1
|
Hassan RT, Al Hassawi B, Alkazzaz M. The Clinicopathological Correlation of KRAS Mutation and PTEN Expression Status in Primary and Metastatic Colorectal Carcinoma. Cureus 2024; 16:e53884. [PMID: 38465160 PMCID: PMC10924830 DOI: 10.7759/cureus.53884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) research has identified a consistent loss of PTEN expression in both primary tumors and metastasis, highlighting its potential role in this disease. However, the impact of PTEN on downstream proteins of KRAS mutation, namely p-AKT, p-ERK, and p65 (NFkB), remains unknown. This study aims to explore the inhibitory effect of PTEN on KRAS downstream proteins and its correlation with pathological features in CRC patients. METHODS From January 1, 2015, to December 31, 2021, 86 CRC cases were collected from governmental and private laboratories in the Duhok province. Formalin-fixed, paraffin-embedded tissue blocks were obtained, and the study involved histopathological analysis, immunohistochemistry of PTEN, AKT, ERK, and P65 markers, and molecular analysis of the KRAS gene. RESULTS Among the 86 cases, there were 46 males (53.5%) and 40 females (46.5%), with an equal distribution between right colon and left colon/rectum. Tumors larger than 5cm were observed in 47 cases, predominantly displaying a polypoid or ulcerated growth pattern. Most cases were moderately differentiated adenocarcinomas, with stages II and III being the most prevalent 31 cases (36%) and 34 cases (39.5%) respectively. Significant associations were found between PTEN, ERK expressions, and tumor location in the right colon (P=0.031 and P=0.009 respectively). Tumor size correlated with P65 expression (P=0.042). KRAS mutation showed a positive relationship with the type of tumor growth (P=0.035). Tumor grade increased with KRAS mutations (P=0.043). PTEN expression correlated significantly with ERK and AKT markers (P=0.018 and 0.035 respectively). P65 exhibited an association with KRAS mutation (P=0.034). CONCLUSION The study revealed PTEN expression in association with the inhibition of AKT and ERK, and the absence of KRAS gene mutation. Conversely, PTEN is not expressed with the positively reactive P65 and the presence of KRAS mutation. This study contributes valuable insights into the complex interplay between PTEN expression, KRAS mutation, and downstream signaling pathways in CRC. It suggests potential avenues for further research and therapeutic strategies in the context of CRC treatment.
Collapse
|
2
|
Arunachalam A, Lakshmanan DK, Ravichandran G, Paul S, Manickam S, Kumar PV, Thilagar S. Regulatory mechanisms of heme regulatory protein BACH1: a potential therapeutic target for cancer. Med Oncol 2021; 38:122. [PMID: 34482423 DOI: 10.1007/s12032-021-01573-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/27/2021] [Indexed: 02/06/2023]
Abstract
A limited number of overexpressed transcription factors are associated with cancer progression in many types of cancer. BTB and CNC homology 1 (BACH1) is the first mammalian heme-binding transcription factor that belongs to the basic region leucine zipper (bZIP) family and a member of CNC (cap 'n' collar). It forms heterodimers with the small musculoaponeurotic fibrosarcoma (MAF) proteins and stimulates or suppresses the expression of target genes under a very low intracellular heme concentration. It possesses a significant regulatory role in heme homeostasis, oxidative stress, cell cycle, apoptosis, angiogenesis, and cancer metastasis progression. This review discusses the current knowledge about how BACH1 regulates cancer metastasis in various types of cancer and other carcinogenic associated factors such as oxidative stress, cell cycle regulation, apoptosis, and angiogenesis. Overall, from the reported studies and outcomes, it could be realized that BACH1 is a potential pharmacological target for discovering new therapeutic anticancer drugs.
Collapse
Affiliation(s)
- Abirami Arunachalam
- Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Dinesh Kumar Lakshmanan
- Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Guna Ravichandran
- Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Soumi Paul
- Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Palanirajan Vijayaraj Kumar
- Department (Pharmaceutical Technology), Faculty of Pharmacy, UCSI University, South Campus, Taman Connaught, 56000, Kuala Lumpur, Malaysia
| | - Sivasudha Thilagar
- Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India.
| |
Collapse
|
3
|
Yoon C, Lu J, Ryeom SW, Simon MC, Yoon SS. PIK3R3, part of the regulatory domain of PI3K, is upregulated in sarcoma stem-like cells and promotes invasion, migration, and chemotherapy resistance. Cell Death Dis 2021; 12:749. [PMID: 34321458 PMCID: PMC8319167 DOI: 10.1038/s41419-021-04036-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022]
Abstract
To identify drivers of sarcoma cancer stem-like cells (CSCs), we compared gene expression using RNA sequencing between HT1080 fibrosarcoma and SK-LMS-1 leiomyosarcoma spheroids (which are enriched for CSCs) compared with the parent populations. The most overexpressed survival signaling-related gene in spheroids was phosphoinositide-3-kinase regulatory subunit 3 (PIK3R3), a regulatory subunit of PI3K, which functions in tumorigenesis and metastasis. In a human sarcoma microarray, PIK3R3 was also overexpressed by 4.1-fold compared with normal tissues. PIK3R3 inhibition using shRNA in the HT1080, SK-LMS-1, and DDLS8817 dedifferentiated liposarcoma in spheroids and in CD133+ cells (a CSC marker) reduced expression of CD133 and the stem cell factor Nanog and blocked spheroid formation by 61-71%. Mechanistic studies showed that in spheroid cells, PIK3R3 activated AKT and ERK signaling. Inhibition of PIK3R3, AKT, or ERK using shRNA or inhibitors decreased expression of Nanog, spheroid formation by 68-73%, and anchorage-independent growth by 76-91%. PIK3R3 or ERK1/2 inhibition similarly blocked sarcoma spheroid cell migration, invasion, secretion of MMP-2, xenograft invasion into adjacent normal tissue, and chemotherapy resistance. Together, these results show that signaling through the PIK3R3/ERK/Nanog axis promotes sarcoma CSC phenotypes such as migration, invasion, and chemotherapy resistance, and identify PIK3R3 as a potential therapeutic target in sarcoma.
Collapse
Affiliation(s)
- Changhwan Yoon
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jun Lu
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fujian, China
| | - Sandra W Ryeom
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sam S Yoon
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
4
|
Mishra S, Charan M, Verma AK, Ramaswamy B, Ahirwar DK, Ganju RK. Racially Disparate Expression of mTOR/ERK-1/2 Allied Proteins in Cancer. Front Cell Dev Biol 2021; 9:601929. [PMID: 33996789 PMCID: PMC8120233 DOI: 10.3389/fcell.2021.601929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
Recent studies revealed that ethnic differences in mechanistic target of rapamycin (mTOR) and extracellular signal-regulated kinase (ERK-1/2) signaling pathways might be associated with the development and progression of different human malignancies. The African American (AA) population has an increased rate of cancer incidence and mortality compared to the Caucasian American (CA) population. Although the socioeconomic differences across different ethnic groups contribute to the disparity in developing different cancers, recent scientific evidence indicates the association of molecular and genetic variations in racial disparities of different human malignancies. The mTOR and ERK-1/2 signaling pathways are one of the well-known oncogenic signaling mechanisms that regulate diverse molecular and phenotypic aspects of normal as well as cancer cells in response to different external or internal stimuli. To date, very few studies have been carried out to explore the significance of racial disparity with abnormal mTOR and ERK-1/2 kinase signaling pathways, which may contribute to the development of aggressive human cancers. In this review, we discuss the differential regulation of mTOR and ERK-1/2 kinase signaling pathways across different ethnic groups, especially between AA and CA populations. Notably, we observed that key signaling proteins associated with mTOR and ERK-1/2 pathway including transforming growth factor-beta (TGF-β), Akt, and VEGFR showed racially disparate expression in cancer patients. Overall, this review article encompasses the significance of racially disparate signaling molecules related to mTOR/ERK1/2 and their potential in developing tailor-made anti-cancer therapies.
Collapse
Affiliation(s)
- Sanjay Mishra
- Department of Pathology, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Manish Charan
- Department of Pathology, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Ajeet Kumar Verma
- Department of Pathology, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH, United States
| | | | - Dinesh Kumar Ahirwar
- Department of Pathology, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Ramesh K Ganju
- Department of Pathology, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH, United States.,Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
5
|
Low HB, Wong ZL, Wu B, Kong LR, Png CW, Cho YL, Li CW, Xiao F, Xin X, Yang H, Loo JM, Lee FYX, Tan IBH, DasGupta R, Shen HM, Schwarz H, Gascoigne NRJ, Goh BC, Xu X, Zhang Y. DUSP16 promotes cancer chemoresistance through regulation of mitochondria-mediated cell death. Nat Commun 2021; 12:2284. [PMID: 33863904 PMCID: PMC8052345 DOI: 10.1038/s41467-021-22638-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 03/18/2021] [Indexed: 02/02/2023] Open
Abstract
Drug resistance is a major obstacle to the treatment of most human tumors. In this study, we find that dual-specificity phosphatase 16 (DUSP16) regulates resistance to chemotherapy in nasopharyngeal carcinoma, colorectal cancer, gastric and breast cancer. Cancer cells expressing higher DUSP16 are intrinsically more resistant to chemotherapy-induced cell death than cells with lower DUSP16 expression. Overexpression of DUSP16 in cancer cells leads to increased resistance to cell death upon chemotherapy treatment. In contrast, knockdown of DUSP16 in cancer cells increases their sensitivity to treatment. Mechanistically, DUSP16 inhibits JNK and p38 activation, thereby reducing BAX accumulation in mitochondria to reduce apoptosis. Analysis of patient survival in head & neck cancer and breast cancer patient cohorts supports DUSP16 as a marker for sensitivity to chemotherapy and therapeutic outcome. This study therefore identifies DUSP16 as a prognostic marker for the efficacy of chemotherapy, and as a therapeutic target for overcoming chemoresistance in cancer.
Collapse
Affiliation(s)
- Heng Boon Low
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, the Life Science Institute, National University of Singapore, Singapore, Singapore
| | - Zhen Lim Wong
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, the Life Science Institute, National University of Singapore, Singapore, Singapore
| | - Bangyuan Wu
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, the Life Science Institute, National University of Singapore, Singapore, Singapore
- College of Life Science, China West Normal University, Nanchong, Sichuan, China
| | - Li Ren Kong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Chin Wen Png
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, the Life Science Institute, National University of Singapore, Singapore, Singapore
| | - Yik-Lam Cho
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chun-Wei Li
- Department of Otorhinolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Fengchun Xiao
- Department of Pathology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xuan Xin
- Department of Mathematics, National University of Singapore, Singapore, Singapore
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Jia Min Loo
- Genome Institute of Singapore, Agency of Science Technology and Research (A*Star), Singapore, Singapore
| | - Fiona Yi Xin Lee
- Division of Medical Oncology, National Cancer Center, Singapore, Singapore
| | - Iain Bee Huat Tan
- Division of Medical Oncology, National Cancer Center, Singapore, Singapore
| | - Ramanuj DasGupta
- Genome Institute of Singapore, Agency of Science Technology and Research (A*Star), Singapore, Singapore
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Herbert Schwarz
- Immunology Programme, the Life Science Institute, National University of Singapore, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nicholas R J Gascoigne
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, the Life Science Institute, National University of Singapore, Singapore, Singapore
| | - Boon Cher Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xiaohong Xu
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.
| | - Yongliang Zhang
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Immunology Programme, the Life Science Institute, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
6
|
ERK phosphorylation as a marker of RAS activity and its prognostic value in non-small cell lung cancer. Lung Cancer 2020; 149:10-16. [PMID: 32947221 DOI: 10.1016/j.lungcan.2020.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/26/2020] [Accepted: 09/01/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Deregulated signal transduction pathways play a key role in development, progression and therapeutic resistance of non-small cell lung cancers (NSCLC). The purpose of this study is to assess the downstream markers of two well-characterized pathways and to correlate them with clinical outcome. DESIGN 670 patients with metastatic NSCLC were prospectively enrolled in a comprehensive biomarker profiling program at a single center from 2012 to 2016. Phosphorylation of extracellular signal-regulated kinase (p-ERK), and protein kinase B (p-AKT) was assessed by standardized immunohistochemistry. Product of scores for quantity and quality of staining were calculated (immunoreactive score, 0-9). Somatic mutations of Kirsten rat sarcoma viral oncogene homolog [KRAS], epithelial growth factor receptor [EGFR], v-Raf murine sarcoma viral oncogene homolog B [BRAF] and phosphatidylinositol 3-kinase [PIK3CA]) were detected by Sanger (2012-03/2015) and amplicon NGS (04/2015-02/2016). Patients enrolled during the first year (2012) were used as discovery cohort. Patients enrolled from 2013 to 02/2016 were used as validation cohort. Clinical data were retrieved from the electronic medical records and were analyzed retrospectively. RESULTS Using a discovery cohort, we identified an immunoreactive score of p-ERK ≥3 to be prognostically relevant. The validation cohort confirmed that higher levels of p-ERK correlated with worse overall survival (OS) and higher proportion of RAS mutations. Multivariate analysis including established risk factors such EGFR, ALK or ROS mutations and metastatic disease showed a trend of a detrimental effect of high p-ERK on OS (HR 1.23, CI 0.94-1.59, p = 0.131 for p-ERK immunoreactive score ≥3) and time to treatment failure after first-line therapy in the validation cohort. Phosphorylated AKT did not correlate with clinical outcome. CONCLUSION While serving as a prognosticator in univariate analysis, highly phosphorylated ERK does not convey a significant prognostic effect for OS in the presence of other prognostic factors. Phosphorylated ERK indicates a higher activity of RAS in advanced NSCLC.
Collapse
|
7
|
Clarithromycin inhibits autophagy in colorectal cancer by regulating the hERG1 potassium channel interaction with PI3K. Cell Death Dis 2020; 11:161. [PMID: 32123164 PMCID: PMC7052256 DOI: 10.1038/s41419-020-2349-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022]
Abstract
We have studied how the macrolide antibiotic Clarithromycin (Cla) regulates autophagy, which sustains cell survival and resistance to chemotherapy in cancer. We found Cla to inhibit the growth of human colorectal cancer (CRC) cells, by modulating the autophagic flux and triggering apoptosis. The accumulation of cytosolic autophagosomes accompanied by the modulation of autophagic markers LC3-II and p62/SQSTM1, points to autophagy exhaustion. Because Cla is known to bind human Ether-à-go-go Related Gene 1 (hERG1) K+ channels, we studied if its effects depended on hERG1 and its conformational states. By availing of hERG1 mutants with different gating properties, we found that fluorescently labelled Cla preferentially bound to the closed channels. Furthermore, by sequestering the channel in the closed conformation, Cla inhibited the formation of a macromolecular complex between hERG1 and the p85 subunit of PI3K. This strongly reduced Akt phosphorylation, and stimulated the p53-dependent cell apoptosis, as witnessed by late caspase activation. Finally, Cla enhanced the cytotoxic effect of 5-fluorouracil (5-FU), the main chemotherapeutic agent in CRC, in vitro and in a xenograft CRC model. We conclude that Cla affects the autophagic flux by impairing the signaling pathway linking hERG1 and PI3K. Combining Cla with 5-FU might be a novel therapeutic option in CRC.
Collapse
|