall survival improved in subsequent eras in SA (2000-2009: HR 0.53 [0.38-0.73]; 2010-2017: 0.44 [0.28-0.68]); however, remained unchanged in the NT (2000-2009: 0.78 [0.40-1.51]; 2010-2017: 0.50 [0.24-1.05]). In the NT, overall survival of Indigenous patients was significantly lower compared with the non-Indigenous cohort (3.42 [1.92-6.10]). While the survival of Indigenous children with cancer significantly improved in the last two eras (p < 0.05), compared to the 1990-1999 era, no change was noted amongst non-Indigenous children in the NT (p > 0.05). CONCLUSIONS The incidence of childhood cancers has remained unchanged over 28-years in SA and the NT. Encouragingly, improved survival rates over time were observed in SA and amongst Indigenous children of the NT. Nevertheless, survival rates in Indigenous children remain lower than non-Indigenous children.
Collapse
Affiliation(s)
- Suzanne Mashtoub
- Department of Surgery, Flinders Medical Centre, Bedford Park, Adelaide, SA 5042, Australia;
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia; (S.U.); (S.L.); (R.M.)
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia
| | - Shahid Ullah
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia; (S.U.); (S.L.); (R.M.)
| | | | - Gurmeet R. Singh
- Menzies School of Health Research, Charles Darwin University, Darwin, NT 0800, Australia;
| | - Justine Clark (Adnyamathanha)
- Indigenous Genomics, Telethon Kids Institute, Adelaide, SA 5000, Australia;
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| | - Shalem Leemaqz
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia; (S.U.); (S.L.); (R.M.)
| | - Ora Paltiel
- Braun School of Public Health, Hebrew University of Jerusalem, Jerusalem 9112102, Israel;
- Department of Hematology, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - David M. Roder
- Cancer Epidemiology and Population Health, UniSA Allied Health and Human Performance, Adelaide, SA 5001, Australia;
| | - Benjamin Saxon
- Department of Haematology/Oncology, Women’s and Children’s Hospital, Adelaide, SA 5000, Australia;
- Paediatric Education, University of Adelaide, Adelaide, SA 5005, Australia
| | - Ross McKinnon
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia; (S.U.); (S.L.); (R.M.)
- Flinders Health and Medical Research Institute, Adelaide, SA 5042, Australia
| | - Stephen J. Pandol
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - Claire T. Roberts
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia; (S.U.); (S.L.); (R.M.)
- Flinders Health and Medical Research Institute, Adelaide, SA 5042, Australia
| | - Savio George Barreto
- Department of Surgery, Flinders Medical Centre, Bedford Park, Adelaide, SA 5042, Australia;
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia; (S.U.); (S.L.); (R.M.)
- Flinders Health and Medical Research Institute, Adelaide, SA 5042, Australia
| |
Collapse
|
13
|
Deng Y, Hou X, Wang H, Du H, Liu Y. Influence of Gut Microbiota-Mediated Immune Regulation on Response to Chemotherapy. Pharmaceuticals (Basel) 2024; 17:604. [PMID: 38794174 PMCID: PMC11123941 DOI: 10.3390/ph17050604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/26/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
The involvement of the gut microbiota in anti-cancer treatment has gained increasing attention. Alterations to the structure and function of the gut bacteria are important factors in the development of cancer as well as the efficacy of chemotherapy. Recent studies have confirmed that the gut microbiota and related metabolites influence the pharmacological activity of chemotherapeutic agents through interactions with the immune system. This review aims to summarize the current knowledge of how malignant tumor and chemotherapy affect the gut microbiota, how the gut microbiota regulates host immune response, and how interactions between the gut microbiota and host immune response influence the efficacy of chemotherapy. Recent advances in strategies for increasing the efficiency of chemotherapy based on the gut microbiota are also described. Deciphering the complex homeostasis maintained by the gut microbiota and host immunity provides a solid scientific basis for bacterial intervention in chemotherapy.
Collapse
Affiliation(s)
- Yufei Deng
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China; (Y.D.); (X.H.); (H.W.)
- Cancer Institute, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Xiaoying Hou
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China; (Y.D.); (X.H.); (H.W.)
- Cancer Institute, School of Medicine, Jianghan University, Wuhan 430056, China
- Hubei Key Laboratory of Cognitive and Affective Disorders, Jianghan University, Wuhan 430056, China
| | - Haiping Wang
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China; (Y.D.); (X.H.); (H.W.)
- Cancer Institute, School of Medicine, Jianghan University, Wuhan 430056, China
- Hubei Key Laboratory of Cognitive and Affective Disorders, Jianghan University, Wuhan 430056, China
| | - Hongzhi Du
- Cancer Institute, School of Medicine, Jianghan University, Wuhan 430056, China
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yuchen Liu
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China; (Y.D.); (X.H.); (H.W.)
- Cancer Institute, School of Medicine, Jianghan University, Wuhan 430056, China
- Hubei Key Laboratory of Cognitive and Affective Disorders, Jianghan University, Wuhan 430056, China
| |
Collapse
|
14
|
Bilski K, Żeber-Lubecka N, Kulecka M, Dąbrowska M, Bałabas A, Ostrowski J, Dobruch A, Dobruch J. Microbiome Sex-Related Diversity in Non-Muscle-Invasive Urothelial Bladder Cancer. Curr Issues Mol Biol 2024; 46:3595-3609. [PMID: 38666955 PMCID: PMC11048804 DOI: 10.3390/cimb46040225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Sex-specific discrepancies in bladder cancer (BCa) are reported, and new studies imply that microbiome may partially explain the diversity. We aim to provide characterization of the bladder microbiome in both sexes diagnosed with non-muscle-invasive BCa with specific insight into cancer grade. In our study, 16S rRNA next-generation sequencing was performed on midstream urine, bladder tumor sample, and healthy-appearing bladder mucosa. Bacterial DNA was isolated using QIAamp Viral RNA Mini Kit. Metagenomic analysis was performed using hypervariable fragments of the 16S rRNA gene on Ion Torrent Personal Genome Machine platform. Of 41 sample triplets, 2153 taxa were discovered: 1739 in tumor samples, 1801 in healthy-appearing bladder mucosa and 1370 in midstream urine. Women were found to have smaller taxa richness in Chao1 index than men (p = 0.03). In comparison to low-grade tumors, patients with high-grade lesions had lower bacterial diversity and richness in urine. Significant differences between sexes in relative abundance of communities at family level were only observed in high-grade tumors.
Collapse
Affiliation(s)
- Konrad Bilski
- Department of Urology, Centre of Postgraduate Medical Education, Independent Public Hospital of Prof. W. Orlowski, 00-416 Warsaw, Poland;
| | - Natalia Żeber-Lubecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre for Postgraduate Medical Education, 02-781 Warsaw, Poland; (N.Ż.-L.); (M.K.); (J.O.)
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.D.); (A.B.)
| | - Maria Kulecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre for Postgraduate Medical Education, 02-781 Warsaw, Poland; (N.Ż.-L.); (M.K.); (J.O.)
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.D.); (A.B.)
| | - Michalina Dąbrowska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.D.); (A.B.)
| | - Aneta Bałabas
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.D.); (A.B.)
| | - Jerzy Ostrowski
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre for Postgraduate Medical Education, 02-781 Warsaw, Poland; (N.Ż.-L.); (M.K.); (J.O.)
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.D.); (A.B.)
| | | | - Jakub Dobruch
- Department of Urology, Centre of Postgraduate Medical Education, Independent Public Hospital of Prof. W. Orlowski, 00-416 Warsaw, Poland;
| |
Collapse
|
15
|
Yousefi Y, Baines KJ, Maleki Vareki S. Microbiome bacterial influencers of host immunity and response to immunotherapy. Cell Rep Med 2024; 5:101487. [PMID: 38547865 PMCID: PMC11031383 DOI: 10.1016/j.xcrm.2024.101487] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/21/2023] [Accepted: 03/04/2024] [Indexed: 04/19/2024]
Abstract
The gut microbiota influences anti-tumor immunity and can induce or inhibit response to immune checkpoint inhibitors (ICIs). Therefore, microbiome features are being studied as predictive/prognostic biomarkers of patient response to ICIs, and microbiome-based interventions are attractive adjuvant treatments in combination with ICIs. Specific gut-resident bacteria can influence the effectiveness of immunotherapy; however, the mechanism of action on how these bacteria affect anti-tumor immunity and response to ICIs is not fully understood. Nevertheless, early bacterial-based therapeutic strategies have demonstrated that targeting the gut microbiome through various methods can enhance the effectiveness of ICIs, resulting in improved clinical responses in patients with a diverse range of cancers. Therefore, understanding the microbiota-driven mechanisms of response to immunotherapy can augment the success of these interventions, particularly in patients with treatment-refractory cancers.
Collapse
Affiliation(s)
- Yeganeh Yousefi
- Verspeeten Family Cancer Centre, Lawson Health Research Institute, London, ON N6A 5W9, Canada
| | - Kelly J Baines
- Verspeeten Family Cancer Centre, Lawson Health Research Institute, London, ON N6A 5W9, Canada; Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | - Saman Maleki Vareki
- Verspeeten Family Cancer Centre, Lawson Health Research Institute, London, ON N6A 5W9, Canada; Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada; Department of Oncology, Western University, London, ON N6A 3K7, Canada.
| |
Collapse
|
16
|
Heath H, Mogol AN, Santaliz Casiano A, Zuo Q, Madak-Erdogan Z. Targeting systemic and gut microbial metabolism in ER + breast cancer. Trends Endocrinol Metab 2024; 35:321-330. [PMID: 38220576 DOI: 10.1016/j.tem.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/16/2024]
Abstract
Estrogen receptor-positive (ER+) breast tumors have a better overall prognosis than ER- tumors; however, there is a sustained risk of recurrence. Mounting evidence indicates that genetic and epigenetic changes associated with resistance impact critical signaling pathways governing cell metabolism. This review delves into recent literature concerning the metabolic pathways regulated in ER+ breast tumors by the availability of nutrients and endocrine therapies and summarizes research on how changes in systemic and gut microbial metabolism can affect ER activity and responsiveness to endocrine therapy. As targeting of metabolic pathways using dietary or pharmacological approaches enters the clinic, we provide an overview of the supporting literature and suggest future directions.
Collapse
Affiliation(s)
- Hannah Heath
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Ayca Nazli Mogol
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | | | - Qianying Zuo
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Zeynep Madak-Erdogan
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL, USA; Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA; Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
17
|
Zhou Y, Liu X, Gao W, Luo X, Lv J, Wang Y, Liu D. The role of intestinal flora on tumor immunotherapy: recent progress and treatment implications. Heliyon 2024; 10:e23919. [PMID: 38223735 PMCID: PMC10784319 DOI: 10.1016/j.heliyon.2023.e23919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 01/16/2024] Open
Abstract
Immunotherapy, specifically immune checkpoint inhibitors, has emerged as a promising approach for treating malignant tumors. The gut, housing approximately 70 % of the body's immune cells, is abundantly populated with gut bacteria that actively interact with the host's immune system. Different bacterial species within the intestinal flora are in a delicate equilibrium and mutually regulate each other. However, when this balance is disrupted, pathogenic microorganisms can dominate, adversely affecting the host's metabolism and immunity, ultimately promoting the development of disease. Emerging researches highlight the potential of interventions such as fecal microflora transplantation (FMT) to improve antitumor immune response and reduce the toxicity of immunotherapy. These remarkable findings suggest the major role of intestinal flora in the development of cancer immunotherapy and led us to the hypothesis that intestinal flora transplantation may be a new breakthrough in modifying immunotherapy side effects.
Collapse
Affiliation(s)
- Yimin Zhou
- School of Basic Medical Sciences, Shandong University, Jinan 250011, China
| | - Xiangdong Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Wei Gao
- School of Basic Medical Sciences, Shandong University, Jinan 250011, China
| | - Xin Luo
- School of Basic Medical Sciences, Shandong University, Jinan 250011, China
| | - Junying Lv
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Duanrui Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| |
Collapse
|
18
|
Mehra Y, Chalif J, Mensah-Bonsu C, Spakowicz D, O’Malley DM, Chambers L. The microbiome and ovarian cancer: insights, implications, and therapeutic opportunities. JOURNAL OF CANCER METASTASIS AND TREATMENT 2023. [DOI: 10.20517/2394-4722.2023.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Ovarian cancer is the leading cause of gynecologic cancer death in the United States. Most ovarian cancer patients are diagnosed with advanced-stage disease, which poses a challenge for early detection and effective treatment. At present, cytoreductive surgery and platinum-based chemotherapy are foundational for patients with newly diagnosed ovarian cancer, but unfortunately, most patients will recur and die of their disease. Therefore, there is a significant need to seek innovative, novel approaches for early detection and to overcome chemoresistance for ovarian cancer patients. The microbiome, comprising diverse microbial communities inhabiting various body sites, is vital in maintaining human health. Changes to the diversity and composition of the microbial communities impact the microbiota-host relationship and are linked to diseases, including cancer. The microbiome contributes to carcinogenesis through various mechanisms, including altered host immune response, modulation of DNA repair, upregulation of pro-inflammatory pathways, altered gene expression, and dysregulated estrogen metabolism. Translational and clinical studies have demonstrated that specific microbes contribute to ovarian cancer development and impact chemotherapy’s efficacy. The microbiome is malleable and can be altered through different approaches, including diet, exercise, medications, and fecal microbiota transplantation. This review provides an overview of the current literature regarding ovarian cancer and the microbiome of female reproductive and gastrointestinal tracts, focusing on mechanisms of carcinogenesis and options for modulating the microbiota for cancer prevention and treatment. Advancing our understanding of the complex relationship between the microbiome and ovarian cancer may provide a novel approach for prevention and therapeutic modulation in the future.
Collapse
|
19
|
Lee CC, Yang HW, Liu CJ, Lee F, Ko WC, Chang YC, Yang PS. Unraveling the connections between gut microbiota, stress, and quality of life for holistic care in newly diagnosed breast cancer patients. Sci Rep 2023; 13:17916. [PMID: 37864098 PMCID: PMC10589294 DOI: 10.1038/s41598-023-45123-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023] Open
Abstract
There is little research about the stress, quality of life (QOL) and gut microbiota in newly diagnosed breast cancer patients. In this study addressing the dearth of research on stress, quality of life (QOL), and gut microbiota in newly diagnosed breast cancer patients, 82 individuals were prospectively observed. Utilizing the Functional Assessment of Chronic Illness Therapy (FACT)-Breast questionnaire to assess health-related quality of life (HRQOL) and the Distress Thermometer (DT) to gauge distress levels, the findings revealed a mean FACT-B score of 104.5, underscoring HRQOL's varied impact. Significantly, 53.7% reported moderate to severe distress, with a mean DT score of 4.43. Further exploration uncovered compelling links between distress levels, FACT-B domains, and microbial composition. Notably, Alcaligenaceae and Sutterella were more abundant in individuals with higher DT scores at the family and genus levels (p = 0.017), while Streptococcaceae at the family level and Streptococcus at the genus level were prevalent in those with lower DT scores (p = 0.028 and p = 0.023, respectively). This study illuminates the intricate interplay of stress, QOL, and gut microbiota in newly diagnosed breast cancer patients, offering valuable insights for potential interventions of biomarker or probiotics aimed at alleviating stress and enhancing QOL in this patient cohort.
Collapse
Affiliation(s)
- Chi-Chan Lee
- Department of General Surgery, MacKay Memorial Hospital, Taipei, Taiwan
| | - Horng-Woei Yang
- Division of Molecular Medicine, Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chih-Ju Liu
- Department of Nursing, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Nursing, MacKay Medical College, New Taipei, Taiwan
| | - Fang Lee
- Department of General Surgery, MacKay Memorial Hospital, Taipei, Taiwan
| | - Wen-Ching Ko
- Department of General Surgery, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yuan-Ching Chang
- Department of General Surgery, MacKay Memorial Hospital, Taipei, Taiwan
| | - Po-Sheng Yang
- Department of General Surgery, MacKay Memorial Hospital, Taipei, Taiwan.
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan.
| |
Collapse
|
20
|
Almanza-Aguilera E, Cano A, Gil-Lespinard M, Burguera N, Zamora-Ros R, Agudo A, Farràs M. Mediterranean diet and olive oil, microbiota, and obesity-related cancers. From mechanisms to prevention. Semin Cancer Biol 2023; 95:103-119. [PMID: 37543179 DOI: 10.1016/j.semcancer.2023.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 07/02/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
Olive oil (OO) is the main source of added fat in the Mediterranean diet (MD). It is a mix of bioactive compounds, including monounsaturated fatty acids, phytosterols, simple phenols, secoiridoids, flavonoids, and terpenoids. There is a growing body of evidence that MD and OO improve obesity-related factors. In addition, obesity has been associated with an increased risk for several cancers: endometrial, oesophageal adenocarcinoma, renal, pancreatic, hepatocellular, gastric cardia, meningioma, multiple myeloma, colorectal, postmenopausal breast, ovarian, gallbladder, and thyroid cancer. However, the epidemiological evidence linking MD and OO with these obesity-related cancers, and their potential mechanisms of action, especially those involving the gut microbiota, are not clearly described or understood. The goals of this review are 1) to update the current epidemiological knowledge on the associations between MD and OO consumption and obesity-related cancers, 2) to identify the gut microbiota mechanisms involved in obesity-related cancers, and 3) to report the effects of MD and OO on these mechanisms.
Collapse
Affiliation(s)
- Enrique Almanza-Aguilera
- Unit of Nutrition and Cancer, Epidemiology Research Program, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Spain
| | - Ainara Cano
- Food Research, AZTI, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160, Derio, Spain
| | - Mercedes Gil-Lespinard
- Unit of Nutrition and Cancer, Epidemiology Research Program, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Spain
| | - Nerea Burguera
- Food Research, AZTI, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160, Derio, Spain
| | - Raul Zamora-Ros
- Unit of Nutrition and Cancer, Epidemiology Research Program, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Spain; Department of Nutrition, Food Sciences, and Gastronomy, Food Innovation Network (XIA), Institute for Research on Nutrition and Food Safety (INSA), Faculty of Pharmacy and Food Sciences University of Barcelona, Barcelona, Spain.
| | - Antonio Agudo
- Unit of Nutrition and Cancer, Epidemiology Research Program, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Spain
| | - Marta Farràs
- Unit of Nutrition and Cancer, Epidemiology Research Program, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Spain.
| |
Collapse
|
21
|
Wu Y, Zhang Y, Zhang W, Huang Y, Lu X, Shang L, Zhou Z, Chen X, Li S, Cheng S, Song Y. The tremendous clinical potential of the microbiota in the treatment of breast cancer: the next frontier. J Cancer Res Clin Oncol 2023; 149:12513-12534. [PMID: 37382675 DOI: 10.1007/s00432-023-05014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
Although significant advances have been made in the diagnosis and treatment of breast cancer (BC) in recent years, BC remains the most common cancer in women and one of the main causes of death among women worldwide. Currently, more than half of BC patients have no known risk factors, emphasizing the significance of identifying more tumor-related factors. Therefore, we urgently need to find new therapeutic strategies to improve prognosis. Increasing evidence demonstrates that the microbiota is present in a wider range of cancers beyond colorectal cancer. BC and breast tissues also have different types of microbiotas that play a key role in carcinogenesis and in modulating the efficacy of anticancer treatment, for instance, chemotherapy, radiotherapy, and immunotherapy. In recent years, studies have confirmed that the microbiota can be an important factor directly and/or indirectly affecting the occurrence, metastasis and treatment of BC by regulating different biological processes, such as estrogen metabolism, DNA damage, and bacterial metabolite production. Here, we review the different microbiota-focused studies associated with BC and explore the mechanisms of action of the microbiota in BC initiation and metastasis and its application in various therapeutic strategies. We found that the microbiota has vital clinical value in the diagnosis and treatment of BC and could be used as a biomarker for prognosis prediction. Therefore, modulation of the gut microbiota and its metabolites might be a potential target for prevention or therapy in BC.
Collapse
Affiliation(s)
- Yang Wu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin, 150081, China
| | - Yue Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wenwen Zhang
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuanxi Huang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin, 150081, China
| | - Xiangshi Lu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin, 150081, China
| | - Lingmin Shang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin, 150081, China
| | - Zhaoyue Zhou
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin, 150081, China
| | - Xiaolu Chen
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin, 150081, China
| | - Shuhui Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin, 150081, China
| | - Shaoqiang Cheng
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin, 150081, China.
| | - Yanni Song
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin, 150081, China.
| |
Collapse
|
22
|
Xue X, Li R, Chen Z, Li G, Liu B, Guo S, Yue Q, Yang S, Xie L, Zhang Y, Zhao J, Tan R. The role of the symbiotic microecosystem in cancer: gut microbiota, metabolome, and host immunome. Front Immunol 2023; 14:1235827. [PMID: 37691931 PMCID: PMC10484231 DOI: 10.3389/fimmu.2023.1235827] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/12/2023] [Indexed: 09/12/2023] Open
Abstract
The gut microbiota is not just a simple nutritional symbiosis that parasitizes the host; it is a complex and dynamic ecosystem that coevolves actively with the host and is involved in a variety of biological activities such as circadian rhythm regulation, energy metabolism, and immune response. The development of the immune system and immunological functions are significantly influenced by the interaction between the host and the microbiota. The interactions between gut microbiota and cancer are of a complex nature. The critical role that the gut microbiota plays in tumor occurrence, progression, and treatment is not clear despite the already done research. The development of precision medicine and cancer immunotherapy further emphasizes the importance and significance of the question of how the microbiota takes part in cancer development, progression, and treatment. This review summarizes recent literature on the relationship between the gut microbiome and cancer immunology. The findings suggest the existence of a "symbiotic microecosystem" formed by gut microbiota, metabolome, and host immunome that is fundamental for the pathogenesis analysis and the development of therapeutic strategies for cancer.
Collapse
Affiliation(s)
- Xiaoyu Xue
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medical Sciences, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu, China
| | - Rui Li
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Zhenni Chen
- Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medical Sciences, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu, China
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Guiyu Li
- Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medical Sciences, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu, China
| | - Bisheng Liu
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Shanshan Guo
- Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medical Sciences, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu, China
| | - Qianhua Yue
- Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medical Sciences, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu, China
| | - Siye Yang
- Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medical Sciences, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu, China
| | - Linlin Xie
- Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Classical Chinese Medicine Diagnosis and Treatment Center, Luzhou, China
| | - Yiguan Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medical Sciences, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu, China
| | - Junning Zhao
- Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medical Sciences, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu, China
| | - Ruirong Tan
- Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medical Sciences, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
23
|
Rojas A, Schneider I, Lindner C, Gonzalez I, Morales MA. Association between diabetes and cancer. Current mechanistic insights into the association and future challenges. Mol Cell Biochem 2023; 478:1743-1758. [PMID: 36565361 DOI: 10.1007/s11010-022-04630-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 11/30/2022] [Indexed: 12/25/2022]
Abstract
Compelling pieces of epidemiological, clinical, and experimental research have demonstrated that Diabetes mellitus (DM) is a major risk factor associated with increased cancer incidence and mortality in many human neoplasms. In the pathophysiology context of DM, many of the main classical actors are relevant elements that can fuel the different steps of the carcinogenesis process. Hyperglycemia, hyperinsulinemia, metabolic inflammation, and dyslipidemia are among the classic contributors to this association. Furthermore, new emerging actors have received particular attention in the last few years, and compelling data support that the microbiome, the epigenetic changes, the reticulum endoplasmic stress, and the increased glycolytic influx also play important roles in promoting the development of many cancer types. The arsenal of glucose-lowering therapeutic agents used for treating diabetes is wide and diverse, and a growing body of data raised during the last two decades has tried to clarify the contribution of therapeutic agents to this association. However, this research area remains controversial, because some anti-diabetic drugs are now considered as either promotors or protecting elements. In the present review, we intend to highlight the compelling epidemiological shreds of evidence that support this association, as well as the mechanistic contributions of many of these potential pathological mechanisms, some controversial points as well as future challenges.
Collapse
Affiliation(s)
- Armando Rojas
- Biomedical Research Labs, Medicine Faculty, Catholic University of Maule, Talca, Chile.
| | - Ivan Schneider
- Medicine Faculty, Catholic University of Maule, Talca, Chile
| | | | - Ileana Gonzalez
- Biomedical Research Labs, Medicine Faculty, Catholic University of Maule, Talca, Chile
| | - Miguel A Morales
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| |
Collapse
|
24
|
Asseri AH, Bakhsh T, Abuzahrah SS, Ali S, Rather IA. The gut dysbiosis-cancer axis: illuminating novel insights and implications for clinical practice. Front Pharmacol 2023; 14:1208044. [PMID: 37361202 PMCID: PMC10288883 DOI: 10.3389/fphar.2023.1208044] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023] Open
Abstract
The human intestinal microbiota, also known as the gut microbiota, comprises more than 100 trillion organisms, mainly bacteria. This number exceeds the host body cells by a factor of ten. The gastrointestinal tract, which houses 60%-80% of the host's immune cells, is one of the largest immune organs. It maintains systemic immune homeostasis in the face of constant bacterial challenges. The gut microbiota has evolved with the host, and its symbiotic state with the host's gut epithelium is a testament to this co-evolution. However, certain microbial subpopulations may expand during pathological interventions, disrupting the delicate species-level microbial equilibrium and triggering inflammation and tumorigenesis. This review highlights the impact of gut microbiota dysbiosis on the development and progression of certain types of cancers and discusses the potential for developing new therapeutic strategies against cancer by manipulating the gut microbiota. By interacting with the host microbiota, we may be able to enhance the effectiveness of anticancer therapies and open new avenues for improving patient outcomes.
Collapse
Affiliation(s)
- Amer H. Asseri
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Center for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tahani Bakhsh
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | | | - Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Irfan A. Rather
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
25
|
Celebi O, Taghizadehghalehjoughi A, Celebi D, Mesnage R, Golokhvast KS, Arsene AL, Spandidos DA, Tsatsakis A. Effect of the combination of Lactobacillus acidophilus (probiotic) with vitamin K3 and vitamin E on Escherichia coli and Staphylococcus aureus: An in vitro pathogen model. Mol Med Rep 2023; 27:119. [PMID: 37144488 PMCID: PMC10196883 DOI: 10.3892/mmr.2023.13006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/16/2023] [Indexed: 05/06/2023] Open
Abstract
The gut microbiota plays a key role in maintaining health and regulating the host's immune response. The use of probiotics and concomitant vitamins can increase mucus secretion by improving the intestinal microbial population and prevent the breakdown of tight junction proteins by reducing lipopolysaccharide concentration. Changes in the intestinal microbiome mass affect multiple metabolic and physiological functions. Studies on how this microbiome mass and the regulation in the gastrointestinal tract are affected by probiotic supplements and vitamin combinations have attracted attention. The current study evaluated vitamins K and E and probiotic combinations effects on Escherichia coli and Staphylococcus aureus. Minimal inhibition concentrations of vitamins and probiotics were determined. In addition, inhibition zone diameters, antioxidant activities and immunohistochemical evaluation of the cell for DNA damage were performed to evaluate the effects of vitamins and probiotics. At the specified dose intervals, L. acidophilus and vitamin combinations inhibit the growth of Escherichia coli and Staphylococcus aureus. It could thus contribute positively to biological functions by exerting immune system‑strengthening activities.
Collapse
Affiliation(s)
- Ozgur Celebi
- Department of Medical Microbiology, Faculty of Medicine, Ataturk University, 25240 Erzurum, Turkey
| | | | - Demet Celebi
- Department of Microbiology, Faculty of Veterinary Medicine, Ataturk University, 25240 Erzurum, Turkey
- Vaccine Application and Development Center, Ataturk University, 25240 Erzurum, Turkey
| | - Robin Mesnage
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London WC2R 2LS, United Kingdom
| | | | - Andreea Letitia Arsene
- Department of General and Pharmaceutical Microbiology, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
26
|
Plaza-Diaz J, Álvarez-Mercado AI. The Interplay between Microbiota and Chemotherapy-Derived Metabolites in Breast Cancer. Metabolites 2023; 13:703. [PMID: 37367861 PMCID: PMC10301694 DOI: 10.3390/metabo13060703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
The most common cancer in women is breast cancer, which is also the second leading cause of death in this group. It is, however, important to note that some women will develop or will not develop breast cancer regardless of whether certain known risk factors are present. On the other hand, certain compounds are produced by bacteria in the gut, such as short-chain fatty acids, secondary bile acids, and other metabolites that may be linked to breast cancer development and mediate the chemotherapy response. Modeling the microbiota through dietary intervention and identifying metabolites directly associated with breast cancer and its complications may be useful to identify actionable targets and improve the effect of antiangiogenic therapies. Metabolomics is therefore a complementary approach to metagenomics for this purpose. As a result of the combination of both techniques, a better understanding of molecular biology and oncogenesis can be obtained. This article reviews recent literature about the influence of bacterial metabolites and chemotherapy metabolites in breast cancer patients, as well as the influence of diet.
Collapse
Affiliation(s)
- Julio Plaza-Diaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Ana Isabel Álvarez-Mercado
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Institute of Nutrition and Food Technology, Biomedical Research Center, University of Granada, 18016 Armilla, Spain
| |
Collapse
|
27
|
Gou L, Yue GGL, Lee JKM, Puno PT, Lau CBS. Natural product Eriocalyxin B suppressed triple negative breast cancer metastasis both in vitro and in vivo. Biochem Pharmacol 2023; 210:115491. [PMID: 36898414 DOI: 10.1016/j.bcp.2023.115491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023]
Abstract
Breast cancer is the most commonly diagnosed cancer among women, and its metastasis to distant organs accounts for the majority of death. Eriocalyxin B (Eri B), an ent-kaurane diterpenoid isolating from Isodon eriocalyx var. laxiflora, has previously been reported to have anti-tumor and anti-angiogenic effects in breast cancer. Here, we investigated the effect of Eri B on cell migration and adhesion in triple negative breast cancer (TNBC) cells, as well as aldehyde dehydrogenases 1 family member A1 (ALDH1A1) expression, colony- and sphere-formation in cancer stem cell (CSC) enriched MDA-MB-231 cells. The in vivo anti-metastatic activities of Eri B were determined in 3 different breast tumor-bearing mouse models. Our results indicated that Eri B inhibited TNBC cell migration and adhesion to extracellular matrix proteins, and also reduced ALDH1A1 expression and colony formation in CSC-enriched MDA-MB-231 cells. The metastasis-related pathways, such as epidermal growth factor receptor/ mitogen-activated protein kinase kinases 1/2/ extracellular regulated protein kinase signaling altered by Eri B was firstly shown in MDA-MB-231 cells. The potent anti-metastatic efficacies of Eri B were demonstrated in breast xenograft-bearing mice and syngeneic breast tumor-bearing mice. Gut microbiome analysis results revealed the change in the diversity and composition of microbiome after Eri B treatment, and the potential pathways that are involved in the anti-cancer efficacy of Eri B. In conclusion, Eri B was shown to inhibit breast cancer metastasis in both in vitro and in vivo models. Our findings further support the development of Eri B as an anti-metastatic agent for breast cancer.
Collapse
Affiliation(s)
- Leilei Gou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Grace Gar-Lee Yue
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Julia Kin-Ming Lee
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Pema Tenzin Puno
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.
| | - Clara Bik-San Lau
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
| |
Collapse
|
28
|
Mao W, Mao L, Zhou F, Shen J, Zhao N, Jin H, Hu J, Hu Z. Influence of Gut Microbiota on Metabolism of Bisphenol A, a Major Component of Polycarbonate Plastics. TOXICS 2023; 11:340. [PMID: 37112567 PMCID: PMC10144690 DOI: 10.3390/toxics11040340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Bisphenol A (BPA) is a major component of polycarbonate plastics and epoxy resins. While many studies have investigated the effect BPA exposure has upon changes in gut microbial communities, the influence of gut microbiota on an organism's ability to metabolize BPA remains comparatively unexplored. To remedy this, in this study, Sprague Dawley rats were intermittently (i.e., at a 7-day interval) or continuously dosed with 500 μg BPA/kg bw/day for 28 days, via oral gavage. In the rats which underwent the 7-day interval BPA exposure, neither their metabolism of BPA nor their gut microbiota structure changed greatly with dosing time. In contrast, following continuous BPA exposure, the relative level of Firmicutes and Proteobacteria in the rats' guts significantly increased, and the alpha diversity of the rats' gut bacteria was greatly reduced. Meanwhile, the mean proportion of BPA sulfate to total BPA in rat blood was gradually decreased from 30 (on day 1) to 7.4% (by day 28). After 28 days of continuous exposure, the mean proportion of BPA glucuronide to total BPA in the rats' urine elevated from 70 to 81%, and in the rats' feces the mean proportion of BPA gradually decreased from 83 to 65%. Under continuous BPA exposure, the abundances of 27, 25, and 24 gut microbial genera were significantly correlated with the proportion of BPA or its metabolites in the rats' blood, urine, and feces, respectively. Overall, this study principally aimed to demonstrate that continuous BPA exposure disrupted the rats' gut microbiota communities, which in turn altered the rats' metabolism of BPA. These findings contribute to the better understanding of the metabolism of BPA in humans.
Collapse
Affiliation(s)
- Weili Mao
- Department of Pharmacy, Quzhou People’s Hospital, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 310032, China
| | - Lingling Mao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China (J.H.)
| | - Feifei Zhou
- CAS Testing Technical Services Jiaxing Co., Jiaxing 314000, China
| | - Jiafeng Shen
- CAS Testing Technical Services Jiaxing Co., Jiaxing 314000, China
| | - Nan Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China (J.H.)
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China (J.H.)
| | - Jun Hu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China (J.H.)
| | - Zefu Hu
- Department of Pharmacy, Quzhou People’s Hospital, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 310032, China
| |
Collapse
|
29
|
Thu MS, Chotirosniramit K, Nopsopon T, Hirankarn N, Pongpirul K. Human gut, breast, and oral microbiome in breast cancer: A systematic review and meta-analysis. Front Oncol 2023; 13:1144021. [PMID: 37007104 PMCID: PMC10063924 DOI: 10.3389/fonc.2023.1144021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/02/2023] [Indexed: 03/19/2023] Open
Abstract
IntroductionDysbiosis characterises breast cancer through direct or indirect interference in a variety of biological pathways; therefore, specific microbial patterns and diversity may be a biomarker for the diagnosis and prognosis of breast cancer. However, there is still much to determine about the complex interplay of the gut microbiome and breast cancer.ObjectiveThis study aims to evaluate microbial alteration in breast cancer patients compared with control subjects, to explore intestine microbial modification from a range of different breast cancer treatments, and to identify the impact of microbiome patterns on the same treatment-receiving breast cancer patients.MethodsA literature search was conducted using electronic databases such as PubMed, Embase, and the CENTRAL databases up to April 2021. The search was limited to adult women with breast cancer and the English language. The results were synthesised qualitatively and quantitatively using random-effects meta-analysis.ResultsA total of 33 articles from 32 studies were included in the review, representing 19 case-control, eight cohorts, and five nonrandomised intervention researches. The gut and breast bacterial species were elevated in the cases of breast tumours, a significant increase in Methylobacterium radiotolerans (p = 0.015), in compared with healthy breast tissue. Meta-analysis of different α-diversity indexes such as Shannon index (p = 0.0005), observed species (p = 0.006), and faint’s phylogenetic diversity (p < 0.00001) revealed the low intestinal microbial diversity in patients with breast cancer. The microbiota abundance pattern was identified in different sample types, detection methods, menopausal status, nationality, obesity, sleep quality, and several interventions using qualitative analysis.ConclusionsThis systematic review elucidates the complex network of the microbiome, breast cancer, and therapeutic options, with the objective of providing a link for stronger research studies and towards personalised medicine to improve their quality of life.
Collapse
Affiliation(s)
- May Soe Thu
- Joint Chulalongkorn University - University of Liverpool Ph.D. Programme in Biomedical Sciences and Biotechnology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Infection Biology and Microbiomes, Faculty of Health and Life Science, University of Liverpool, Liverpool, United Kingdom
| | - Korn Chotirosniramit
- School of Global Health, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Tanawin Nopsopon
- School of Global Health, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Brigham and Women’s Hospital, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Nattiya Hirankarn
- Center of Excellence in Immunology and Immune-Mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Krit Pongpirul
- Department of Infection Biology and Microbiomes, Faculty of Health and Life Science, University of Liverpool, Liverpool, United Kingdom
- School of Global Health, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Clinical Research Center, Bumrungrad International Hospital, Bangkok, Thailand
- *Correspondence: Krit Pongpirul,
| |
Collapse
|
30
|
Viswanathan S, Parida S, Lingipilli BT, Krishnan R, Podipireddy DR, Muniraj N. Role of Gut Microbiota in Breast Cancer and Drug Resistance. Pathogens 2023; 12:pathogens12030468. [PMID: 36986390 PMCID: PMC10058520 DOI: 10.3390/pathogens12030468] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Breast cancer is the most common malignancy in women worldwide. The cause of cancer is multifactorial. An early diagnosis and the appropriate treatment of cancer can improve the chances of survival. Recent studies have shown that breast cancer is influenced by the microbiota. Different microbial signatures have been identified in the breast microbiota, which have different patterns depending on the stage and biological subgroups. The human digestive system contains approximately 100 trillion bacteria. The gut microbiota is an emerging field of research that is associated with specific biological processes in many diseases, including cardiovascular disease, obesity, diabetes, brain disease, rheumatoid arthritis, and cancer. In this review article, we discuss the impact of the microbiota on breast cancer, with a primary focus on the gut microbiota’s regulation of the breast cancer microenvironment. Ultimately, updates on how immunotherapy can affect the breast cancer-based microbiome and further clinical trials on the breast and microbiome axis may be an important piece of the puzzle in better predicting breast cancer risk and prognosis.
Collapse
Affiliation(s)
| | - Sheetal Parida
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Bhuvana Teja Lingipilli
- Gandhi Institute of Technology and Management (GITAM), Deemed University, Visakhapatnam 530045, Andhra Pradesh, India
| | - Ramalingam Krishnan
- Department of Biochemistry, Narayana Medical College, Nellore 524003, Andhra Pradesh, India
| | - Devendra Rao Podipireddy
- Rangaraya Medical College, Dr. YSR University of Health Sciences, Kakinada 533001, Andhra Pradesh, India
| | - Nethaji Muniraj
- Center for Cancer and Immunology Research, Children’s National Hospital, 111, Michigan Ave NW, Washington, DC 20010, USA
- Correspondence: ; Tel.: +1-202-476-2466
| |
Collapse
|
31
|
Metagenomics Analysis of Breast Microbiome Highlights the Abundance of Rothia Genus in Tumor Tissues. J Pers Med 2023; 13:jpm13030450. [PMID: 36983633 PMCID: PMC10053322 DOI: 10.3390/jpm13030450] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/05/2023] Open
Abstract
Breast cancer is one of the main global priorities in terms of public health. It remains the most frequent cancer in women and is the leading cause of their death. The human microbiome plays various roles in maintaining health by ensuring a dynamic balance with the host or in the appearance of various pathologies including breast cancer. In this study, we performed an analysis of bacterial signature differences between tumor and adjacent tissues of breast cancer patients in Morocco. Using 16S rRNA gene sequencing, we observed that adjacent tissue contained a much higher percentage of the Gammaproteobacteria class (35.7%) while tumor tissue was characterized by a higher percentage of Bacilli and Actinobacteria classes, with about 18.8% and 17.2% average abundance, respectively. Analysis of tumor subtype revealed enrichment of genus Sphingomonodas in TNBC while Sphingomonodas was predominant in HER2. The LEfSe and the genus level heatmap analysis revealed a higher abundance of the Rothia genus in tumor tissues. The identified microbial communities can therefore serve as potential biomarkers for prognosis and diagnosis, while also helping to develop new strategies for the treatment of breast cancer patients.
Collapse
|
32
|
Tacconi E, Palma G, De Biase D, Luciano A, Barbieri M, de Nigris F, Bruzzese F. Microbiota Effect on Trimethylamine N-Oxide Production: From Cancer to Fitness-A Practical Preventing Recommendation and Therapies. Nutrients 2023; 15:563. [PMID: 36771270 PMCID: PMC9920414 DOI: 10.3390/nu15030563] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/24/2023] Open
Abstract
Trimethylamine N-oxide (TMAO) is a microbial metabolite derived from nutrients, such as choline, L-carnitine, ergothioneine and betaine. Recently, it has come under the spotlight for its close interactions with gut microbiota and implications for gastrointestinal cancers, cardiovascular disease, and systemic inflammation. The culprits in the origin of these pathologies may be food sources, in particular, high fat meat, offal, egg yolk, whole dairy products, and fatty fish, but intercalated between these food sources and the production of pro-inflammatory TMAO, the composition of gut microbiota plays an important role in modulating this process. The aim of this review is to explain how the gut microbiota interacts with the conversion of specific compounds into TMA and its oxidation to TMAO. We will first cover the correlation between TMAO and various pathologies such as dysbiosis, then focus on cardiovascular disease, with a particular emphasis on pro-atherogenic factors, and then on systemic inflammation and gastrointestinal cancers. Finally, we will discuss primary prevention and therapies that are or may become possible. Possible treatments include modulation of the gut microbiota species with diets, physical activity and supplements, and administration of drugs, such as metformin and aspirin.
Collapse
Affiliation(s)
- Edoardo Tacconi
- Department of Human Science and Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy
| | - Giuseppe Palma
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Davide De Biase
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Antonio Luciano
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Massimiliano Barbieri
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Filomena de Nigris
- Department of Precision Medicine, School of Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Via De Crecchio 7, 80138 Naples, Italy
| | - Francesca Bruzzese
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| |
Collapse
|
33
|
Álvarez-Mercado AI, del Valle Cano A, Fernández MF, Fontana L. Gut Microbiota and Breast Cancer: The Dual Role of Microbes. Cancers (Basel) 2023; 15:443. [PMID: 36672391 PMCID: PMC9856390 DOI: 10.3390/cancers15020443] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Breast cancer is the most frequently diagnosed cancer and also one of the leading causes of mortality among women. The genetic and environmental factors known to date do not fully explain the risk of developing this disease. In recent years, numerous studies have highlighted the dual role of the gut microbiota in the preservation of host health and in the development of different pathologies, cancer among them. Our gut microbiota is capable of producing metabolites that protect host homeostasis but can also produce molecules with deleterious effects, which, in turn, may trigger inflammation and carcinogenesis, and even affect immunotherapy. The purpose of this review is to describe the mechanisms by which the gut microbiota may cause cancer in general, and breast cancer in particular, and to compile clinical trials that address alterations or changes in the microbiota of women with breast cancer.
Collapse
Affiliation(s)
- Ana Isabel Álvarez-Mercado
- Department of Biochemistry and Molecular Biology 2, School of Pharmacy, Campus de Cartuja s/n, 18071 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Center, Parque Tecnológico Ciencias de la Salud, Avda. del Conocimiento s/n, Armilla, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18071 Granada, Spain
| | - Ana del Valle Cano
- Department of Biochemistry and Molecular Biology 2, School of Pharmacy, Campus de Cartuja s/n, 18071 Granada, Spain
| | - Mariana F. Fernández
- Department of Radiology, School of Medicine, and Biomedical Research Center, University of Granada, 18071 Granada, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Luis Fontana
- Department of Biochemistry and Molecular Biology 2, School of Pharmacy, Campus de Cartuja s/n, 18071 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Center, Parque Tecnológico Ciencias de la Salud, Avda. del Conocimiento s/n, Armilla, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18071 Granada, Spain
| |
Collapse
|
34
|
Elkafas H, Walls M, Al-Hendy A, Ismail N. Gut and genital tract microbiomes: Dysbiosis and link to gynecological disorders. Front Cell Infect Microbiol 2022; 12:1059825. [PMID: 36590579 PMCID: PMC9800796 DOI: 10.3389/fcimb.2022.1059825] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022] Open
Abstract
Every year, millions of women are affected by genital tract disorders, such as bacterial vaginosis (BV), endometrial cancer, polycystic ovary syndrome (PCOS), endometriosis, and uterine fibroids (UFs). These disorders pose a significant economic burden on healthcare systems and have serious implications for health and fertility outcomes. This review explores the relationships between gut, vaginal, and uterine dysbiosis and the pathogenesis of various diseases of the female genital tract. In recent years, reproductive health clinicians and scientists have focused on the microbiome to investigate its role in the pathogenesis and prevention of such diseases. Recent studies of the gut, vaginal, and uterine microbiomes have identified patterns in bacterial composition and changes across individuals' lives associated with specific healthy and diseased states, particularly regarding the effects of the estrogen-gut microbiome axis on estrogen-driven disorders (such as endometrial cancer, endometriosis, and UFs) and disorders associated with estrogen deficiency (such as PCOS). Furthermore, this review discusses the contribution of vitamin D deficiency to gut dysbiosis and altered estrogen metabolism as well as how these changes play key roles in the pathogenesis of UFs. More research on the microbiome influences on reproductive health and fertility is vital.
Collapse
Affiliation(s)
- Hoda Elkafas
- Department of Pharmacology and Toxicology, Egyptian Drug Authority [EDA; formerly The National Organization for Drug Control and Research (NODCAR)], Cairo, Egypt
| | - Melinique Walls
- Pritzker School of Medicine, University of Chicago, Chicago, IL, United States
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, United States
| | - Nahed Ismail
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
35
|
The Bio-Diversity and the Role of Gut Microbiota in Postmenopausal Women with Luminal Breast Cancer Treated with Aromatase Inhibitors: An Observational Cohort Study. Pathogens 2022; 11:pathogens11121421. [PMID: 36558756 PMCID: PMC9781910 DOI: 10.3390/pathogens11121421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The interactions between aromatase inhibitors (AI) in breast cancer (BC) and gut microbiota (GM) have not been completely established yet. The aim of the study is to evaluate the bio-diversity of GM and the relationship between GM, inflammation and tumor-infiltrating lymphocytes (TILs) in postmenopausal women with BC during adjuvant AI treatment compared to women with disease relapse during or after one year of AI therapy ("endocrine-resistant"). We conducted a monocenter observational case-control study. Eighty-four women with BC (8 cases, 76 controls) were enrolled from 2019 to 2021. We observed a significant difference in the mean microbial abundance between the two groups for the taxonomic rank of order (p 0.035) and family (p 0.029); specifically, the case group showed higher diversity than the control group. Veillonella reached its maximum abundance in cases (p 0.022). Cytokine levels were compared among the groups created considering the TILs levels. We obtained a statistically significant difference (p 0.045) in IL-17 levels among the groups, with patients with low TILs levels showing a higher median value for IL-17 (0.15 vs. 0.08 pg/mL). Further studies about the bio-diversity in women with BC may lead to the development of new biomarkers and targeted interventions.
Collapse
|
36
|
Devoy C, Flores Bueso Y, Tangney M. Understanding and harnessing triple-negative breast cancer-related microbiota in oncology. Front Oncol 2022; 12:1020121. [PMID: 36505861 PMCID: PMC9730816 DOI: 10.3389/fonc.2022.1020121] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022] Open
Abstract
Bacterial inhabitants of the body have the potential to play a role in various stages of cancer initiation, progression, and treatment. These bacteria may be distal to the primary tumour, such as gut microbiota, or local to the tissue, before or after tumour growth. Breast cancer is well studied in this context. Amongst breast cancer types, Triple Negative Breast Cancer (TNBC) is more aggressive, has fewer treatment options than receptor-positive breast cancers, has an overall worse prognosis and higher rates of reoccurrence. Thus, an in-depth understanding of the bacterial influence on TNBC progression and treatment is of high value. In this regard, the Gut Microbiota (GM) can be involved in various stages of tumour progression. It may suppress or promote carcinogenesis through the release of carcinogenic metabolites, sustenance of proinflammatory environments and/or the promotion of epigenetic changes in our genome. It can also mediate metastasis and reoccurrence through interactions with the immune system and has been recently shown to influence chemo-, radio-, and immune-therapies. Furthermore, bacteria have also been found to reside in normal and malignant breast tissue. Several studies have now described the breast and breast tumour microbiome, with the tumour microbiota of TNBC having the least taxonomic diversity among all breast cancer types. Here, specific conditions of the tumour microenvironment (TME) - low O2, leaky vasculature and immune suppression - are supportive of tumour selective bacterial growth. This innate bacterial ability could enable their use as delivery agents for various therapeutics or as diagnostics. This review aims to examine the current knowledge on bacterial relevance to TNBC and potential uses while examining some of the remaining unanswered questions regarding mechanisms underpinning observed effects.
Collapse
Affiliation(s)
- Ciaran Devoy
- Cancer Research@UCC, College of Medicine and Health, University College Cork, Cork, Ireland,SynBio Center, University College Cork, Cork, Ireland,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Yensi Flores Bueso
- Cancer Research@UCC, College of Medicine and Health, University College Cork, Cork, Ireland,SynBio Center, University College Cork, Cork, Ireland,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Mark Tangney
- Cancer Research@UCC, College of Medicine and Health, University College Cork, Cork, Ireland,SynBio Center, University College Cork, Cork, Ireland,APC Microbiome Ireland, University College Cork, Cork, Ireland,School of Pharmacy, College of Medicine and Health, University College Cork, Cork, Ireland,*Correspondence: Mark Tangney,
| |
Collapse
|
37
|
Koh YC, Tsai YW, Lee PS, Nagabhushanam K, Ho CT, Pan MH. Amination Potentially Augments the Ameliorative Effect of Curcumin on Inhibition of the IL-6/Stat3/c-Myc Pathway and Gut Microbial Modulation in Colitis-Associated Tumorigenesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14744-14754. [PMID: 36368792 DOI: 10.1021/acs.jafc.2c06645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Epigallocatechin gallate and tetrahydrocurcumin are aminated as colonic metabolites, preserving their bioactivities and improving their capabilities. We compared the bioactivities of unaminated (CUR) and aminated (AC) curcumin in inflammatory colitis-associated tumorigenesis. The anti-inflammatory and anticancer capabilities of CUR and AC were evaluated using RAW264.7 and HT29 cell lines, respectively. An azoxymethane/dextran sodium sulfate-induced colitis-associated carcinogenesis mouse model was used with CUR and two-dose AC interventions. AC had a greater anti-inflammatory effect but a similar anticancer effect as CUR in vitro. CUR and low-dose AC (LAC) significantly preserved colon length and reduced tumor number in vivo. Both CUR and LAC inhibited activation of the protein kinase B (AKT)/nuclear factor kappa B (NF-κB) signaling pathway, its downstream cytokines, and the interleukin (IL)-6/signal transducer and activator of transcription 3 (STAT3)/c-myelocytomatosis oncogene (c-MYC) pathway. However, only LAC significantly preserved E-cadherin, reduced N-cadherin, and facilitated beneficial gut microbial growth, including Akkermansia and Bacteroides, potentially explaining AC's better ameliorative effect at low than high doses.
Collapse
Affiliation(s)
- Yen-Chun Koh
- Institute of Food Sciences and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Wen Tsai
- Institute of Food Sciences and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Pei-Sheng Lee
- Institute of Food Sciences and Technology, National Taiwan University, Taipei 10617, Taiwan
| | | | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Min-Hsiung Pan
- Institute of Food Sciences and Technology, National Taiwan University, Taipei 10617, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
38
|
Zhang J, Xie Q, Huo X, Liu Z, Da M, Yuan M, Zhao Y, Shen G. Impact of intestinal dysbiosis on breast cancer metastasis and progression. Front Oncol 2022; 12:1037831. [PMID: 36419880 PMCID: PMC9678367 DOI: 10.3389/fonc.2022.1037831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/19/2022] [Indexed: 07/30/2023] Open
Abstract
Breast cancer has a high mortality rate among malignant tumors, with metastases identified as the main cause of the high mortality. Dysbiosis of the gut microbiota has become a key factor in the development, treatment, and prognosis of breast cancer. The many microorganisms that make up the gut flora have a symbiotic relationship with their host and, through the regulation of host immune responses and metabolic pathways, are involved in important physiologic activities in the human body, posing a significant risk to health. In this review, we build on the interactions between breast tissue (including tumor tissue, tissue adjacent to the tumor, and samples from healthy women) and the microbiota, then explore factors associated with metastatic breast cancer and dysbiosis of the gut flora from multiple perspectives, including enterotoxigenic Bacteroides fragilis, antibiotic use, changes in gut microbial metabolites, changes in the balance of the probiotic environment and diet. These factors highlight the existence of a complex relationship between host-breast cancer progression-gut flora. Suggesting that gut flora dysbiosis may be a host-intrinsic factor affecting breast cancer metastasis and progression not only informs our understanding of the role of microbiota dysbiosis in breast cancer development and metastasis, but also the importance of balancing gut flora dysbiosis and clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Guoshuang Shen
- Affiliated Hospital of Qinghai University, Affiliated Cancer Hospital of Qinghai University, Xining, China
| |
Collapse
|
39
|
Haque S, Raina R, Afroze N, Hussain A, Alsulimani A, Singh V, Mishra BN, Kaul S, Kharwar RN. Microbial dysbiosis and epigenetics modulation in cancer development - A chemopreventive approach. Semin Cancer Biol 2022; 86:666-681. [PMID: 34216789 DOI: 10.1016/j.semcancer.2021.06.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 01/27/2023]
Abstract
An overwhelming number of research articles have reported a strong relationship of the microbiome with cancer. Microbes have been observed more commonly in the body fluids like urine, stool, mucus of people with cancer compared to the healthy controls. The microbiota is responsible for both progression and suppression activities of various diseases. Thus, to maintain healthy human physiology, host and microbiota relationship should be in a balanced state. Any disturbance in this equilibrium, referred as microbiome dysbiosis becomes a prime cause for the human body to become more prone to immunodeficiency and cancer. It is well established that some of these microbes are the causative agents, whereas others may encourage the formation of tumours, but very little is known about how these microbial communications causing change at gene and epigenome level and trigger as well as encourage the tumour growth. Various studies have reported that microbes in the gut influence DNA methylation, DNA repair and DNA damage. The genes and pathways that are altered by gut microbes are also associated with cancer advancement, predominantly those implicated in cell growth and cell signalling pathways. This study exhaustively reviews the current research advancements in understanding of dysbiosis linked with colon, lung, ovarian, breast cancers and insights into the potential molecular targets of the microbiome promoting carcinogenesis, the epigenetic alterations of various potential targets by altered microbiota, as well as the role of various chemopreventive agents for timely prevention and customized treatment against various types of cancers.
Collapse
Affiliation(s)
- Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia; Bursa Uludağ University Faculty of Medicine, Görükle Campus, 16059, Nilüfer, Bursa, Turkey
| | - Ritu Raina
- School of Life Sciences, Manipal Academy of Higher Education, Dubai, United Arab Emirates
| | - Nazia Afroze
- School of Life Sciences, Manipal Academy of Higher Education, Dubai, United Arab Emirates
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, Dubai, United Arab Emirates.
| | - Ahmad Alsulimani
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Vineeta Singh
- Department of Biotechnology, Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow, 226021, Uttar Pradesh, India
| | - Bhartendu Nath Mishra
- Department of Biotechnology, Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow, 226021, Uttar Pradesh, India
| | - Sanjana Kaul
- School of Biotechnology, University of Jammu, Jammu, 180006, J&K, India
| | - Ravindra Nath Kharwar
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
40
|
Yin B, Wang X, Yuan F, Li Y, Lu P. Research progress on the effect of gut and tumor microbiota on antitumor efficacy and adverse effects of chemotherapy drugs. Front Microbiol 2022; 13:899111. [PMID: 36212852 PMCID: PMC9538901 DOI: 10.3389/fmicb.2022.899111] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/06/2022] [Indexed: 11/27/2022] Open
Abstract
Chemotherapy is one of the most effective methods of systemic cancer treatment. Chemotherapy drugs are delivered through the blood circulation system, and they can act at all stages of the cell cycle, and can target DNA, topoisomerase, or tubulin to prevent the growth and proliferation of cancer cells. However, due to the lack of specific targets for chemotherapeutic agents, there are still unavoidable complications of cytotoxic effects. The effect of the microbiome on human health is clear. There is growing evidence of the potential relationship between the microbiome and the efficacy of cancer therapy. Gut microbiota can regulate the metabolism of drugs in several ways. The presence of bacteria in the tumor environment can also affect the response to cancer therapy by altering the chemical structure of chemotherapeutic agents and affecting their activity and local concentration. However, the underlying mechanisms by which the gut and tumor microbiota affect cancer therapeutic response are unclear. This review provides an overview of the effects of gut and tumor microbiota on the efficacy and adverse effects of chemotherapy in cancer patients, thus facilitating personalized treatment strategies for cancer patients.
Collapse
Affiliation(s)
- Beibei Yin
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| | - Xuan Wang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| | - Fang Yuan
- Department of Digestive Endoscopy, The Affiliated Hospital of Shandong University of TCM, Jinan, China
| | - Yan Li
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
- Yan Li,
| | - Ping Lu
- Department of Cardiovascular Surgery, Shandong Engineering Research Center for Health Transplant and Material, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- *Correspondence: Ping Lu,
| |
Collapse
|
41
|
Kapsetaki SE, Marquez Alcaraz G, Maley CC, Whisner CM, Aktipis A. Diet, Microbes, and Cancer Across the Tree of Life: a Systematic Review. Curr Nutr Rep 2022; 11:508-525. [PMID: 35704266 PMCID: PMC9197725 DOI: 10.1007/s13668-022-00420-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE OF REVIEW Cancers are a leading cause of death in humans and for many other species. Diet has often been associated with cancers, and the microbiome is an essential mediator between diet and cancers. Here, we review the work on cancer and the microbiome across species to search for broad patterns of susceptibility associated with different microbial species. RECENT FINDINGS Some microbes, such as Helicobacter bacteria, papillomaviruses, and the carnivore-associated Fusobacteria, consistently induce tumorigenesis in humans and other species. Other microbes, such as the milk-associated Lactobacillus, consistently inhibit tumorigenesis in humans and other species. We systematically reviewed over a thousand published articles and identified links between diet, microbes, and cancers in several species of mammals, birds, and flies. Future work should examine a larger variety of host species to discover new model organisms for human preclinical trials, to better understand the observed variance in cancer prevalence across species, and to discover which microbes and diets are associated with cancers across species. Ultimately, this could help identify microbial and dietary interventions to diagnose, prevent, and treat cancers in humans as well as other animals.
Collapse
Affiliation(s)
- Stefania E Kapsetaki
- Arizona Cancer Evolution Center, Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA.
- Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, USA.
| | - Gissel Marquez Alcaraz
- Arizona Cancer Evolution Center, Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, USA
| | - Carlo C Maley
- Arizona Cancer Evolution Center, Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, USA
| | - Corrie M Whisner
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
- Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, AZ, USA
| | - Athena Aktipis
- Arizona Cancer Evolution Center, Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Department of Psychology, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
42
|
Wu H, Ganguly S, Tollefsbol TO. Modulating Microbiota as a New Strategy for Breast Cancer Prevention and Treatment. Microorganisms 2022; 10:microorganisms10091727. [PMID: 36144329 PMCID: PMC9503838 DOI: 10.3390/microorganisms10091727] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022] Open
Abstract
Breast cancer (BC) is the most common cancer in women in the United States. There has been an increasing incidence and decreasing mortality rate of BC cases over the past several decades. Many risk factors are associated with BC, such as diet, aging, personal and family history, obesity, and some environmental factors. Recent studies have shown that healthy individuals and BC patients have different microbiota composition, indicating that microbiome is a new risk factor for BC. Gut and breast microbiota alterations are associated with BC prognosis. This review will evaluate altered microbiota populations in gut, breast tissue, and milk of BC patients, as well as mechanisms of interactions between microbiota modulation and BC. Probiotics and prebiotics are commercially available dietary supplements to alleviate side-effects of cancer therapies. They also shape the population of human gut microbiome. This review evaluates novel means of modulating microbiota by nutritional treatment with probiotics and prebiotics as emerging and promising strategies for prevention and treatment of BC. The mechanistic role of probiotic and prebiotics partially depend on alterations in estrogen metabolism, systematic immune regulation, and epigenetics regulation.
Collapse
Affiliation(s)
- Huixin Wu
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
| | - Sebanti Ganguly
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
| | - Trygve O. Tollefsbol
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
- Integrative Center for Aging Research, University of Alabama Birmingham, 1530 3rd Avenue South, Birmingham, AL 35294, USA
- O’Neal Comprehensive Cancer Center, University of Alabama Birmingham, 1802 6th Avenue South, Birmingham, AL 35294, USA
- Nutrition Obesity Research Center, University of Alabama Birmingham, 1675 University Boulevard, Birmingham, AL 35294, USA
- Comprehensive Diabetes Center, University of Alabama Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA
- University Wide Microbiome Center, University of Alabama Birmingham, 845 19th Street South, Birmingham, AL 35294, USA
- Correspondence: ; Tel.: +1-205-934-4573; Fax: +1-205-975-6097
| |
Collapse
|
43
|
The crosstalk of the human microbiome in breast and colon cancer: A metabolomics analysis. Crit Rev Oncol Hematol 2022; 176:103757. [PMID: 35809795 DOI: 10.1016/j.critrevonc.2022.103757] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 11/20/2022] Open
Abstract
The human microbiome's role in colon and breast cancer is described in this review. Understanding how the human microbiome and metabolomics interact with breast and colon cancer is the chief area of this study. First, the role of the gut and distal microbiome in breast and colon cancer is investigated, and the direct relationship between microbial dysbiosis and breast and colon cancer is highlighted. This work also focuses on the many metabolomic techniques used to locate prospective biomarkers, make an accurate diagnosis, and research new therapeutic targets for cancer treatment. This review clarifies the influence of anti-tumor medications on the microbiota and the proactive measures that can be taken to treat cancer using a variety of therapies, including radiotherapy, chemotherapy, next-generation biotherapeutics, gene-based therapy, integrated omics technology, and machine learning.
Collapse
|
44
|
Shepherdson M, Leemaqz S, Singh G, Ryder C, Ullah S, Canuto K, Young JP, Price TJ, McKinnon RA, Pandol SJ, Roberts CT, Barreto SG. Young-Onset Gastrointestinal Adenocarcinoma Incidence and Survival Trends in the Northern Territory, Australia, with Emphasis on Indigenous Peoples. Cancers (Basel) 2022; 14:2870. [PMID: 35740536 PMCID: PMC9220984 DOI: 10.3390/cancers14122870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/24/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
Background and Aims: A concerning rise in incidence of young-onset cancers globally led to the examination of trends in incidence and survival of gastrointestinal (GI) adenocarcinomas in the Northern Territory (NT), Australia, over a 28-year period, with a special emphasis on Indigenous peoples. Methods: This cross-sectional analysis of a prospective longitudinal database, NT Cancer Registry (1990−2017), includes all reported cases of GI (oesophagus, gastric, small intestinal, pancreas, colon, and rectum) adenocarcinomas. Poisson regression was used to estimate incidence ratio ratios, and survival was modelled using Cox proportional hazard models separately for people aged 18−50 years and >50 years. Results: A total of 1608 cases of GI adenocarcinoma were recorded during the time of the study. While the overall incidence in people 18−50 years remained unchanged over this time (p = 0.51), the rate in individuals aged >50 years decreased (IRR = 0.65 (95% CI 0.56−0.75; p < 0.0001)). Incidence rates were significantly less in females >50 years (IRR = 0.67 95% CI 0.59−0.75; p < 0.0001), and their survival was significantly better (HR = 0.84 (95%CI 0.72−0.98; p < 0.03)) compared to males. Overall survival across all GI subsites improved in both age cohorts, especially between 2010 and 2017 (HR = 0.45 (95%CI 0.29−0.72; p < 0.0007) and HR = 0.64 (95%CI 0.52−0.78; p < 0.0001), respectively) compared to 1990−1999, driven by an improvement in survival in colonic adenocarcinoma alone, as the survival remained unchanged in other GI subsites. The incidence was significantly lower in Indigenous patients compared to non-Indigenous patients, in both age cohorts (18−50 years IRR = 0.68 95% CI 0.51−0.91; p < 0.009 and >50 years IRR = 0.48 95% CI 0.40−0.57; p < 0.0001). However, Indigenous patients had worse survival rates (18−50 years HR = 2.06 95% CI 1.36−3.11; p < 0.0007 and >50 years HR = 1.66 95% CI 1.32−2.08; p < 0.0001). Conclusions: There is a trend towards an increased incidence of young-onset GI adenocarcinomas in the NT. Young Indigenous patients have lower incidence but worse survival across all GI subsites, highlighting significant health inequities in life expectancy. Targeted, culturally safe Indigenous community-focussed programs are needed for early detection and patient-centred management of GI adenocarcinomas.
Collapse
Affiliation(s)
- Mia Shepherdson
- Flinders Medical Center, Bedford Park, Adelaide, SA 5042, Australia;
| | - Shalem Leemaqz
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5001, Australia; (S.L.); (C.R.); (S.U.); (R.A.M.)
- Flinders Health and Medical Research Institute, Adelaide, SA 5042, Australia
| | - Gurmeet Singh
- Menzies School of Health Research, Darwin, NT 0810, Australia;
| | - Courtney Ryder
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5001, Australia; (S.L.); (C.R.); (S.U.); (R.A.M.)
- Flinders Health and Medical Research Institute, Adelaide, SA 5042, Australia
- The George Institute for Global Health, Newtown, NSW 2042, Australia
| | - Shahid Ullah
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5001, Australia; (S.L.); (C.R.); (S.U.); (R.A.M.)
| | - Karla Canuto
- Rural and Remote Health, College of Medicine and Public Health, Flinders University, Darwin, NT 0810, Australia;
| | - Joanne P. Young
- Department of Haematology and Oncology, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia; (J.P.Y.); (T.J.P.)
- SAHMRI Colorectal Node, Basil Hetzel Institute, Woodville South, SA 5011, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Timothy J. Price
- Department of Haematology and Oncology, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia; (J.P.Y.); (T.J.P.)
- SAHMRI Colorectal Node, Basil Hetzel Institute, Woodville South, SA 5011, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Ross A. McKinnon
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5001, Australia; (S.L.); (C.R.); (S.U.); (R.A.M.)
- Flinders Health and Medical Research Institute, Adelaide, SA 5042, Australia
| | - Stephen J. Pandol
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - Claire T. Roberts
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5001, Australia; (S.L.); (C.R.); (S.U.); (R.A.M.)
- Flinders Health and Medical Research Institute, Adelaide, SA 5042, Australia
| | - Savio George Barreto
- Flinders Medical Center, Bedford Park, Adelaide, SA 5042, Australia;
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5001, Australia; (S.L.); (C.R.); (S.U.); (R.A.M.)
- Flinders Health and Medical Research Institute, Adelaide, SA 5042, Australia
| |
Collapse
|
45
|
Berretta M, Quagliariello V, Bignucolo A, Facchini S, Maurea N, Di Francia R, Fiorica F, Sharifi S, Bressan S, Richter SN, Camozzi V, Rinaldi L, Scaroni C, Montopoli M. The Multiple Effects of Vitamin D against Chronic Diseases: From Reduction of Lipid Peroxidation to Updated Evidence from Clinical Studies. Antioxidants (Basel) 2022; 11:1090. [PMID: 35739987 PMCID: PMC9220017 DOI: 10.3390/antiox11061090] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Vitamin D exerts multiple beneficial effects in humans, including neuronal, immune, and bone homeostasis and the regulation of cardiovascular functions. Recent studies correlate vitamin D with cancer cell growth and survival, but meta-analyses on this topic are often not consistent. METHODS A systematic search of the PubMed database and the Clinical Trial Register was performed to identify all potentially relevant English-language scientific papers containing original research articles on the effects of vitamin D on human health. RESULTS In this review, we analyzed the antioxidant and anti-inflammatory effects of vitamin D against acute and chronic diseases, focusing particularly on cancer, immune-related diseases, cardiomyophaties (including heart failure, cardiac arrhythmias, and atherosclerosis) and infectious diseases. CONCLUSIONS Vitamin D significantly reduces the pro-oxidant systemic and tissue biomarkers involved in the development, progression, and recurrence of chronic cardiometabolic disease and cancer. The overall picture of this review provides the basis for new randomized controlled trials of oral vitamin D supplementation in patients with cancer and infectious, neurodegenerative, and cardiovascular diseases aimed at reducing risk factors for disease recurrence and improving quality of life.
Collapse
Affiliation(s)
- Massimiliano Berretta
- Department of Clinical and Experimental Medicine, University of Messina, 98100 Messina, Italy
| | - Vincenzo Quagliariello
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80121 Naples, Italy; (V.Q.); (N.M.)
| | - Alessia Bignucolo
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy;
| | - Sergio Facchini
- Oncology Operative Unit, Santa Maria delle Grazie Hospital, 80078 Naples, Italy;
| | - Nicola Maurea
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80121 Naples, Italy; (V.Q.); (N.M.)
| | - Raffaele Di Francia
- Gruppo Oncologico Ricercatori Italiani, GORI Onlus, 33170 Pordenone, Italy;
- Italian Association of Pharmacogenomics and Molecular Diagnostics (IAPharmagen), 60126 Ancona, Italy
| | - Francesco Fiorica
- Department of Radiation Oncology and Nuclear Medicine, AULSS 9 Scaligera, 37100 Verona, Italy;
| | - Saman Sharifi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy; (S.S.); (S.B.); (M.M.)
| | - Silvia Bressan
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy; (S.S.); (S.B.); (M.M.)
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
| | - Sara N. Richter
- Department of Molecular Medicine, University of Padova, Via A. Gabelli 63, 35121 Padova, Italy; (S.N.R.); (C.S.)
| | - Valentina Camozzi
- Endocrinology Unit, Department of Medicine (DIMED), University of Padua, 35100 Padua, Italy;
| | - Luca Rinaldi
- Department of Advanced Medical and Surgery Sciences, Internal Medicine COVID Center, University of Campania Luigi Vanvitelli, 81100 Naples, Italy;
| | - Carla Scaroni
- Department of Molecular Medicine, University of Padova, Via A. Gabelli 63, 35121 Padova, Italy; (S.N.R.); (C.S.)
| | - Monica Montopoli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy; (S.S.); (S.B.); (M.M.)
| |
Collapse
|
46
|
Samkari AA, Alsulami M, Bataweel L, Altaifi R, Altaifi A, Saleem AM, Farsi AH, Iskanderani O, Akeel NY, Malibary NH, Kadi MS, Fallatah E, Fakiha M, Shabkah AA, Trabulsi NH. Body Microbiota and Its Relationship With Benign and Malignant Breast Tumors: A Systematic Review. Cureus 2022; 14:e25473. [PMID: 35783895 PMCID: PMC9240997 DOI: 10.7759/cureus.25473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 11/05/2022] Open
Abstract
Breast cancer is the most frequent type of cancer as well as one of the main causes of cancer-related mortality in women. Human microbial dysbiosis, which has been related to a range of malignancies, is one of the variables that may impact the chance of developing breast disorders. In this review, we aimed to investigate the relationship between breast cancer and benign breast tumors with dysbiosis of the microbiome at different body sites. We performed a systematic review of MEDLINE, Scopus, Ovid, and Cochrane Library to identify original articles published until July 2020 that reported studies of breast disease and microbiota. Twenty-four original articles were included in the study, which looked at the features and changes in breast, gut, urine, lymph node, and sputum microbial diversity in patients with benign and malignant breast tumors. In breast cancer, the breast tissue microbiome demonstrated changes in terms of bacterial load and diversity; in benign breast tumors, the microbiome was more similar to a malignant tumor than to normal breast tissue. Triple-negative (TNBC) and triple-positive (TPBC) types of breast cancer have a distinct microbial pattern. Moreover, in breast cancer, gut microbiota displayed changes in the compositional abundance of some bacterial families and microbial metabolites synthesis. Our review concludes that breast carcinogenesis seems to be associated with microbial dysbiosis. This information can be further explored in larger-scale studies to guide new prophylactic, diagnostic, and therapeutic measures for breast cancer.
Collapse
|
47
|
Zhu Q, Zai H, Zhang K, Zhang X, Luo N, Li X, Hu Y, Wu Y. L-norvaline affects the proliferation of breast cancer cells based on the microbiome and metabolome analysis. J Appl Microbiol 2022; 133:1014-1026. [PMID: 35543360 DOI: 10.1111/jam.15620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 12/24/2022]
Abstract
AIMS The altered fecal metabolites and microbiota might be involved in the development of breast cancer. We aimed to investigate the effect of differential metabolites on the proliferative activity of breast cancer cells. METHODS AND RESULTS We collected fecal samples from 14 breast cancer patients and 14 healthy subjects. Untargeted metabolomics analysis, short-chain fatty acid (SCFA) targeted analysis, and 16S rDNA sequencing was performed. The gut metabolite composition of patients changed significantly. Levels of norvaline, glucuronate, and galacturonate were lower in the Cancer group than in the Control (p < 0.05). 4-Methylcatechol and guaiacol increased (p < 0.05). Acetic acid and butyric acid were lower in the Cancer group than in the Control group (p < 0.05). Isobutyric acid and pentanoic acid were higher in the Cancer group than in the Control (p < 0.05). In the genus, the abundance of Rothia and Actinomyces increased in the Cancer group, compared with the Control group (p < 0.05). The differential microbiotas were clearly associated with differential metabolites but weakly with SCFAs. The abundance of Rothia and Actinomyces was markedly positively correlated with 4-methylcatechol and guaiacol (p < 0.05) and negatively correlated with norvaline (p < 0.05). L-norvaline inhibited the content of Arg-1 in a concentration-dependent manner. Compared with the L-norvaline or doxorubicin hydrochloride (DOX) group, the proliferation abilities of 4T1 cells were the lowest in the L-norvaline combined with DOX (p < 0.05). The apoptosis rate increased (p < 0.05). CONCLUSIONS Fecal metabolites and microbiota were significantly altered in breast cancer. Levels of differential metabolites (i.e., Norvaline) were significantly correlated with the abundance of differential microbiota. L-norvaline combined with DOX could clearly inhibit the proliferation activity of breast cancer cells. SIGNIFICANCE AND IMPACT OF STUDY This might provide clues to uncover potential biomarkers for breast cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Qin Zhu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Hongyan Zai
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Kejing Zhang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xian Zhang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Na Luo
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yu Hu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China.,Clinical Research Center For Breast Cancer In Hunan Province, Changsha, China
| | - Yuhui Wu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China.,Clinical Research Center For Breast Cancer In Hunan Province, Changsha, China
| |
Collapse
|
48
|
Ojo OA, Adeyemo TR, Rotimi D, Batiha GES, Mostafa-Hedeab G, Iyobhebhe ME, Elebiyo TC, Atunwa B, Ojo AB, Lima CMG, Conte-Junior CA. Anticancer Properties of Curcumin Against Colorectal Cancer: A Review. Front Oncol 2022; 12:881641. [PMID: 35530318 PMCID: PMC9072734 DOI: 10.3389/fonc.2022.881641] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/23/2022] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common and reoccurring diseases, as well as the world’s second largest cause of mortality. Despite existing preventative, diagnostic, and treatment methods, such as chemotherapy, the number of instances rises year after year. As a result, new effective medications targeting specific checkpoints should be developed to combat CRC. Natural compounds, such as curcumin, have shown significant anti-colorectal cancer characteristics among medications that can be used to treat CRC. These chemicals are phenolic compounds that belong to the curcuminoids category. Curcumin exerts its anti-proliferative properties against CRC cell lines in vitro and in vivo via a variety of mechanisms, including the suppression of intrinsic and extrinsic apoptotic signaling pathways, the stoppage of the cell cycle, and the activation of autophagy. Curcumin also has anti-angiogenesis properties. Thus, this review is aimed at emphasizing the biological effect and mode of action of curcumin on CRC. Furthermore, the critical role of these substances in CRC chemoprevention was emphasized.
Collapse
Affiliation(s)
- Oluwafemi Adeleke Ojo
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratories, Department of Biochemistry, Landmark University, Omu-Aran, Nigeria
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratories, Department of Biochemistry, Bowen University, Iwo, Nigeria
- *Correspondence: Oluwafemi Adeleke Ojo,
| | - Temiloluwa Rhoda Adeyemo
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratories, Department of Biochemistry, Landmark University, Omu-Aran, Nigeria
| | - Damilare Rotimi
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratories, Department of Biochemistry, Landmark University, Omu-Aran, Nigeria
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Gomaa Mostafa-Hedeab
- Pharmacology Department and Health Research Unit, Medical College, Jouf University, Sakaka, Saudi Arabia
- Pharmacology Department, Faculty of Medicine, Beni-Suef University, Beni Suef, Egypt
| | - Matthew Eboseremen Iyobhebhe
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratories, Department of Biochemistry, Landmark University, Omu-Aran, Nigeria
| | - Tobiloba Christiana Elebiyo
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratories, Department of Biochemistry, Landmark University, Omu-Aran, Nigeria
| | - Bukola Atunwa
- Department of Physical Sciences, Chemistry Unit, Landmark University, Omu-Aran, Nigeria
| | | | | | - Carlos Adam Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETED), Federal University of Rio de Janeiro (UFRJ), Cidade Universitaria, Rio de Janeiro, Brazil
| |
Collapse
|
49
|
Costa B, Vale N. Drug Metabolism for the Identification of Clinical Biomarkers in Breast Cancer. Int J Mol Sci 2022; 23:3181. [PMID: 35328602 PMCID: PMC8951384 DOI: 10.3390/ijms23063181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023] Open
Abstract
Breast cancer is classified into four major molecular subtypes, and is considered a heterogenous disease. The risk profiles and treatment of breast cancer differ according to these subtypes. Early detection dramatically improves the prospects of successful treatment, resulting in a reduction in overall mortality rates. However, almost 30% of women primarily diagnosed with the early-stage disease will eventually develop metastasis or resistance to chemotherapies. Immunotherapies are among the most promising cancer treatment options; however, long-term clinical benefit has only been observed in a small subset of responding patients. The current strategies for diagnosis and treatment rely heavily on histopathological examination and molecular diagnosis, disregarding the tumor microenvironment and microbiome involving cancer cells. In this review, we aim to praise the use of pharmacogenomics and pharmacomicrobiomics as a strategy to identify potential biomarkers for guiding and monitoring therapy in real-time. The finding of these biomarkers can be performed by studying the metabolism of drugs, more specifically, immunometabolism, and its relationship with the microbiome, without neglecting the information provided by genetics. A larger understanding of cancer biology has the potential to improve patient care, enable clinical decisions, and deliver personalized medicine.
Collapse
Affiliation(s)
- Bárbara Costa
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal;
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal;
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Associate Laboratory RISE-Health Research Network, Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
50
|
Rana D, Salave S, Perla A, Nadkarni A, Kohle S, Jindal AB, Mandoli A, Dwivedi P, Benival D. Bugs as Drugs: Understanding the Linkage between Gut Microbiota and Cancer Treatment Microbiome in Cancer Therapy. Curr Drug Targets 2022; 23:869-888. [PMID: 35264088 DOI: 10.2174/1389450123666220309101345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/03/2022] [Accepted: 01/12/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND The commensal microbiota is known to regulate host physiology. Dysbiosis or compromised Resilience in the microbial ecology is related to the impending risk of cancer. A potential link between cancer and microbiota is indicated by a lot of evidence. OBJECTIVE The current review explores in detail the various links leading to and /or facilitating oncogenesis, providing sound reasoning or a basis for its utilization as potential therapeutic targets. The present review emphasizes the existing knowledge of the microbiome in cancer and further elaborates on the factors like genetic modifications, effects of dietary components, and environmental agents that are considered to assess the direct and indirect effect of microbes in the process of oncogenesis and on the host's health. Strategies modulating the microbiome and novel biotherapeutics are also discussed. Pharmacomicrobiomics is one such niche accounting for the interplay between the microbiome, xenobiotic, and host responses is also looked upon. METHODS The literature search strategy for this review was conducted by following the methodology of the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA). The method includes the collection of data from different search engines like PubMed, ScienceDirect, SciFinder etc. to get coverage of relevant literature for accumulating appropriate information regarding microbiome, cancer, and their linkages. RESULTS These considerations are made to expand the existing literature on the role of gut microbiota on the host's health, the interaction between host and microbiota, and the reciprocal relationship between the microbiome and modified neoplastic cells. CONCLUSION Potential therapeutic implications of cancer microbiomes that are yet unexplored and have rich therapeutic dividends improving human health are discussed in detail in this review.
Collapse
Affiliation(s)
- Dhwani Rana
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), 382355, India
| | - Sagar Salave
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), 382355, India
| | - Akhil Perla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), 382355, India
| | - Akanksha Nadkarni
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), 382355, India
| | - Shital Kohle
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), 382355, India
| | - Anil B Jindal
- Department of Pharmacy, Birla Institute of Technology and Science Pilani (BITS PILANI), Pilani Campus, Rajasthan, 333031, India
| | - Amit Mandoli
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), 382355, India
| | - Pradeep Dwivedi
- Department of Pharmacology, All India Institute of Medical Sciences- Jodhpur (AIIMS), 342005, India
| | - Derajram Benival
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), 382355, India
| |
Collapse
|