1
|
Warden CD, Wu X. Critical Differential Expression Assessment for Individual Bulk RNA-Seq Projects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.10.579728. [PMID: 38405814 PMCID: PMC10888899 DOI: 10.1101/2024.02.10.579728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Finding the right balance of quality and quantity can be important, and it is essential that project quality does not drop below the level where important main conclusions are missed or misstated. We use knock-out and over-expression studies as a simplification to test recovery of a known causal gene in RNA-Seq cell line experiments. When single-end RNA-Seq reads are aligned with STAR and quantified with htseq-count, we found potential value in testing the use of the Generalized Linear Model (GLM) implementation of edgeR with robust dispersion estimation more frequently for either single-variate or multi-variate 2-group comparisons (with the possibility of defining criteria less stringent than |fold-change| > 1.5 and FDR < 0.05). When considering a limited number of patient sample comparisons with larger sample size, there might be some decreased variability between methods (except for DESeq1). However, at the same time, the ranking of the gene identified using immunohistochemistry (for ER/PR/HER2 in breast cancer samples from The Cancer Genome Atlas) showed as possible shift in performance compared to the cell line comparisons, potentially highlighting utility for standard statistical tests and/or limma-based analysis with larger sample sizes. If this continues to be true in additional studies and comparisons, then that could be consistent with the possibility that it may be important to allocate time for potential methods troubleshooting for genomics projects. Analysis of public data presented in this study does not consider all experimental designs, and presentation of downstream analysis is limited. So, any estimate from this simplification would be an underestimation of the true need for some methods testing for every project. Additionally, this set of independent cell line experiments has a limitation in being able to determine the frequency of missing a highly important gene if the problem is rare (such as 10% or lower). For example, if there was an assumption that only one method can be tested for "initial" analysis, then it is not completely clear to the extent that using edgeR-robust might perform better than DESeq2 in the cell line experiments. Importantly, we do not wish to cause undue concern, and we believe that it should often be possible to define a gene expression differential expression workflow that is suitable for some purposes for many samples. Nevertheless, at the same time, we provide a variety of measures that we believe emphasize the need to critically assess every individual project and maximize confidence in published results.
Collapse
Affiliation(s)
- Charles D Warden
- Integrative Genomics Core, Department of Molecular and Cellular Biology, City of Hope National Medical Center, Duarte, CA
| | - Xiwei Wu
- Integrative Genomics Core, Department of Molecular and Cellular Biology, City of Hope National Medical Center, Duarte, CA
| |
Collapse
|
2
|
Garg P, Garg R, Horne D, Awasthi S, Salgia R, Singhal SS. Prognostic significance of natural products against multidrug tumor resistance. Cancer Lett 2023; 557:216079. [PMID: 36736532 DOI: 10.1016/j.canlet.2023.216079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
Cancer is a pervasive, constantly evolving, and significant public health concern. The number of new cancer cases has risen dramatically in the last decades, making it one of the top causes of poor health and mortality worldwide. Although various treatment strategies, including surgery, radiation, and pharmaceutical therapies, have evolved into more sophisticated, precise methods, there is not much improvement in the cancer-related death toll. Consequently, natural product-based therapeutic discoveries have recently been considered an alternative approach. According to an estimate, one-third of the top twenty medications in today's market have a natural plant-product-based origin. Accordingly, primary prevention is an essential component of worldwide cancer control. This review provides an overview of the mechanisms of action of bioactive ingredients in natural dietary products that may contribute to the prevention and management of multiple malignancies.
Collapse
Affiliation(s)
- Pankaj Garg
- Department of Chemistry, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Rachana Garg
- Department of Surgery, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA
| | - David Horne
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA
| | - Sanjay Awasthi
- Cayman Health, CTMH Doctors Hospital, George Town, Grand Cayman, KY1-1104, Cayman Islands
| | - Ravi Salgia
- Department of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA
| | - Sharad S Singhal
- Department of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA.
| |
Collapse
|
3
|
Gervazoni LFO, Gonçalves-Ozorio G, Ferreira-Paes T, Silva ACA, Silveira GPE, Pereira HM, Pinto DP, Cunha-Junior EF, Almeida-Amaral EE. Analysis of 2′-hydroxyflavanone (2HF) in mouse whole blood by HPLC–MS/MS for the determination of pharmacokinetic parameters. Front Chem 2023; 11:1016193. [PMID: 36970405 PMCID: PMC10033538 DOI: 10.3389/fchem.2023.1016193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/13/2023] [Indexed: 03/12/2023] Open
Abstract
Given the lack of investments, structure, and difficulty of metabolite isolation, promising natural product studies do not progress to preclinical studies, such as pharmacokinetics. 2′-Hydroxyflavanone (2HF) is a flavonoid that has shown promising results in different types of cancer and leishmaniasis. For accurate quantification of 2HF in BALB/c mouse blood, a validated HPLC-MS/MS method was developed. Chromatographic analysis was performed using C18 (5μm, 150 mm × 4.6 mm). The mobile phase consisted of water containing 0.1% formic acid, acetonitrile, and methanol (35/52/13 v/v/v) at a flow rate and total running time of 0.8 mL/min and 5.50 min, respectively, with an injection volume of 20 µL. 2HF was detected by electrospray ionization in negative mode (ESI-) using multiple reaction monitoring (MRM). The validated bioanalytical method showed satisfactory selectivity without significant interference for the 2HF and IS. In addition, the concentration range between 1 and 250 ng/mL showed good linearity (r = 0.9969). The method showed satisfactory results for the matrix effect. Precision and accuracy intervals varied between 1.89% and 6.76% and 95.27% and 100.77%, respectively, fitting the criteria. No degradation of 2HF in the biological matrix was observed since stability under freezing and thawing conditions, short duration, postprocessing, and long duration showed deviations less than 15%. Once validated, the method was successfully applied in a 2HF oral pharmacokinetic study with mouse blood, and the pharmacokinetic parameters were determined. 2HF demonstrated a Cmax of 185.86 ng/mL, a Tmax of 5 min, and a half-life (T1/2) of 97.52 min.
Collapse
Affiliation(s)
- Luiza F. O. Gervazoni
- Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Gabriella Gonçalves-Ozorio
- Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Taiana Ferreira-Paes
- Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Aline C. A. Silva
- Laboratório de Farmacocinética, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Heliana M. Pereira
- Laboratório de Farmacocinética, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Douglas P. Pinto
- Laboratório de Farmacocinética, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Edézio F. Cunha-Junior
- Laboratório de Imunoparasitologia, Unidade Integrada de Pesquisa em Produtos Bioativos e Biociên-cias, Universidade Federal do Rio de Janeiro, Campus UFRJ, Macaé, Brazil
| | - Elmo E. Almeida-Amaral
- Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- *Correspondence: Elmo E. Almeida-Amaral,
| |
Collapse
|
4
|
Vachetta VS, Marder M, Troncoso MF, Elola MT. Opportunities, obstacles and current challenges of flavonoids for luminal and triple-negative breast cancer therapy. EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY REPORTS 2022; 6:100077. [DOI: 10.1016/j.ejmcr.2022.100077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
|
5
|
Wang Q, Zhang C, Zhu J, Zhang L, Chen H, Qian J, Luo C. Crucial Role of RLIP76 in Promoting Glycolysis and Tumorigenesis by Stabilization of HIF-1α in Glioma Cells Under Hypoxia. Mol Neurobiol 2022; 59:6724-6739. [PMID: 35998001 DOI: 10.1007/s12035-022-02999-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/10/2022] [Indexed: 11/25/2022]
Abstract
Hypoxia is intimately associated with enhanced glycolysis in gliomas, and hypoxia-inducible factor 1α (HIF-1α) plays a critical role in this process. RLIP76 (Ral-interacting protein 76) functions as a multifunctional mediator and is aberrantly expressed in various malignant tumors, including glioma. However, the underlying mechanism of RLIP76 and HIF-1α in glioma glycolysis remains largely unclear. In the present study, we demonstrated that RLIP76 is a hypoxia-inducible molecule that contributes to facilitating glycolysis in glioma cells under hypoxic conditions. In addition, hypoxia-induced RLIP76 is a novel target of HIF-1α and enhances the two important HIF-1α-target glycolytic proteins glucose transporter type 1 (GLUT1) and lactate dehydrogenase A (LDHA) in hypoxia. Mechanistically, RLIP76 can directly bind to HIF-1α in the nucleus and regulate the stability of HIF-1α by alleviating HIF-1α ubiquitination and therefore activates GLUT1 and LDHA to accelerate glycolysis in hypoxia. Furthermore, the enhanced glycolysis is necessary for the role of RLIP76 to promote glioma development in vivo, confirming the ability of RLIP76 to regulate tumor cell glycolysis. Collectively, our results demonstrate a previously unappreciated function of RLIP76 in hypoxia-mediated glycolytic metabolism and implicate that RLIP76 might be a valuable therapeutic target for gliomas.
Collapse
Affiliation(s)
- Qi Wang
- Department of Neurosurgery, Shanghai Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, China
| | - Chi Zhang
- Department of Neurosurgery, Shanghai Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, China
| | - Junle Zhu
- Department of Neurosurgery, Shanghai Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, China
| | - Lei Zhang
- Department of Neurosurgery, Shanghai Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, China
| | - Huairui Chen
- Department of Neurosurgery, Shanghai Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, China
| | - Jun Qian
- Department of Neurosurgery, Shanghai Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, China
| | - Chun Luo
- Department of Neurosurgery, Shanghai Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, China.
| |
Collapse
|
6
|
The complexity of tumour angiogenesis based on recently described molecules. Contemp Oncol (Pozn) 2021; 25:33-44. [PMID: 33911980 PMCID: PMC8063899 DOI: 10.5114/wo.2021.105075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022] Open
Abstract
Tumour angiogenesis is a crucial factor associated with tumour growth, progression, and metastasis. The whole process is the result of an interaction between a wide range of different molecules, influencing each other. Herein we summarize novel discoveries related to the less known angiogenic molecules such as galectins, pentraxin-3, Ral-interacting protein of 76 kDa (RLIP76), long non-coding RNAs (lncRNAs), B7-H3, and delta-like ligand-4 (DLL-4) and their role in the process of tumour angiogenesis. These molecules influence the most important molecular pathways involved in the formation of blood vessels in cancer, including the vascular endothelial growth factor (VEGF)-vascular endothelial growth factor receptor interaction (VEGFR), HIF1-a activation, or PI3K/Akt/mTOR and JAK-STAT signalling pathways. Increased expression of galectins, RLIP76, and B7H3 has been proven in several malignancies. Pentraxin-3, which appears to inhibit tumour angiogenesis, shows reduced expression in tumour tissues. Anti-angiogenic treatment based mainly on VEGF inhibition has proved to be of limited effectiveness, leading to the development of drug resistance. The newly discovered molecules are of great interest as a potential source of new anti-cancer therapies. Their role as targets for new drugs and as prognostic markers in neoplasms is discussed in this review.
Collapse
|
7
|
Singhal J, Kulkarni P, Horne D, Awasthi S, Salgia R, Singhal SS. Prevention of mammary carcinogenesis in MMTV-neu mice by targeting RLIP. Mol Carcinog 2021; 60:213-223. [PMID: 33544936 PMCID: PMC7952002 DOI: 10.1002/mc.23285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 11/09/2022]
Abstract
The overexpression and amplification of the protooncogene neu (ERBB2) play an important role in the development of aggressive breast cancer (BC) in humans. Ral-interacting protein (RLIP), a modular stress-response protein with pleiotropic functions, is overexpressed in several types of cancer, including BC. Here, we show that blocking RLIP attenuates the deleterious effects caused by the loss of the tumor suppressor p53 and inhibits the growth of human BC both in vitro and in vivo in MMTV-neu mice. In addition, we show that treatment with the diet-derived, RLIP-targeting chemotherapeutic 2'-hydroxyflavanone (2HF), alone or in combination with RLIP-specific antisense RNA or antibodies, significantly reduced the cumulative incidence and/or burden of mammary hyperplasia and carcinoma in MMTV-neu mice. 2HF treatment correlated with reduced tumor cell proliferation and increased apoptosis, and the average number of Ki67-positive (proliferating) cells was significantly lower in the tumors of 2HF-treated mice than in the tumors of control mice. Furthermore, targeting RLIP also resulted in the overexpression of E-cadherin and the infiltration of CD3+ T cells into mammary tumors. Taken together, these results underscore the translational potential of RLIP-targeting agents and provide a strong rationale to validate them in the clinic.
Collapse
Affiliation(s)
- Jyotsana Singhal
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010
- Department of Molecular Medicine, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010
| | - Prakash Kulkarni
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010
| | - David Horne
- Department of Molecular Medicine, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010
| | - Sanjay Awasthi
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430
| | - Ravi Salgia
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010
| | - Sharad S. Singhal
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010
| |
Collapse
|
8
|
The subgroup of 2'-hydroxy-flavonoids: Molecular diversity, mechanism of action, and anticancer properties. Bioorg Med Chem 2021; 32:116001. [PMID: 33444847 DOI: 10.1016/j.bmc.2021.116001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/31/2020] [Indexed: 12/19/2022]
Abstract
Flavonoids are abundant in nature, structurally very diversified and largely investigated. However, the subgroup of 2'-hydroxyflavonoids is much less known and not frequently studied. The present review identifies the major naturally-occurring and synthetic 2'-hydroxyflavonoid derivatives and discusses their structural characteristics and biological properties, with a focus on anticancer activities. The pharmacological properties of 2'-hydroxyflavone (2'-HF) and 2'-hydroxyflavanone (2'-HFa) are detailed. Upon binding to the Ral-interacting protein Rlip implicated in the transport of glutathione conjugates, 2'-HFa inhibits tumor cell proliferation and restrict tumor growth, in particular in breast cancer models. Among the synthetic derivatives, the characteristics of the anticancer product 2D08 (2',3',4'-trihydroxy flavone) are detailed to shed light on the molecular mechanism of action of this compound, as a regulator of protein SUMOylation. Inhibition of protein SUMOylation by 2D08 blocks cancer cell migration and invasion, and the compound greatly enhances the anticancer effects of conventional cytotoxic drugs like etoposide. The structural role of the 2'-hydroxyl group on the phenyl C-ring of the flavonoid is discussed, notably the capacity to engage intramolecular H-bonding interactions with the O1 atom on the B-ring of the chromone unit (or the oxygen of a 3-OH group when it is presents). The 2'-hydroxyl group of flavonoid appears as a regulator of the conformational freedom between the bicyclic A-B unit and the appended phenyl C-ring, favoring the planarity of the molecule. It is an essential group accounting for the biological properties of 2'-HF, 2'-HFa and structurally related compounds. This review shed light on 2'-hydroxyflavonoids to encourage their use and chemical development.
Collapse
|
9
|
Sonowal H, Ramana KV. 2'-Hydroxyflavanone prevents LPS-induced inflammatory response and cytotoxicity in murine macrophages. Toxicol In Vitro 2020; 69:104966. [PMID: 32800949 PMCID: PMC7572836 DOI: 10.1016/j.tiv.2020.104966] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/31/2020] [Accepted: 08/08/2020] [Indexed: 12/13/2022]
Abstract
2'-Hydroxyflavanone (2-HF) is a natural flavonoid isolated from citrus fruits. Multiple studies have demonstrated that 2-HF with its anti-proliferative and pro-apoptotic effects prevent the growth of various cancers. Although 2-HF is a well known anti-oxidative and chemopreventive agent, its role as an anti-inflammatory agent is not well established. In this study, we examined the effect of 2-HF on LPS-induced cytotoxicity and inflammatory response in murine RAW 264.7 macrophages. Flow cytometry analysis showed that pre-treatment of RAW 264.7 macrophages with 2-HF significantly prevented LPS-induced macrophage apoptosis. 2-HF also prevented LPS-induced reactive oxygen species (ROS) and nitric oxide (NO) production, lipid peroxidation, and loss of mitochondrial membrane potential in murine macrophages. Most importantly, the release of multiple inflammatory cytokines and chemokines such as eotaxin, IL-2, IL-10, IL-12p40, LIX, IL-15, IL-17, MCP-1, and TNF-α induced by LPS in the macrophages was inhibited by 2-HF. 2-HF also prevented LPS-induced activation of protein kinases p38MAPK and SAPK/JNK. Apart from this, LPS-induced phosphorylation, nuclear translocation, and DNA-binding of the redox transcription factor, NF-κB, was prevented by 2-HF. Our results demonstrate that 2-HF by regulating ROS/MAPK/NF-κB prevents LPS-induced inflammatory response and cytotoxicity in murine macrophages suggesting that the need of potential development of 2-HF as an anti-inflammatory agent to ameliorate various inflammatory complications.
Collapse
Affiliation(s)
- Himangshu Sonowal
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kota V Ramana
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
10
|
Abstract
The mercapturic acid pathway is a major route for the biotransformation of xenobiotic and endobiotic electrophilic compounds and their metabolites. Mercapturic acids (N-acetyl-l-cysteine S-conjugates) are formed by the sequential action of the glutathione transferases, γ-glutamyltransferases, dipeptidases, and cysteine S-conjugate N-acetyltransferase to yield glutathione S-conjugates, l-cysteinylglycine S-conjugates, l-cysteine S-conjugates, and mercapturic acids; these metabolites constitute a "mercapturomic" profile. Aminoacylases catalyze the hydrolysis of mercapturic acids to form cysteine S-conjugates. Several renal transport systems facilitate the urinary elimination of mercapturic acids; urinary mercapturic acids may serve as biomarkers for exposure to chemicals. Although mercapturic acid formation and elimination is a detoxication reaction, l-cysteine S-conjugates may undergo bioactivation by cysteine S-conjugate β-lyase. Moreover, some l-cysteine S-conjugates, particularly l-cysteinyl-leukotrienes, exert significant pathophysiological effects. Finally, some enzymes of the mercapturic acid pathway are described as the so-called "moonlighting proteins," catalytic proteins that exert multiple biochemical or biophysical functions apart from catalysis.
Collapse
Affiliation(s)
- Patrick E Hanna
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - M W Anders
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
11
|
Wang Q, Zhang L, Cui Y, Zhang C, Chen H, Gu J, Qian J, Luo C. Increased RLIP76 expression in IDH1 wild‑type glioblastoma multiforme is associated with worse prognosis. Oncol Rep 2019; 43:188-200. [PMID: 31746408 PMCID: PMC6908935 DOI: 10.3892/or.2019.7394] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/25/2019] [Indexed: 12/16/2022] Open
Abstract
Mutation of the isocitrate dehydrogenase (IDH) gene is regarded a novel indicator for the prognosis of patients with glioma. However, the role of the IDH1 gene mutations in carcinogenesis and the mechanisms underlying their function in glioblastoma multiforme (GBM) remain unknown. The present study aimed to determine whether the association of RLIP76 with the different IDH1 mutational status could serve as a putative biomarker for improving disease prognosis. Quantitative PCR, western blotting and immunohistochemical staining assays were used to investigate the expression levels of RLIP76 in 124 patients with GBM with different IDH1 mutational status. In addition, the association between RLIP76 expression, IDH1 mutational status and clinicopathological characteristics was investigated. The effects of RLIP76 expression and IDH1 mutational status on cell proliferation, cell apoptosis, and cell signaling were examined by Cell Counting Kit-8, flow cytometry and western blot assays, respectively. The data demonstrated that IDH1 wild-type (IDH1Wt) patients with low RLIP76 expression exhibited improved overall and progression-free survival. This effect was not observed in patients with IDH1 mutant (IDH1Mut) GBM. In vitro assays demonstrated that knockdown of IDH1 or overexpression of the IDH1 R132H mutation suppressed cell proliferation and promoted cell apoptosis in U87 glioma cells. Mechanistic studies further indicated that although the IDH1 R132H mutant phenotype exhibited similar antitumor effects on GBM cells as those observed with the IDH1 knockdown, it acted via a different mechanism with regard to the regulation of the apoptosis signaling pathway. IDH1 R132H mutant cells promoted p53-induced apoptosis, while the IDH1 knockdown inhibited the RLIP76-dependent apoptotic pathway in glioma cells. The findings of the present study provided insight to the contribution of IDH1 mutation in the development of GBM and indicated that RLIP76 may be considered as a prognostic biomarker of IDH1Wt GBM.
Collapse
Affiliation(s)
- Qi Wang
- Department of Neurosurgery, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Lei Zhang
- Department of Neurosurgery, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Yong Cui
- Department of Neurosurgery, The 411 Hospital of People's Liberty Army, Shanghai 200081, P.R. China
| | - Chi Zhang
- Department of Neurosurgery, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Huairui Chen
- Department of Neurosurgery, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Juan Gu
- Department of Operating Room, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Jun Qian
- Department of Neurosurgery, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Chun Luo
- Department of Neurosurgery, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| |
Collapse
|
12
|
Bose C, Singh SP, Igid H, Green WC, Singhal SS, Lee J, Palade PT, Rajan A, Ball S, Tonk V, Hindle A, Tarbox M, Awasthi S. Topical 2'-Hydroxyflavanone for Cutaneous Melanoma. Cancers (Basel) 2019; 11:cancers11101556. [PMID: 31615091 PMCID: PMC6826616 DOI: 10.3390/cancers11101556] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/03/2019] [Accepted: 10/11/2019] [Indexed: 12/14/2022] Open
Abstract
2′-hydroxyflavanone (2HF) is a dietary flavonoid with anticancer activity towards multiple cancers. Here, we report that topically applied 2HF inhibits the growth of intradermal implants of melanoma in immunocompetent mice. 2HF induced apoptosis and inhibited the growth of the human SK-MEL-24 as well as murine B16-F0 and B16-F10 melanoma cell lines in vitro. Apoptosis was associated with depletion of caspase-3, caspase-9, and PARP1 in B16-F0 and SK-MEL-24 cells. Caspase-9 and MEKK-15 were undetected even in untreated B16-F10 cells. Signaling proteins TNFα, and phospho-PDGFR-β were depleted in all three cell lines; MEKK-15 was depleted by 2HF in SK-MEL-24 cells. 2HF enhanced sunitinib (an MEK and PDGFR-β inhibitor) and AZD 2461 (a PARP1 inhibitor) cytotoxicity. 2HF also depleted the Ral-regulated, stress-responsive, antiapoptotic endocytic protein RLIP76 (RALBP1), the inhibition of which has previously been shown to inhibit B16-F0 melanoma growth in vivo. Functional inhibition of RLIP76 was evident from inhibition of epidermal growth factor (EGF) endocytosis by 2HF. We found that topically applied 2HF–Pluronic Lecithin Organogel (PLO) gel inhibited B16-F0 and B16-F10 tumors implanted in mice and caused no overt toxicity despite significant systemic absorption. 2HF treatment reduced phospho-AKT, vimentin, fibronectin, CDK4, cyclinB1, and BCL2, whereas it increased BIM and phospho-AMPK in excised tumors. Several cancer signals are controlled by endocytosis, a process strongly inhibited by RLIP76 depletion. We conclude that 2HF–PLO gel may be useful for topical therapy of cutaneous metastases of melanoma and could enhance the antineoplastic effects of sunitinib and PARP1 inhibitors. The mechanism of action of 2HF in melanoma overlaps with RLI76 inhibitors.
Collapse
Affiliation(s)
- Chhanda Bose
- Division of Hematology & Oncology, Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;.
| | - Sharda P Singh
- Division of Hematology & Oncology, Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;.
| | - Henry Igid
- Division of Hematology & Oncology, Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;.
| | - William C Green
- Division of Hematology & Oncology, Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;.
| | - Sharad S Singhal
- Department of Medical Oncology and Therapeutic Research, City of Hope National Medical Center, Duarte, CA 91010, USA.
| | - Jihyun Lee
- Division of Hematology & Oncology, Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;.
| | - Philip T Palade
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Aditya Rajan
- Division of Hematology & Oncology, Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;.
| | - Somedeb Ball
- Division of Hematology & Oncology, Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;.
| | - Vijay Tonk
- Department of Pediatrics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Ashly Hindle
- Division of Hematology & Oncology, Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;.
| | - Michelle Tarbox
- Department of Dermatology and Dermatopathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Sanjay Awasthi
- Division of Hematology & Oncology, Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;.
| |
Collapse
|
13
|
Position Impact of Hydroxy Groups on Spectral, Acid-Base Profiles and DNA Interactions of Several Monohydroxy Flavanones. Molecules 2019; 24:molecules24173049. [PMID: 31443449 PMCID: PMC6749416 DOI: 10.3390/molecules24173049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/16/2019] [Accepted: 08/19/2019] [Indexed: 12/30/2022] Open
Abstract
Structure-related biological activities of flavanones are still considered largely unexplored. Since they exhibit various medicinal activities, it is intriguing to enter deeper into their chemical structures, electronic transitions or interactions with some biomolecules in order to find properties that allow us to better understand their effects. Little information is available on biological activity of flavanone and its monohydroxy derivatives in relation to their physicochemical properties as spectral profiles, existence of protonated/deprotonated species under pH changes or interaction with Calf Thymus DNA. We devoted this work to research demonstrating differences in the physicochemical properties of the four flavanones: flavanone, 2′-hydroxyflavanone, 6-hydroxyflavanone and 7-hydroxyflavanone and linking them to their biological activity. Potentiometric titration, UV–Vis spectroscopy were used to investigate influence of pH on acid–base and spectral profiles and to propose the mode of interaction with DNA. Cyclic voltammetry was applied to evaluate antioxidant potentiality and additionally, theoretical DFT(B3LYP) method to disclose electronic structure and properties of the compounds. Molecular geometries, proton affinities and pKa values have been determined. According to computational and cyclic voltammetry results we could predict higher antioxidant activity of 6-hydroxyflavanone with respect to other compounds. The values of Kb intrinsic binding constants of the flavanones indicated weak interactions with DNA. Structure–activity relationships observed for antioxidant activity and DNA interactions suggest that 6-hydroxyflavanone can protect DNA against oxidative damage most effectively than flavanone, 2′-hydroxyflavanone or 7-hydroxyflavanone.
Collapse
|
14
|
Singhal SS, Horne D, Singhal J, Vonderfecht S, Salgia R, Awasthi S. Synergistic efficacy of RLIP inhibition and 2'-hydroxyflavanone against DMBA-induced mammary carcinogenesis in SENCAR mice. Mol Carcinog 2019; 58:1438-1449. [PMID: 31006917 DOI: 10.1002/mc.23026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 12/18/2022]
Abstract
Substantial evidence suggests that 7,12-dimethylbenzanthracene (DMBA)-induced mammary carcinogenesis in mice mimics human breast cancer (BC) in many respects. Therefore, it has been used extensively to evaluate preventive and therapeutic agents for human BC. Mammary carcinogenesis induced by DMBA administration in female SENsitive to CARcinogen (SENCAR) mice was characterized by histopathological analysis of the mammary glands and alterations to the phosphatidylinositol 3-kinase/protein kinase B/cyclin-dependent kinase 1 (PI3K/Akt/CDK1) pathway. We recently reported that 2'-hydroxyflavanone (2HF) is a promising diet-derived chemotherapeutic agent that suppresses BC growth in vitro and in vivo by targeting a 76 kDa ral-interacting protein (RLIP). The objective of the current study was to investigate the synergistic anticarcinogenic effects of RLIP inhibition/depletion and 2HF in an in vivo model of DMBA-induced mammary carcinogenesis in SENCAR mice. Mice were given 2HF (50 mg/kg, bw, orally on alternate days), RLIP antibody (Rab; 5 mg/kg, bw, ip weekly), RLIP antisense (RAS; 5 mg/kg, b.w., ip weekly), or a combination of 2HF + Rab + RAS. Animals were monitored daily, and 7 days after the first appearance of moribund behavior, tissues were harvested for morphological and immunohistological analysis. Western blot analyses were performed to determine the expression of anti- and proapoptotic proteins in the mammary glands. Our results reveal that 2HF, RAS, and Rab significantly prevented the carcinogenic effects of DMBA administration in the mammary glands and other organs. Further, mice treated with a combination of 2HF + RAS + Rab exhibited no carcinogenic effect of DMBA as compared to either or the single agent-treated mice. This study demonstrates for the first time the anticarcinogenic effects of 2HF and RLIP inhibition/depletion in vivo in a novel DMBA-induced model of BC in SENCAR mice and provides the rationale for further clinical investigation.
Collapse
Affiliation(s)
- Sharad S Singhal
- Departments of Medical Oncology, City of Hope National Medical Center and Comprehensive Cancer Center, Duarte, California
| | - David Horne
- Molecular Medicine, City of Hope National Medical Center and Comprehensive Cancer Center, Duarte, California
| | - Jyotsana Singhal
- Departments of Medical Oncology, City of Hope National Medical Center and Comprehensive Cancer Center, Duarte, California.,Molecular Medicine, City of Hope National Medical Center and Comprehensive Cancer Center, Duarte, California
| | - Steven Vonderfecht
- Pathology Core, City of Hope National Medical Center and Comprehensive Cancer Center, Duarte, California
| | - Ravi Salgia
- Departments of Medical Oncology, City of Hope National Medical Center and Comprehensive Cancer Center, Duarte, California
| | - Sanjay Awasthi
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| |
Collapse
|
15
|
Singhal SS, Salgia R, Singhal S, Horne D, Awasthi S. RLIP: An existential requirement for breast carcinogenesis. Biochim Biophys Acta Rev Cancer 2019; 1871:281-288. [PMID: 30771458 DOI: 10.1016/j.bbcan.2019.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/08/2019] [Accepted: 02/08/2019] [Indexed: 01/23/2023]
Abstract
Breast cancer (BC) is the most common cancer among women worldwide. Due to its complexity in nature, effective BC treatment can encounter many challenges. The human RALBP1 gene encodes a 76-kDa splice variant protein, RLIP (ral-binding protein1, RalBP1), a stress-protective mercapturic acid pathway (MAP) transporter protein, that also plays a key role in regulating clathrin-dependent endocytosis (CDE) as a Ral effector. Growing evidence shows that targeting RLIP may be an effective strategy in cancer therapy, as RLIP is over-expressed in multiple cancers and is known to induce resistance to apoptosis and chemotherapeutic drugs. Recent studies demonstrated that RLIP is expressed in human BC tissues, as well as BC cell lines. Knockdown of RLIP resulted in apoptotic death of BC cells in vitro, and targeted inhibition and depletion of RLIP resulted in regression of BC in xenograft studies of nude mice. Signaling studies showed that RLIP depletion inhibited endocytosis and differentially regulated signaling to Akt, Myc, and ERK1/2. However, the proliferation and multi-specific transport mechanisms that promote RLIP-mediated cell death in BC are not well understood. In this review, we will discuss a missing but an essentially determining and connecting piece of the puzzle on the understanding of proliferation and transport mechanisms by focused analyses of the apoptotic, drug- and radiation-sensitivity regulated by RLIP, a stress-responsive non-ATP-binding cassette (ABC), high capacity MAP transporter, in breast cancer.
Collapse
Affiliation(s)
- Sharad S Singhal
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA.
| | - Ravi Salgia
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Sulabh Singhal
- University of California at San Diego, La Jolla, CA 92092, USA
| | - David Horne
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Sanjay Awasthi
- Department of Internal Medicine, Division of Hematology & Oncology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
16
|
Singhal J, Chikara S, Horne D, Salgia R, Awasthi S, Singhal SS. RLIP inhibition suppresses breast-to-lung metastasis. Cancer Lett 2019; 447:24-32. [PMID: 30684594 DOI: 10.1016/j.canlet.2019.01.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/08/2019] [Accepted: 01/19/2019] [Indexed: 11/26/2022]
Abstract
Breast tumor metastasis is a leading cause of cancer-related deaths worldwide. Breast cancer (BC) cells frequently metastasize to the lungs, where they pose a formidable therapeutic challenge. In the current study, we evaluated the anti-proliferative and anti-metastatic effects of 2'-hydroxyflavanone (2HF) and RLIP inhibition in an array of triple-negative BC cell lines and an orthotopic mouse model of breast-to-lung metastasis. Compared to control treatment, RLIP inhibition reduced in-vitro cell viability and suppressed the migratory and invasive potential of BC cells. In-vitro studies showed that 2HF treatment reduced the expression of RLIP, KRAS, pERK, pSTAT3, and pP70S6K. Further, mice orthotopically implanted with lung-seeking luciferase-expressing TMD231 cells were treated with 2HF (50 mg/kg, b.w.), RLIP antisense (RAS; 5 mg/kg, b.w.), RLIP antibody (Rab; 5 mg/kg, b.w.) or a combination of 2HF + RAS + Rab. 2HF-, RAS-, and Rab-treated mice exhibited significantly lower primary tumor weight and reduced lung metastasis compared to control mice. Mice treated with a combination of 2HF + RAS + Rab exhibited no metastasis and significantly lower tumor weight than the single agent-treated mice. Collectively, our results suggest that 2HF has potential to be combined with RLIP inhibition/depletion to more effectively suppress primary breast tumor growth and metastasis to the lungs.
Collapse
Affiliation(s)
- Jyotsana Singhal
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA; Department of Molecular Medicine, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA
| | - Shireen Chikara
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA
| | - David Horne
- Department of Molecular Medicine, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA
| | - Ravi Salgia
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA
| | - Sanjay Awasthi
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Sharad S Singhal
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA.
| |
Collapse
|
17
|
Awasthi S, Singhal SS, Singhal J, Nagaprashantha L, Li H, Yuan YC, Liu Z, Berz D, Igid H, Green WC, Tijani L, Tonk V, Rajan A, Awasthi Y, Singh SP. Anticancer activity of 2'-hydroxyflavanone towards lung cancer. Oncotarget 2018; 9:36202-36219. [PMID: 30546837 PMCID: PMC6281421 DOI: 10.18632/oncotarget.26329] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 10/21/2018] [Indexed: 12/12/2022] Open
Abstract
In previous studies, we found that 2'-hydroxyflavonone (2HF), a citrus flavonoid, inhibits the growth of renal cell carcinoma in a VHL-dependent manner. This was associated with the inhibition of glutathione S-transferases (GSTs), the first step enzyme of the mercapturic acid pathway that catalyzes formation of glutathione-electrophile conjugates (GS-E). We studied 2HF in small cell (SCLC) and non-small cell (NSCLC) lung cancer cell lines for sensitivity to 2HF antineoplastic activity and to determine the role of the GS-E transporter Rlip (Ral-interacting protein; RLIP76; RALBP1) in the mechanism of action of 2HF. Our results show that 2HF induced apoptosis in both histological types of lung cancer and inhibited proliferation and growth through suppression of CDK4, CCNB1, PIK3CA, AKT and RPS6KB1 (P70S6K) signaling. Increased E-cadherin and reduced fibronectin and vimentin indicated inhibition of epithelial-mesenchymal transition. Additionally, 2HF inhibited efflux of doxorubicin and increased its accumulation in the cells, but did not add to the transport inhibitory effect of anti-Rlip antibodies alone. Binding of Rlip to 2HF was evident from successful purification of Rlip by 2HF affinity chromatography. Consistent with increased drug accumulation, combined treatment with 1-chloro-2, 4-dinitrobenzene, reduced the GI50 of 2HF by an order of magnitude. Results of in-vivo nude mouse xenograft studies of SCLC and NSCLC, which showed that orally administered 2HF inhibited growth of both histological types of lung cancer, confirmed in-vitro study results. Our result suggest that Rlip inhibition is likely a mechanism of action. Our findings are basis of proposing 2HF as therapeutic or preventative drug for lung cancer.
Collapse
Affiliation(s)
- Sanjay Awasthi
- Division of Hematology and Oncology, Department of Internal Medicine, Texas Tech Health Sciences Center, Lubbock, TX 79430, USA
| | - Sharad S. Singhal
- Department of Medical Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Jyotsana Singhal
- Department of Medical Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Lokesh Nagaprashantha
- Department of Medical Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Hongzhi Li
- Bioinformatics Core Facility, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Yate-Ching Yuan
- Bioinformatics Core Facility, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Zheng Liu
- Bioinformatics Core Facility, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - David Berz
- Beverly Hills Cancer Center, Los Angeles, CA 90211, USA
| | - Henry Igid
- Division of Hematology and Oncology, Department of Internal Medicine, Texas Tech Health Sciences Center, Lubbock, TX 79430, USA
| | - William C. Green
- Division of Hematology and Oncology, Department of Internal Medicine, Texas Tech Health Sciences Center, Lubbock, TX 79430, USA
| | - Lukman Tijani
- Division of Hematology and Oncology, Department of Internal Medicine, Texas Tech Health Sciences Center, Lubbock, TX 79430, USA
| | - Vijay Tonk
- Department of Pediatrics, Texas Tech Health Sciences Center, Lubbock, TX 79430, USA
| | - Aditya Rajan
- Division of Hematology and Oncology, Department of Internal Medicine, Texas Tech Health Sciences Center, Lubbock, TX 79430, USA
| | - Yogesh Awasthi
- Department of Biochemistry and Molecular Biology, the University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Sharda P. Singh
- Division of Hematology and Oncology, Department of Internal Medicine, Texas Tech Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
18
|
Singhal J, Chikara S, Horne D, Salgia R, Awasthi S, Singhal SS. 2'-Hydroxyflavanone inhibits in vitro and in vivo growth of breast cancer cells by targeting RLIP76. Mol Carcinog 2018; 57:1751-1762. [PMID: 30136444 DOI: 10.1002/mc.22894] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/17/2018] [Accepted: 08/20/2018] [Indexed: 12/14/2022]
Abstract
Consumption of citrus-fruits is associated with reduced incidence of breast cancer (BC), the most common cancer diagnosed in women across the globe. In this study, we investigated the anticancer potential of 2-Hydroxyflavanone (2HF) in BC. 2HF, a citrus-bioflavonoid, has demonstrated anticancer properties in various cancers, but its anticancer role in BC has not been well studied. We investigated the in vitro and in vivo growth inhibitory effects of 2HF in an array of BC lines and in xenograft mouse models of ER-positive and HER2-positive BC cells. Compared to control, 2HF treatment reduced cell viability and suppressed migratory and invasive potential of BC cells, while, no growth inhibitory effects were observed in non-tumorigenic breast epithelial cells. Further, 2HF inhibited the expression of RLIP76, a stress-defensive and anti-apoptotic protein, which is over-expressed in BC cells and simultaneously reduced proliferation of BC cells. Nude mice bearing MCF7 or SKBR3 BC cells xenografts treated with either 2HF or targeting RLIP76 by RLIP76-antisense or RLIP76-antibody treatment had significantly lower tumor-weight as compared to corresponding controls. In addition, Western-blotting and immunohistochemical analysis of tumor tissue from control and treatment group mice showed that 2HF decreased protein expression levels of RLIP76, and the decrease was similar to those seen following RLIP76-antisense treatment. Furthermore, 2HF decreased expression of Ki67, CD31, vimentin, inhibited phosphorylation of Akt and expression of survivin and Bcl2, and increased levels of Bax, E-cadherin, and cleaved-PARP. Therefore, our results indicate that 2HF may suppress BC growth in vitro and in vivo by targeting RLIP76, and may serve as a potential adjuvant treatment in BC patients.
Collapse
Affiliation(s)
- Jyotsana Singhal
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, California.,Department of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, California
| | - Shireen Chikara
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, California
| | - David Horne
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, California
| | - Ravi Salgia
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, California
| | - Sanjay Awasthi
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Sharad S Singhal
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, California
| |
Collapse
|
19
|
Singhal J, Singhal P, Horne D, Salgia R, Awasthi S, Singhal SS. Metastasis of breast tumor cells to brain is suppressed by targeting RLIP alone and in combination with 2'-Hydroxyflavanone. Cancer Lett 2018; 438:144-153. [PMID: 30223070 DOI: 10.1016/j.canlet.2018.09.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/28/2018] [Accepted: 09/06/2018] [Indexed: 11/28/2022]
Abstract
Brain metastasis is an important cause of morbidity and mortality in cancer-patients. Breast tumor cells frequently metastasize to brain and initiate severe therapeutic complications. In the present study, we evaluated the anti-metastatic effects of 2'-hydroxyflavanone (2HF) alone and in combination with RLIP targeted therapy in a novel murine model of breast tumor metastasis. The MDA-MB231Br (brain-seeking) breast cancer (BC) cells stably-transfected with luciferase were injected into the left-ventricle of NSG mouse heart and the migration of cells to brain was monitored using a non-invasive bioluminescent imaging system. To evaluate the tumor growth suppressive effects, mice were given 2HF (50 mg/kg, b.w., alternate days orally), RLIP-antibody (Rab; 5 mg/kg, b.w., weekly i.p.) or combination of 2HF+Rab starting day1 after intra-cardiac injection. Our results reveal that 2HF and Rab significantly prevented the metastasis of BC cells to brain. Further, mice treated with combination of 2HF+Rab exhibited no metastasis as compared to either or the single agent-treated mice. This study for the first time demonstrates the anti-metastatic effects of 2HF and RLIP-inhibition in-vivo in a novel breast tumor metastasis model and provides the rationale for further clinical investigation.
Collapse
Affiliation(s)
- Jyotsana Singhal
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA; Department of Molecular Medicine, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA
| | - Preeti Singhal
- Department of Medicine, University of Texas Health, San Antonio, TX, 78229, USA
| | - David Horne
- Department of Molecular Medicine, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA
| | - Ravi Salgia
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA
| | - Sanjay Awasthi
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Sharad S Singhal
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA.
| |
Collapse
|