1
|
Yang J, Chen G, Wang R, Song C, Yi H. Navigating TAM receptor dynamics in tumour immunotherapy. Cancer Immunol Immunother 2025; 74:146. [PMID: 40088262 PMCID: PMC11910493 DOI: 10.1007/s00262-024-03879-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/02/2024] [Indexed: 03/17/2025]
Abstract
The TAM receptor family is getting more and more attention in the field of tumour immunity. Activation of TAM receptors not only aids in the survival and multiplication of tumour cells but also increases their likelihood of invading other cells and spreading. In addition, activation of TAM receptors helps to inhibit the anti-tumour immune response, allowing tumour cells to evade immune surveillance. In terms of therapeutic strategies, a number of inhibitors targeting TAM receptors are in preclinical and clinical development. Despite significant progress in clinical trials in recent years, challenges remain. This review delves into the kinetic characteristics of the TAM receptor family, their dual role in tumour immunity, and the transmission process of downstream signalling pathways. Based on this, we analysed and summarised the unique strategies and combination therapies for regulating tumour immunity using TAM receptor inhibitors. It not only helps to elucidate the key role of TAM receptors in tumour immunity but also provides new perspectives and strategies for future tumour therapy.
Collapse
Affiliation(s)
- Jihao Yang
- School of Acupuncture and Tuina, Shandong University of Traditional Chinese, Medicine, Jinan, 250013, People's Republic of China
| | - Guanmin Chen
- School of Acupuncture and Tuina, Shandong University of Traditional Chinese, Medicine, Jinan, 250013, People's Republic of China
| | - Rui Wang
- School of Acupuncture and Tuina, Shandong University of Traditional Chinese, Medicine, Jinan, 250013, People's Republic of China
| | - Chengcheng Song
- School of Acupuncture and Tuina, Shandong University of Traditional Chinese, Medicine, Jinan, 250013, People's Republic of China
| | - Huaqiang Yi
- School of Acupuncture and Tuina, Shandong University of Traditional Chinese, Medicine, Jinan, 250013, People's Republic of China.
| |
Collapse
|
2
|
Yadav M, Sharma A, Patne K, Tabasum S, Suryavanshi J, Rawat L, Machaalani M, Eid M, Singh RP, Choueiri TK, Pal S, Sabarwal A. AXL signaling in cancer: from molecular insights to targeted therapies. Signal Transduct Target Ther 2025; 10:37. [PMID: 39924521 PMCID: PMC11808115 DOI: 10.1038/s41392-024-02121-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/02/2024] [Accepted: 12/19/2024] [Indexed: 02/11/2025] Open
Abstract
AXL, a member of the TAM receptor family, has emerged as a potential target for advanced-stage human malignancies. It is frequently overexpressed in different cancers and plays a significant role in various tumor-promoting pathways, including cancer cell proliferation, invasion, metastasis, epithelial-mesenchymal transition (EMT), angiogenesis, stemness, DNA damage response, acquired therapeutic resistance, immunosuppression, and inflammatory responses. Beyond oncology, AXL also facilitates viral infections, including SARS-CoV-2 and Zika highlighting its importance in both cancer and virology. In preclinical models, small-molecule kinase inhibitors targeting AXL have shown promising anti-tumorigenic potential. This review primarily focuses on the induction, regulation and biological functions of AXL in mediating these tumor-promoting pathways. We discuss a range of therapeutic strategies, including recently developed small-molecule tyrosine kinase inhibitors (TKIs), monoclonal antibodies, and antibody-drug conjugates (ADCs), anti-AXL-CAR, and combination therapies. These interventions are being examined in both preclinical and clinical studies, offering the potential for improved drug sensitivity and therapeutic efficacy. We further discuss the mechanisms of acquired therapeutic resistance, particularly the crosstalk between AXL and other critical receptor tyrosine kinases (RTKs) such as c-MET, EGFR, HER2/HER3, VEGFR, PDGFR, and FLT3. Finally, we highlight key research areas that require further exploration to enhance AXL-mediated therapeutic approaches for improved clinical outcomes.
Collapse
Affiliation(s)
- Monika Yadav
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India
- Laboratory of Nanotechnology and Chemical Biology, Regional Center for Biotechnology, Faridabad, Haryana, India
| | - Akansha Sharma
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ketki Patne
- Chromatin Remodeling Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Saba Tabasum
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jyoti Suryavanshi
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
| | - Laxminarayan Rawat
- Harvard Medical School, Boston, MA, USA
- Division of Nephrology, Boston Children's Hospital, Boston, MA, USA
| | - Marc Machaalani
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Marc Eid
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Rana P Singh
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India
| | - Toni K Choueiri
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Soumitro Pal
- Harvard Medical School, Boston, MA, USA.
- Division of Nephrology, Boston Children's Hospital, Boston, MA, USA.
| | - Akash Sabarwal
- Harvard Medical School, Boston, MA, USA.
- Division of Nephrology, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
3
|
Izumi M, Costa DB, Kobayashi SS. Targeting of drug-tolerant persister cells as an approach to counter drug resistance in non-small cell lung cancer. Lung Cancer 2024; 194:107885. [PMID: 39002493 PMCID: PMC11305904 DOI: 10.1016/j.lungcan.2024.107885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
The advent of targeted therapies revolutionized treatments of advanced oncogene-driven non-small cell lung cancer (NSCLC). Nonetheless, despite initial dramatic responses, development of drug resistance is inevitable. Although mechanisms underlying acquired resistance, such as on-target mutations, bypass pathways, or lineage transformation, have been described, overcoming drug resistance remains challenging. Recent evidence suggests that drug-tolerant persister (DTP) cells, which are tumor cells tolerant to initial drug exposure, give rise to cells that acquire drug resistance. Thus, the possibility of eradicating cancer by targeting DTP cells is under investigation, and various strategies are proposed. Here, we review overall features of DTP cells, current efforts to define DTP markers, and potential therapeutic strategies to target and eradicate DTP cells in oncogene-driven NSCLC. We also discuss future challenges in the field.
Collapse
Affiliation(s)
- Motohiro Izumi
- Department of Medicine, Division of Medical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Daniel B Costa
- Department of Medicine, Division of Medical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Susumu S Kobayashi
- Department of Medicine, Division of Medical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
4
|
Liu Z, Chen L, Zhang J, Yang J, Xiao X, Shan L, Mao W. Recent discovery and development of AXL inhibitors as antitumor agents. Eur J Med Chem 2024; 272:116475. [PMID: 38714043 DOI: 10.1016/j.ejmech.2024.116475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024]
Abstract
AXL, a receptor tyrosine kinase (RTK), plays a pivotal role in various cellular functions. It is primarily involved in processes such as epithelial-mesenchymal transition (EMT) in tumor cells, angiogenesis, apoptosis, immune regulation, and chemotherapy resistance mechanisms. Therefore, targeting AXL is a promising therapeutic approach for the treatment of cancer. AXL inhibitors that have entered clinical trials, such as BGB324(1), have shown promising efficacy in the treatment of melanoma and non-small cell lung cancer. Additionally, novel AXL-targeted drugs, such as AXL degraders, offer a potential solution to overcome the limitations of traditional small-molecule AXL inhibitors targeting single pathways. We provide an overview of the structure and biological functions of AXL, discusses its correlation with various cancers, and critically analyzes the structure-activity relationship of AXL small-molecule inhibitors in cellular contexts. Additionally, we summarize multiple research and development strategies, offering insights for the future development of innovative AXL inhibitors.
Collapse
Affiliation(s)
- Zihang Liu
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, State Key Laboratory of Respiratory Health and Multimorbidity, Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Li Chen
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, State Key Laboratory of Respiratory Health and Multimorbidity, Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Jifa Zhang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, State Key Laboratory of Respiratory Health and Multimorbidity, Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jun Yang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, State Key Laboratory of Respiratory Health and Multimorbidity, Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xue Xiao
- Department of Obstetrics & Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Lianhai Shan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
| | - Wuyu Mao
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, State Key Laboratory of Respiratory Health and Multimorbidity, Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
5
|
Theard PL, Linke AJ, Sealover NE, Daley BR, Yang J, Cox K, Kortum RL. SOS2 modulates the threshold of EGFR signaling to regulate osimertinib efficacy and resistance in lung adenocarcinoma. Mol Oncol 2024; 18:641-661. [PMID: 38073064 PMCID: PMC10920089 DOI: 10.1002/1878-0261.13564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/23/2023] [Accepted: 12/08/2023] [Indexed: 01/02/2024] Open
Abstract
Son of sevenless 1 and 2 (SOS1 and SOS2) are RAS guanine nucleotide exchange factors (RasGEFs) that mediate physiologic and pathologic receptor tyrosine kinase (RTK)-dependent RAS activation. Here, we show that SOS2 modulates the threshold of epidermal growth factor receptor (EGFR) signaling to regulate the efficacy of and resistance to the EGFR tyrosine kinase inhibitor (EGFR-TKI) osimertinib in lung adenocarcinoma (LUAD). SOS2 deletion (SOS2KO ) sensitized EGFR-mutated cells to perturbations in EGFR signaling caused by reduced serum and/or osimertinib treatment to inhibit phosphatidylinositol 3-kinase (PI3K)/AKT pathway activation, oncogenic transformation, and survival. Bypassing RTK reactivation of PI3K/AKT signaling represents a common resistance mechanism to EGFR-TKIs; SOS2KO reduced PI3K/AKT reactivation to limit osimertinib resistance. In a forced HGF/MET-driven bypass model, SOS2KO inhibited hepatocyte growth factor (HGF)-stimulated PI3K signaling to block HGF-driven osimertinib resistance. Using a long-term in situ resistance assay, most osimertinib-resistant cultures exhibited a hybrid epithelial/mesenchymal phenotype associated with reactivated RTK/AKT signaling. In contrast, RTK/AKT-dependent osimertinib resistance was markedly reduced by SOS2 deletion; the few SOS2KO cultures that became osimertinib resistant primarily underwent non-RTK-dependent epithelial-mesenchymal transition (EMT). Since bypassing RTK reactivation and/or tertiary EGFR mutations represent most osimertinib-resistant cancers, these data suggest that targeting proximal RTK signaling, here exemplified by SOS2 deletion, has the potential to delay the development osimertinib resistance and enhance overall clinical responses for patients with EGFR-mutated LUAD.
Collapse
Affiliation(s)
- Patricia L. Theard
- Department of Pharmacology and Molecular TherapeuticsUniformed Services University of the Health SciencesBethesdaMDUSA
| | - Amanda J. Linke
- Department of Pharmacology and Molecular TherapeuticsUniformed Services University of the Health SciencesBethesdaMDUSA
| | - Nancy E. Sealover
- Department of Pharmacology and Molecular TherapeuticsUniformed Services University of the Health SciencesBethesdaMDUSA
| | - Brianna R. Daley
- Department of Pharmacology and Molecular TherapeuticsUniformed Services University of the Health SciencesBethesdaMDUSA
| | - Johnny Yang
- Department of Pharmacology and Molecular TherapeuticsUniformed Services University of the Health SciencesBethesdaMDUSA
| | - Katherine Cox
- Department of Pharmacology and Molecular TherapeuticsUniformed Services University of the Health SciencesBethesdaMDUSA
| | - Robert L. Kortum
- Department of Pharmacology and Molecular TherapeuticsUniformed Services University of the Health SciencesBethesdaMDUSA
| |
Collapse
|
6
|
Lan Y, Peng X, Ji Y, Su Y, Duan W, Ai J, Zhang H. Discovery of a 1,6-naphthyridin-4-one-based AXL inhibitor with improved pharmacokinetics and enhanced in vivo antitumor efficacy. Eur J Med Chem 2024; 265:116045. [PMID: 38128234 DOI: 10.1016/j.ejmech.2023.116045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/30/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
The receptor tyrosine kinase AXL has emerged as an attractive target in anticancer drug discovery. Herein, we described the discovery of a new series of 1,6-naphthyridin-4-one derivatives as potent AXL inhibitors. Starting from a low in vivo potency compound 9 which was previously reported by our group, we utilized structure-based drug design and scaffold hopping strategies to discover potent AXL inhibitors. The privileged compound 13c was a highly potent and orally bioavailable AXL inhibitor with an IC50 value of 3.2 ± 0.3 nM. Compound 13c exhibited significantly improved in vivo antitumor efficacy in AXL-driven tumor xenograft mice, causing tumor regression at well-tolerated dose, and demonstrated favorable pharmacokinetic properties (MRT = 16.5 h, AUC0-∞ = 59,815 ng h/mL) in Sprague-Dawley rats. These results suggest that 13c is a promising therapeutic candidate for AXL-targeting cancer treatment.
Collapse
Affiliation(s)
- Yaohan Lan
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Xia Peng
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Yinchun Ji
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Yi Su
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Wenhu Duan
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
| | - Jing Ai
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China; Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.
| | - Hefeng Zhang
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.
| |
Collapse
|
7
|
Collie GW, Clark MA, Keefe AD, Madin A, Read JA, Rivers EL, Zhang Y. Screening Ultra-Large Encoded Compound Libraries Leads to Novel Protein-Ligand Interactions and High Selectivity. J Med Chem 2024; 67:864-884. [PMID: 38197367 PMCID: PMC10823476 DOI: 10.1021/acs.jmedchem.3c01861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/17/2023] [Accepted: 12/04/2023] [Indexed: 01/11/2024]
Abstract
The DNA-encoded library (DEL) discovery platform has emerged as a powerful technology for hit identification in recent years. It has become one of the major parallel workstreams for small molecule drug discovery along with other strategies such as HTS and data mining. For many researchers working in the DEL field, it has become increasingly evident that many hits and leads discovered via DEL screening bind to target proteins with unique and unprecedented binding modes. This Perspective is our attempt to analyze reports of DEL screening with the purpose of providing a rigorous and useful account of the binding modes observed for DEL-derived ligands with a focus on binding mode novelty.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ying Zhang
- X-Chem,
Inc., Waltham, Massachusetts 02453, United States
| |
Collapse
|
8
|
Sealover NE, Theard PT, Hughes JM, Linke AJ, Daley BR, Kortum RL. In situ modeling of acquired resistance to RTK/RAS-pathway-targeted therapies. iScience 2024; 27:108711. [PMID: 38226159 PMCID: PMC10788224 DOI: 10.1016/j.isci.2023.108711] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/31/2023] [Accepted: 12/08/2023] [Indexed: 01/17/2024] Open
Abstract
Intrinsic and acquired resistance limit the window of effectiveness for oncogene-targeted cancer therapies. Here, we describe an in situ resistance assay (ISRA) that reliably models acquired resistance to RTK/RAS-pathway-targeted therapies across cell lines. Using osimertinib resistance in EGFR-mutated lung adenocarcinoma (LUAD) as a model system, we show that acquired osimertinib resistance can be significantly delayed by inhibition of proximal RTK signaling using SHP2 inhibitors. Isolated osimertinib-resistant populations required SHP2 inhibition to resensitize cells to osimertinib and reduce MAPK signaling to block the effects of enhanced activation of multiple parallel RTKs. We additionally modeled resistance to targeted therapies including the KRASG12C inhibitors adagrasib and sotorasib, the MEK inhibitor trametinib, and the farnesyl transferase inhibitor tipifarnib. These studies highlight the tractability of in situ resistance assays to model acquired resistance to targeted therapies and provide a framework for assessing the extent to which synergistic drug combinations can target acquired drug resistance.
Collapse
Affiliation(s)
- Nancy E. Sealover
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Patricia T. Theard
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Jacob M. Hughes
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Amanda J. Linke
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Brianna R. Daley
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Robert L. Kortum
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
9
|
Daley BR, Vieira HM, Rao C, Hughes JM, Beckley ZM, Huisman DH, Chatterjee D, Sealover NE, Cox K, Askew JW, Svoboda RA, Fisher KW, Lewis RE, Kortum RL. SOS1 and KSR1 modulate MEK inhibitor responsiveness to target resistant cell populations based on PI3K and KRAS mutation status. Proc Natl Acad Sci U S A 2023; 120:e2313137120. [PMID: 37972068 PMCID: PMC10666034 DOI: 10.1073/pnas.2313137120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/20/2023] [Indexed: 11/19/2023] Open
Abstract
KRAS is the most commonly mutated oncogene. Targeted therapies have been developed against mediators of key downstream signaling pathways, predominantly components of the RAF/MEK/ERK kinase cascade. Unfortunately, single-agent efficacy of these agents is limited both by intrinsic and acquired resistance. Survival of drug-tolerant persister cells within the heterogeneous tumor population and/or acquired mutations that reactivate receptor tyrosine kinase (RTK)/RAS signaling can lead to outgrowth of tumor-initiating cells (TICs) and drive therapeutic resistance. Here, we show that targeting the key RTK/RAS pathway signaling intermediates SOS1 (Son of Sevenless 1) or KSR1 (Kinase Suppressor of RAS 1) both enhances the efficacy of, and prevents resistance to, the MEK inhibitor trametinib in KRAS-mutated lung (LUAD) and colorectal (COAD) adenocarcinoma cell lines depending on the specific mutational landscape. The SOS1 inhibitor BI-3406 enhanced the efficacy of trametinib and prevented trametinib resistance by targeting spheroid-initiating cells in KRASG12/G13-mutated LUAD and COAD cell lines that lacked PIK3CA comutations. Cell lines with KRASQ61 and/or PIK3CA mutations were insensitive to trametinib and BI-3406 combination therapy. In contrast, deletion of the RAF/MEK/ERK scaffold protein KSR1 prevented drug-induced SIC upregulation and restored trametinib sensitivity across all tested KRAS mutant cell lines in both PIK3CA-mutated and PIK3CA wild-type cancers. Our findings demonstrate that vertical inhibition of RTK/RAS signaling is an effective strategy to prevent therapeutic resistance in KRAS-mutated cancers, but therapeutic efficacy is dependent on both the specific KRAS mutant and underlying comutations. Thus, selection of optimal therapeutic combinations in KRAS-mutated cancers will require a detailed understanding of functional dependencies imposed by allele-specific KRAS mutations.
Collapse
Affiliation(s)
- Brianna R. Daley
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD20814
| | - Heidi M. Vieira
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE68198
| | - Chaitra Rao
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE68198
| | - Jacob M. Hughes
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD20814
| | - Zaria M. Beckley
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD20814
| | - Dianna H. Huisman
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE68198
| | - Deepan Chatterjee
- Department of Integrative Physiology and Molecular Medicine, University of Nebraska Medical Center, Omaha, NE68198
| | - Nancy E. Sealover
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD20814
| | - Katherine Cox
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD20814
| | - James W. Askew
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE68198
| | - Robert A. Svoboda
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE68198
| | - Kurt W. Fisher
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE68198
| | - Robert E. Lewis
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE68198
| | - Robert L. Kortum
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD20814
| |
Collapse
|
10
|
DeRyckere D, Huelse JM, Earp HS, Graham DK. TAM family kinases as therapeutic targets at the interface of cancer and immunity. Nat Rev Clin Oncol 2023; 20:755-779. [PMID: 37667010 DOI: 10.1038/s41571-023-00813-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2023] [Indexed: 09/06/2023]
Abstract
Novel treatment approaches are needed to overcome innate and acquired mechanisms of resistance to current anticancer therapies in cancer cells and the tumour immune microenvironment. The TAM (TYRO3, AXL and MERTK) family receptor tyrosine kinases (RTKs) are potential therapeutic targets in a wide range of cancers. In cancer cells, TAM RTKs activate signalling pathways that promote cell survival, metastasis and resistance to a variety of chemotherapeutic agents and targeted therapies. TAM RTKs also function in innate immune cells, contributing to various mechanisms that suppress antitumour immunity and promote resistance to immune-checkpoint inhibitors. Therefore, TAM antagonists provide an unprecedented opportunity for both direct and immune-mediated therapeutic activity provided by inhibition of a single target, and are likely to be particularly effective when used in combination with other cancer therapies. To exploit this potential, a variety of agents have been designed to selectively target TAM RTKs, many of which have now entered clinical testing. This Review provides an essential guide to the TAM RTKs for clinicians, including an overview of the rationale for therapeutic targeting of TAM RTKs in cancer cells and the tumour immune microenvironment, a description of the current preclinical and clinical experience with TAM inhibitors, and a perspective on strategies for continued development of TAM-targeted agents for oncology applications.
Collapse
Affiliation(s)
- Deborah DeRyckere
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Paediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Justus M Huelse
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Paediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - H Shelton Earp
- Department of Medicine, UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Douglas K Graham
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA.
- Department of Paediatrics, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
11
|
Okamoto K, Ando T, Izumi H, Kobayashi SS, Shintani T, Gutkind JS, Yanamoto S, Miyauchi M, Kajiya M. AXL activates YAP through the EGFR-LATS1/2 axis and confers resistance to EGFR-targeted drugs in head and neck squamous cell carcinoma. Oncogene 2023; 42:2869-2877. [PMID: 37591955 DOI: 10.1038/s41388-023-02810-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023]
Abstract
The Hippo signaling pathway and its downstream effector YAP play a central role in cell proliferation. Dysregulation of the Hippo pathway triggers YAP hyperactivation, thereby inducing head and neck squamous cell carcinoma (HNSCC). Recently, we reported that EGFR promotes tyrosine phosphorylation of MOB1 and subsequent LATS1/2 inactivation, which are core components of the Hippo pathway, resulting in YAP activation. However, EGFR-targeted monotherapy has shown a low response rate in HNSCC patients. Given that YAP is activated in patient samples refractory to EGFR-targeted therapy, EGFR inhibitors may temporarily inactivate YAP, but intrinsic hyperactivation or acquired reactivation of YAP may confer resistance to EGFR inhibitors in HNSCC cells. The mechanism by which YAP is activated in HNSCC resistant to EGFR inhibitors remains unclear. Comprehensive transcriptional analysis revealed that AXL activates YAP through a novel mechanism: AXL heterodimerizes with EGFR, thereby activating YAP via the EGFR-LATS1/2 axis. The combination of AXL and EGFR inhibitors synergistically inactivates YAP and suppresses the viability of HNSCC and lung adenocarcinoma cells. In turn, LATS1/2 knockout and YAP hyperactivation confer resistance to the synergistic effects of these inhibitors. Our findings suggest that co-targeting both AXL and EGFR represent a promising therapeutic approach in patients with EGFR-altered cancers.
Collapse
Affiliation(s)
- Kento Okamoto
- Department of Oral Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Toshinori Ando
- Center of Oral Clinical Examination, Hiroshima University Hospital, Hiroshima, Japan.
| | - Hiroki Izumi
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Susumu S Kobayashi
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Tomoaki Shintani
- Center of Oral Clinical Examination, Hiroshima University Hospital, Hiroshima, Japan
| | - J Silvio Gutkind
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Souichi Yanamoto
- Department of Oral Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mutsumi Miyauchi
- Department of Oral and Maxillofacial Pathobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mikihito Kajiya
- Center of Oral Clinical Examination, Hiroshima University Hospital, Hiroshima, Japan
| |
Collapse
|
12
|
Theard PL, Linke AJ, Sealover NE, Daley BR, Yang J, Cox K, Kortum RL. SOS2 regulates the threshold of mutant EGFR-dependent oncogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.524989. [PMID: 37425733 PMCID: PMC10327037 DOI: 10.1101/2023.01.20.524989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Son of Sevenless 1 and 2 (SOS1 and SOS2) are RAS guanine nucleotide exchange factors (RasGEFs) that mediate physiologic and pathologic RTK-dependent RAS activation. Here, we show that SOS2 modulates the threshold of epidermal growth factor receptor (EGFR) signaling to regulate the efficacy of and resistance to the EGFR-TKI osimertinib in lung adenocarcinoma (LUAD). SOS2 deletion sensitized EGFR-mutated cells to perturbations in EGFR signaling caused by reduced serum and/or osimertinib treatment to inhibit PI3K/AKT pathway activation, oncogenic transformation, and survival. Bypass RTK reactivation of PI3K/AKT signaling represents a common resistance mechanism to EGFR-TKIs; SOS2 KO reduced PI3K/AKT reactivation to limit osimertinib resistance. In a forced HGF/MET-driven bypass model, SOS2 KO inhibited HGF-stimulated PI3K signaling to block HGF-driven osimertinib resistance. Using a long term in situ resistance assay, a majority of osimertinib resistant cultures exhibited a hybrid epithelial/mesenchymal phenotype associated with reactivated RTK/AKT signaling. In contrast, RTK/AKT-dependent osimertinib resistance was markedly reduced by SOS2 deletion; the few SOS2 KO cultures that became osimertinib resistant primarily underwent non-RTK dependent EMT. Since bypass RTK reactivation and/or tertiary EGFR mutations represent the majority of osimertinib-resistant cancers, these data suggest that targeting SOS2 has the potential to eliminate the majority of osimertinib resistance.
Collapse
Affiliation(s)
- Patricia L. Theard
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA 20814
| | - Amanda J. Linke
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA 20814
| | - Nancy E. Sealover
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA 20814
| | - Brianna R. Daley
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA 20814
| | - Johnny Yang
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA 20814
| | - Katherine Cox
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA 20814
| | - Robert L Kortum
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA 20814
| |
Collapse
|
13
|
Sealover NE, Theard PL, Hughes JM, Linke AJ, Daley BR, Kortum RL. In situ modeling of acquired resistance to RTK/RAS pathway targeted therapies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.27.525958. [PMID: 36747633 PMCID: PMC9901014 DOI: 10.1101/2023.01.27.525958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Intrinsic and acquired resistance limit the window of effectiveness for oncogene-targeted cancer therapies. Preclinical studies that identify synergistic combinations enhance therapeutic efficacy to target intrinsic resistance, however, methods to study acquired resistance in cell culture are lacking. Here, we describe a novel in situ resistance assay (ISRA), performed in a 96-well culture format, that models acquired resistance to RTK/RAS pathway targeted therapies. Using osimertinib resistance in EGFR-mutated lung adenocarcinoma (LUAD) as a model system, we show acquired resistance can be reliably modeled across cell lines using objectively defined osimertinib doses. Similar to patient populations, isolated osimertinib-resistant populations showed resistance via enhanced activation of multiple parallel RTKs so that individual RTK inhibitors did not re-sensitize cells to osimertinib. In contrast, inhibition of proximal RTK signaling using the SHP2 inhibitor RMC-4550 both re-sensitized resistant populations to osimertinib and prevented the development of osimertinib resistance as a primary therapy. Similar, objectively defined drug doses were used to model resistance to additional RTK/RAS pathway targeted therapies including the KRASG12C inhibitors adagrasib and sotorasib, the MEK inhibitor trametinib, and the farnesyl transferase inhibitor tipifarnib. These studies highlight the tractability of in situ resistance assays to model acquired resistance to targeted therapies and provide a framework for assessing the extent to which synergistic drug combinations can target acquired drug resistance.
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW The AXL signaling pathway is associated with tumor growth as well as poor prognosis in cancer. Here, we highlight recent strategies for targeting AXL in the treatment of solid and hematological malignancies. RECENT FINDINGS AXL is a key player in survival, metastasis, and therapeutic resistance in many cancers. A range of AXL-targeted therapies, including tyrosine kinase inhibitors, monoclonal antibodies, antibody-drug conjugates, and soluble receptors, have entered clinical development. Notably, AXL inhibitors in combination with immune checkpoint inhibitors demonstrate early promise; however, further understanding of predictive biomarkers and treatment sequencing is necessary. Based on its role in tumor growth and drug resistance, AXL represents a promising therapeutic target in oncology. Results from ongoing clinical trials will provide valuable insights into the role of AXL inhibitors, both as single agents and in combination with other therapies.
Collapse
Affiliation(s)
- Sheena Bhalla
- Department of Internal Medicine (Division of Hematology-Oncology), UT Southwestern Medical Center, Dallas, TX, USA.
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA.
- Division of Hematology-Oncology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - David E Gerber
- Department of Internal Medicine (Division of Hematology-Oncology), UT Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
- Peter O'Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
15
|
Yang JCH, Su WC, Chiu CH, Shiah HS, Lee KY, Hsia TC, Uno M, Crawford N, Terakawa H, Chen WC, Takayama G, Hsu C, Hong Y, Saintilien C, McGill J, Chang GC. Evaluation of combination treatment with DS-1205c, an AXL kinase inhibitor, and osimertinib in metastatic or unresectable EGFR-mutant non-small cell lung cancer: results from a multicenter, open-label phase 1 study. Invest New Drugs 2023; 41:306-316. [PMID: 36892745 PMCID: PMC10140009 DOI: 10.1007/s10637-023-01341-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/15/2023] [Indexed: 03/10/2023]
Abstract
The objective of this study was to evaluate the safety and tolerability of DS-1205c, an oral AXL-receptor inhibitor, in combination with osimertinib in metastatic or unresectable EFGR-mutant non-small cell lung cancer (NSCLC) patients who developed disease progression during EGFR tyrosine kinase inhibitor (TKI) treatment. An open-label, non-randomized phase 1 study was conducted in Taiwan, in which 13 patients received DS-1205c monotherapy at a dosage of 200, 400, 800, or 1200 mg twice daily for 7 days, followed by combination treatment with DS-1205c (same doses) plus osimertinib 80 mg once daily in 21-day cycles. Treatment continued until disease progression or other discontinuation criteria were met. At least one treatment-emergent adverse event (TEAE) was reported in all 13 patients treated with DS-1205c plus osimertinib; with ≥ 1 grade 3 TEAE in 6 patients (one of whom also had a grade 4 increased lipase level), and 6 patients having ≥ 1 serious TEAE. Eight patients experienced ≥ 1 treatment-related AE (TRAE). The most common (2 cases each) were anemia, diarrhea, fatigue, increased AST, increased ALT, increased blood creatinine phosphokinase, and increased lipase. All TRAEs were non-serious, with the exception of an overdose of osimertinib in 1 patient. No deaths were reported. Two-thirds of patients achieved stable disease (one-third for > 100 days), but none achieved a complete or partial response. No association between AXL positivity in tumor tissue and clinical efficacy was observed. DS-1205c was well-tolerated with no new safety signals in patients with advanced EGFR-mutant NSCLC when administered in combination with the EFGR TKI osimertinib. ClinicalTrials.gov ; NCT03255083.
Collapse
Affiliation(s)
- James Chih-Hsin Yang
- National Taiwan University Cancer Center, No. 57, Ln. 155, Sec. 3, Keelung Rd., Da'an Dist., Taipei City, 106, Taiwan.
| | - Wu-Chou Su
- National Cheng Kung University Hospital, Tainan, Taiwan
| | - Chao-Hua Chiu
- Taipei Cancer Center and Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Her-Shyong Shiah
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Kang-Yun Lee
- Taipei Medical University-Shuang Ho Hospital, Taipei, Taiwan
| | - Te-Chun Hsia
- China Medical University Hospital, Taichung, Taiwan
| | | | | | | | | | | | - Ching Hsu
- Daiichi Sankyo Inc., Basking Ridge, NJ, USA
| | - Ying Hong
- Daiichi Sankyo Inc., Basking Ridge, NJ, USA
| | | | | | - Gee-Chen Chang
- Division of Pulmonary Medicine, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
16
|
Sun SY. Taking early preventive interventions to manage the challenging issue of acquired resistance to third-generation EGFR inhibitors. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2023; 1:3-10. [PMID: 37609474 PMCID: PMC10442612 DOI: 10.1016/j.pccm.2022.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 09/17/2022] [Accepted: 10/31/2022] [Indexed: 08/24/2023]
Abstract
Although the clinical efficacies of third-generation epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) such as osimertinib in the treatment of non-small cell lung cancer (NSCLC) with EGFR-activating mutations are promising, drug-acquired resistance inevitably occurs whether they are used as first-line or second-line treatment. Therefore, managing the acquired resistance to third-generation EGFR-TKIs is crucial in the clinic for improving patient survival. Great efforts have been made to develop potentially effective strategies or regimens for the treatment of EGFR-mutant NSCLC patients after relapse following these TKIs therapies with the hope that patients will continue to benefit from treatment through overcoming acquired resistance. Although this approach, which aims to overcome drug-acquired resistance, is necessary and important, it is a passive practice. Taking preventive action early before disease progression to manage the unavoidable development of acquired resistance offers an equally important and efficient approach. We strongly believe that early preventive interventions using effective and tolerable combination regimens that interfere with the process of developing acquired resistance may substantially improve the outcomes of EGFR-mutant NSCLC treatment with third-generation EGFR-TKIs. Thus, this review focuses on discussing the scientific rationale and mechanism-driven strategies for delaying and even preventing the emergence of acquired resistance to third-generation EGFR-TKIs, particularly osimertinib.
Collapse
Affiliation(s)
- Shi-Yong Sun
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
17
|
McMahon NP, Jones JA, Anderson AN, Dietz MS, Wong MH, Gibbs SL. Flexible Cyclic Immunofluorescence (cyCIF) Using Oligonucleotide Barcoded Antibodies. Cancers (Basel) 2023; 15:827. [PMID: 36765785 PMCID: PMC9913741 DOI: 10.3390/cancers15030827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Advances in our understanding of the complex, multifaceted interactions between tumor epithelia, immune infiltrate, and tumor microenvironmental cells have been driven by highly multiplexed imaging technologies. These techniques are capable of labeling many more biomarkers than conventional immunostaining methods. However, multiplexed imaging techniques suffer from low detection sensitivity, cell loss-particularly in fragile samples-, and challenges with antibody labeling. Herein, we developed and optimized an oligonucleotide antibody barcoding strategy for cyclic immunofluorescence (cyCIF) that can be amplified to increase the detection efficiency of low-abundance antigens. Stained fluorescence signals can be readily removed using ultraviolet light treatment, preserving tissue and fragile cell sample integrity. We also extended the oligonucleotide barcoding strategy to secondary antibodies to enable the inclusion of difficult-to-label primary antibodies in a cyCIF panel. Using both the amplification oligonucleotides to label DNA barcoded antibodies and in situ hybridization of multiple fluorescently labeled oligonucleotides resulted in signal amplification and increased signal-to-background ratios. This procedure was optimized through the examination of staining parameters including staining oligonucleotide concentration, staining temperature, and oligonucleotide sequence design, resulting in a robust amplification technique. As a proof-of-concept, we demonstrate the flexibility of our cyCIF strategy by simultaneously imaging with the original oligonucleotide conjugated antibody (Ab-oligo) cyCIF strategy, the novel Ab-oligo cyCIF amplification strategy, as well as direct and indirect immunofluorescence to generate highly multiplexed images.
Collapse
Affiliation(s)
- Nathan P. McMahon
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201, USA
| | - Jocelyn A. Jones
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201, USA
| | - Ashley N. Anderson
- Department of Cell, Development & Cancer Biology Department, Oregon Health & Science University, Portland, OR 97201, USA
| | - Matthew S. Dietz
- Department of Cell, Development & Cancer Biology Department, Oregon Health & Science University, Portland, OR 97201, USA
| | - Melissa H. Wong
- Department of Cell, Development & Cancer Biology Department, Oregon Health & Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - Summer L. Gibbs
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| |
Collapse
|
18
|
Goto K, Shiraishi Y, Murakami H, Horinouchi H, Toyozawa R, Takeda M, Uno M, Crawford N, McGill J, Jimbo T, Ishigami M, Takayama G, Nakayama S, Ohwada S, Nishio M. Phase 1 study of DS-1205c combined with gefitinib for EGFR mutation-positive non-small cell lung cancer. Cancer Med 2023; 12:7090-7104. [PMID: 36621830 PMCID: PMC10067098 DOI: 10.1002/cam4.5508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/24/2022] [Accepted: 11/22/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Tyrosine kinase inhibitors (TKIs) are effective for the treatment of non-small cell lung cancer (NSCLC) patients with activating mutations of the epidermal growth factor receptor (EGFR), but responses are not durable as tumors develop resistance. DS-1205c is a novel, specific, orally bioavailable, small-molecule AXL receptor TKI. In preclinical studies, DS-1205c restored TKI antitumor activity in a TKI acquired-resistance EGFR-mutant NSCLC tumor xenograft model. METHODS This first-in-human, multicenter, open-label Phase 1 study (registered at ClinicalTrials.gov: NCT03599518) primarily evaluated the safety and tolerability of combination therapy with DS-1205c and gefitinib in Japanese patients with metastatic or unresectable EGFR-mutant NSCLC and tumor progression during treatment with EGFR-TKIs. Patients (n = 20) received DS-1205c monotherapy (200-1200 mg twice daily [BID]) in a 7-day safety monitoring period before combination DS-1205c/gefitinib (250 mg once daily) in 21-day cycles. RESULTS The observed common treatment-emergent adverse events (TEAEs) were increased aspartate aminotransferase (35%), increased alanine aminotransferase (30%), rash maculo-papular (30%), and diarrhea (25%). No serious TEAEs were reported. Plasma concentrations and pharmacokinetic parameters of DS-1205a (free form of DS-1205c) were unaffected by concomitant administration of gefitinib. No patient achieved a complete or partial response and 5 patients (25%) had stable disease. CONCLUSION DS-1205c was generally safe and well tolerated at all dose levels, but the safety profile of ≤800 mg BID was more favorable than 1200 mg BID. The recommended dose for dose-expansion cohorts of DS-1205c in combination therapy with gefitinib was 800 mg BID.
Collapse
Affiliation(s)
- Koichi Goto
- National Cancer Center Hospital East, Kashiwa, Japan
| | | | | | | | - Ryo Toyozawa
- National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | - Makoto Nishio
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
19
|
Tsukamoto S, Sugi NH, Nishibata K, Nakazawa Y, Ito D, Fukushima S, Nakagawa T, Ichikawa K, Kato Y, Kakiuchi D, Goto A, Itoh-Yagi M, Aota T, Inoue S, Yamane Y, Murai N, Azuma H, Nagao S, Sasai K, Akagi T, Imai T, Matsui J, Matsushima T. ER-851, a Novel Selective Inhibitor of AXL, Overcomes Resistance to Antimitotic Drugs. Mol Cancer Ther 2023; 22:12-24. [PMID: 36279567 DOI: 10.1158/1535-7163.mct-21-0879] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 08/11/2022] [Accepted: 10/19/2022] [Indexed: 01/04/2023]
Abstract
Innate and adaptive resistance to cancer therapies, such as chemotherapies, molecularly targeted therapies, and immune-modulating therapies, is a major issue in clinical practice. Subpopulations of tumor cells expressing the receptor tyrosine kinase AXL become enriched after treatment with antimitotic drugs, causing tumor relapse. Elevated AXL expression is closely associated with drug resistance in clinical samples, suggesting that AXL plays a pivotal role in drug resistance. Although several molecules with AXL inhibitory activity have been developed, none have sufficient activity and selectivity to be clinically effective when administered in combination with a cancer therapy. Here, we report a novel small molecule, ER-851, which is a potent and highly selective AXL inhibitor. To investigate resistance mechanisms and identify driving molecules, we conducted a comprehensive gene expression analysis of chemoresistant tumor cells in mouse xenograft models of genetically engineered human lung cancer and human triple-negative breast cancer. Consistent with the effect of AXL knockdown, cotreatment of ER-851 and antimitotic drugs produced an antitumor effect and prolonged relapse-free survival in the mouse xenograft model of human triple-negative breast cancer. Importantly, when orally administered to BALB/c mice, this compound did not induce retinal toxicity, a known side effect of chronic MER inhibition. Together, these data strongly suggest that AXL is a therapeutic target for overcoming drug resistance and that ER-851 is a promising candidate therapeutic agent for use against AXL-expressing antimitotic-resistant tumors.
Collapse
Affiliation(s)
- Shuntaro Tsukamoto
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba-shi, Ibaraki, Japan
| | - Naoko Hata Sugi
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba-shi, Ibaraki, Japan
| | - Kyoko Nishibata
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba-shi, Ibaraki, Japan
| | - Youya Nakazawa
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba-shi, Ibaraki, Japan
| | - Daisuke Ito
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba-shi, Ibaraki, Japan
| | - Sayo Fukushima
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba-shi, Ibaraki, Japan
| | - Takayuki Nakagawa
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba-shi, Ibaraki, Japan
| | - Kenji Ichikawa
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba-shi, Ibaraki, Japan
| | - Yu Kato
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba-shi, Ibaraki, Japan
| | - Dai Kakiuchi
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba-shi, Ibaraki, Japan
| | - Aya Goto
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba-shi, Ibaraki, Japan
| | | | - Tomoki Aota
- hhc Data Creation Center, Eisai Co., Ltd., Bunkyo-ku, Tokyo, Japan
| | - Satoshi Inoue
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba-shi, Ibaraki, Japan
| | - Yoshinobu Yamane
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba-shi, Ibaraki, Japan
| | - Norio Murai
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba-shi, Ibaraki, Japan
| | - Hiroshi Azuma
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba-shi, Ibaraki, Japan
| | - Satoshi Nagao
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba-shi, Ibaraki, Japan
| | - Ken Sasai
- KAN Research Institute, Inc., Kobe-shi, Hyogo, Japan
| | - Tsuyoshi Akagi
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba-shi, Ibaraki, Japan.,KAN Research Institute, Inc., Kobe-shi, Hyogo, Japan
| | - Toshio Imai
- KAN Research Institute, Inc., Kobe-shi, Hyogo, Japan
| | - Junji Matsui
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba-shi, Ibaraki, Japan
| | | |
Collapse
|
20
|
Wu S, Liao M, Li M, Sun M, Xi N, Zeng Y. Structure-based discovery of potent inhibitors of Axl: design, synthesis, and biological evaluation. RSC Med Chem 2022; 13:1246-1264. [PMID: 36325401 PMCID: PMC9579923 DOI: 10.1039/d2md00153e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/12/2022] [Indexed: 07/22/2023] Open
Abstract
Commonly overexpressed in many cancers and associated with tumor growth, metastasis, drug resistance, and poor overall survival, Axl has emerged as a promising target for cancer therapy. However, the availability of new chemical forms for Axl inhibition is limited. Herein, we present the development and characterization of novel Axl inhibitors, including the design, synthesis, and structure-activity relationships (SARs) of a series of diphenylpyrimidine-diamine derivatives. Most of these compounds exhibited remarkable activity against the Axl kinase. In particular, the promising compound m16 showed the highest enzymatic inhibitory potency (IC50 = 5 nM) and blocked multiple tumor cells' proliferation potencies (the CC50 of 4 out of 42 cancer cell lines <100 nM). Furthermore, compound m16 also possessed preferable pharmacokinetic profiles and liver microsome stability. All these favorable results make m16 a good leading therapeutic candidate for further development.
Collapse
Affiliation(s)
- Shuang Wu
- Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University Changsha 410081 PR China
- Ningbo University School of Medicine 818 Fenghua Road Ningbo Zhejiang 315211 China
- Sunshine Lake Pharmaceutical Co. Ltd Dongyangguang Hi-tech Park Dongguan Guangdong 523871 China
| | - Min Liao
- Sunshine Lake Pharmaceutical Co. Ltd Dongyangguang Hi-tech Park Dongguan Guangdong 523871 China
- School of Chemistry & Chemical Engineering, Guangxi University Nanning 530004 China
| | - Minxiong Li
- Sunshine Lake Pharmaceutical Co. Ltd Dongyangguang Hi-tech Park Dongguan Guangdong 523871 China
| | - Mingming Sun
- Ningbo University School of Medicine 818 Fenghua Road Ningbo Zhejiang 315211 China
- Sunshine Lake Pharmaceutical Co. Ltd Dongyangguang Hi-tech Park Dongguan Guangdong 523871 China
| | - Ning Xi
- Ningbo University School of Medicine 818 Fenghua Road Ningbo Zhejiang 315211 China
- Sunshine Lake Pharmaceutical Co. Ltd Dongyangguang Hi-tech Park Dongguan Guangdong 523871 China
| | - Youlin Zeng
- Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University Changsha 410081 PR China
| |
Collapse
|
21
|
Shi K, Wang G, Pei J, Zhang J, Wang J, Ouyang L, Wang Y, Li W. Emerging strategies to overcome resistance to third-generation EGFR inhibitors. J Hematol Oncol 2022; 15:94. [PMID: 35840984 PMCID: PMC9287895 DOI: 10.1186/s13045-022-01311-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/28/2022] [Indexed: 02/08/2023] Open
Abstract
Epidermal growth factor receptor (EGFR), the receptor for members of the epidermal growth factor family, regulates cell proliferation and signal transduction; moreover, EGFR is related to the inhibition of tumor cell proliferation, angiogenesis, invasion, metastasis, and apoptosis. Therefore, EGFR has become an important target for the treatment of cancer, including non-small cell lung cancer, head and neck cancer, breast cancer, glioma, cervical cancer, and bladder cancer. First- to third-generation EGFR inhibitors have shown considerable efficacy and have significantly improved disease prognosis. However, most patients develop drug resistance after treatment. The challenge of overcoming intrinsic and acquired resistance in primary and recurrent cancer mediated by EGFR mutations is thus driving the search for alternative strategies in the design of new therapeutic agents. In view of resistance to third-generation inhibitors, understanding the intricate mechanisms of resistance will offer insight for the development of more advanced targeted therapies. In this review, we discuss the molecular mechanisms of resistance to third-generation EGFR inhibitors and review recent strategies for overcoming resistance, new challenges, and future development directions.
Collapse
Affiliation(s)
- Kunyu Shi
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China.,Tianfu Jincheng Laboratory, Chengdu, 610041, China
| | - Guan Wang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Junping Pei
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jifa Zhang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China.,Tianfu Jincheng Laboratory, Chengdu, 610041, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Liang Ouyang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China. .,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China. .,Tianfu Jincheng Laboratory, Chengdu, 610041, China.
| | - Yuxi Wang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China. .,Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China. .,Tianfu Jincheng Laboratory, Chengdu, 610041, China.
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China. .,Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China. .,Tianfu Jincheng Laboratory, Chengdu, 610041, China.
| |
Collapse
|
22
|
Murakami Y, Kusakabe D, Watari K, Kawahara A, Azuma K, Akiba J, Taniguchi M, Kuwano M, Ono M. AXL/CDCP1/SRC axis confers acquired resistance to osimertinib in lung cancer. Sci Rep 2022; 12:8983. [PMID: 35643725 PMCID: PMC9148303 DOI: 10.1038/s41598-022-12995-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/17/2022] [Indexed: 11/10/2022] Open
Abstract
Osimertinib, a third-generation EGFR-TKI, has nowadays been applied to non-small cell lung cancer harboring activated EGFR mutation with or without T790M, but ultimately develop resistance to this drug. Here we report a novel mechanism of acquired resistance to osimertinib and the reversal of which could improve the clinical outcomes. In osimertinib-resistant lung cancer cell lines harboring T790M mutation that we established, expression of multiple EGFR family proteins and MET was markedly reduced, whereas expression of AXL, CDCP1 and SRC was augmented along with activation of AKT. Surprisingly, AXL or CDCP1 expression was induced by osimertinib in a time-dependent manner up to 3 months. Silencing of CDCP1 or AXL restored the sensitivity to osimertinib with reduced activation of SRC and AKT. Furthermore, silencing of both CDCP1 and AXL increased the sensitivity to osimertinib. Either silencing of SRC or dasatinib, a SRC family kinase (SFK) inhibitor, suppressed AKT phosphorylation and cell growth. Increased expression of AXL and CDCP1 was observed in refractory tumor samples from patients with lung cancer treated with osimertinib. Together, this study suggests that AXL/SFK/AKT and CDCP1/SFK/AKT signaling pathways play some roles in acquired osimertinib resistance of non-small cell lung cancer.
Collapse
Affiliation(s)
- Yuichi Murakami
- Cancer Translational Research Center, St. Mary's Institute of Health Sciences, Kurume, Fukuoka, Japan.,Department of Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Daiki Kusakabe
- Physical Chemistry for Life Science Laboratory, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Kosuke Watari
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Akihiko Kawahara
- Department of Diagnostic Pathology, Kurume University Hospital, Kurume, Fukuoka, Japan
| | - Koichi Azuma
- Division of Respirology, Neurology and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Jun Akiba
- Department of Diagnostic Pathology, Kurume University Hospital, Kurume, Fukuoka, Japan
| | | | - Michihiko Kuwano
- Cancer Translational Research Center, St. Mary's Institute of Health Sciences, Kurume, Fukuoka, Japan
| | - Mayumi Ono
- Cancer Translational Research Center, St. Mary's Institute of Health Sciences, Kurume, Fukuoka, Japan. .,Department of Pharmaceutical Oncology, Graduate School of Nursing, St. Mary's College, 422 Tsubukuhonmachi, Kurume, Fukuoka, 830-8558, Japan.
| |
Collapse
|
23
|
Early Steps of Resistance to Targeted Therapies in Non-Small-Cell Lung Cancer. Cancers (Basel) 2022; 14:cancers14112613. [PMID: 35681591 PMCID: PMC9179469 DOI: 10.3390/cancers14112613] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Patients with lung cancer benefit from more effective treatments, such as targeted therapies, and the overall survival has increased in the past decade. However, the efficacy of targeted therapies is limited due to the emergence of resistance. Growing evidence suggests that resistances may arise from a small population of drug-tolerant persister (DTP) cells. Understanding the mechanisms underlying DTP survival is therefore crucial to develop therapeutic strategies to prevent the development of resistance. Herein, we propose an overview of the current scientific knowledge about the characterisation of DTP, and summarise the new therapeutic strategies that are tested to target these cells. Abstract Lung cancer is the leading cause of cancer-related deaths among men and women worldwide. Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) are effective therapies for advanced non-small-cell lung cancer (NSCLC) patients harbouring EGFR-activating mutations, but are not curative due to the inevitable emergence of resistances. Recent in vitro studies suggest that resistance to EGFR-TKI may arise from a small population of drug-tolerant persister cells (DTP) through non-genetic reprogramming, by entering a reversible slow-to-non-proliferative state, before developing genetically derived resistances. Deciphering the molecular mechanisms governing the dynamics of the drug-tolerant state is therefore a priority to provide sustainable therapeutic solutions for patients. An increasing number of molecular mechanisms underlying DTP survival are being described, such as chromatin and epigenetic remodelling, the reactivation of anti-apoptotic/survival pathways, metabolic reprogramming, and interactions with their micro-environment. Here, we review and discuss the existing proposed mechanisms involved in the DTP state. We describe their biological features, molecular mechanisms of tolerance, and the therapeutic strategies that are tested to target the DTP.
Collapse
|
24
|
Two-Front War on Cancer-Targeting TAM Receptors in Solid Tumour Therapy. Cancers (Basel) 2022; 14:cancers14102488. [PMID: 35626092 PMCID: PMC9140196 DOI: 10.3390/cancers14102488] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary In recent years, many studies have shown the importance of TAM kinases in both normal and neoplastic cells. In this review, we present and discuss the role of the TAM family (AXL, MERTK, TYRO3) of receptor tyrosine kinases (RTKs) as a dual target in cancer, due to their intrinsic roles in tumour cell survival, migration, chemoresistance, and their immunosuppressive roles in the tumour microenvironment. This review presents the potential of TAMs as emerging therapeutic targets in cancer treatment, focusing on the distinct structures of TAM receptor tyrosine kinases. We analyse and compare different strategies of TAM inhibition, for a full perspective of current and future battlefields in the war with cancer. Abstract Receptor tyrosine kinases (RTKs) are transmembrane receptors that bind growth factors and cytokines and contain a regulated kinase activity within their cytoplasmic domain. RTKs play an important role in signal transduction in both normal and malignant cells, and their encoding genes belong to the most frequently affected genes in cancer cells. The TAM family proteins (TYRO3, AXL, and MERTK) are involved in diverse biological processes: immune regulation, clearance of apoptotic cells, platelet aggregation, cell proliferation, survival, and migration. Recent studies show that TAMs share overlapping functions in tumorigenesis and suppression of antitumour immunity. MERTK and AXL operate in innate immune cells to suppress inflammatory responses and promote an immunosuppressive tumour microenvironment, while AXL expression correlates with epithelial-to-mesenchymal transition, metastasis, and motility in tumours. Therefore, TAM RTKs represent a dual target in cancer due to their intrinsic roles in tumour cell survival, migration, chemoresistance, and their immunosuppressive roles in the tumour microenvironment (TME). In this review, we discuss the potential of TAMs as emerging therapeutic targets in cancer treatment. We critically assess and compare current approaches to target TAM RTKs in solid tumours and the development of new inhibitors for both extra- and intracellular domains of TAM receptor kinases.
Collapse
|
25
|
Sang YB, Kim JH, Kim CG, Hong MH, Kim HR, Cho BC, Lim SM. The Development of AXL Inhibitors in Lung Cancer: Recent Progress and Challenges. Front Oncol 2022; 12:811247. [PMID: 35311091 PMCID: PMC8927964 DOI: 10.3389/fonc.2022.811247] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/08/2022] [Indexed: 01/01/2023] Open
Abstract
AXL, along with MER and TYRO3, is a receptor tyrosine kinase from the TAM family. Although AXL itself is not thought to be a potent oncogenic driver, overexpression of AXL is known to trigger tumor cell growth, survival, invasion, metastasis, angiogenesis, epithelial to mesenchymal transition, and immune suppression. Overexpression of AXL is associated with therapy resistance and poor prognosis. Therefore, it is being studied as a marker of prognosis in cancer treatment or as a target in various cancer types. Recently, many preclinical and clinical studies on agents with various mechanisms targeting AXL have been actively conducted. They include small molecule inhibitors, monoclonal antibodies, and antibody-drug conjugates. This article reviewed the fundamental role of AXL in solid tumors, and the development in research of AXL inhibitors in recent years. Emphasis was placed on the function of AXL in acquired therapy resistance in patients with non-small cell lung cancer (NSCLC). Since clinical needs increase in NSCLC patients with acquired resistance after initial therapy, recent research efforts have focused on a combination treatment with AXL inhibitors and tyrosine kinase inhibitors or immunotherapy to overcome resistance. Lastly, we deal with challenges and limitations encountered in the development of AXL inhibitors.
Collapse
Affiliation(s)
- Yun Beom Sang
- Medical Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, South Korea
| | - Joo-Hang Kim
- Medical Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, South Korea
| | - Chang-Gon Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Min Hee Hong
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Hye Ryun Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Byoung Chul Cho
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Sun Min Lim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
26
|
Kim SH, Choi S, Lee WS. Bevacizumab and anexelekto inhibitor, TP-0903 inhibits TGF-β1-induced epithelial-mesenchymal transition of colon cancer cells. Anticancer Drugs 2022; 33:e453-e461. [PMID: 34538864 DOI: 10.1097/cad.0000000000001239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The incidence of colorectal cancer (CRC) is reported to be increasing nowadays, with a large proportion of newly diagnosed CRC patients being affected by metastasis. Epithelial-mesenchymal transition (EMT) is an important event in the development of metastasis of CRC. In this study, we investigated whether the anticancer drug bevacizumab and anexelekto inhibitor, TP-0903, regulate EMT of colon cancer cells induced by transforming growth factor-beta 1 (TGF-β1). Using quantitative real-time PCR and western blot analysis, we found that bevacizumab and TP-0903 decreased the expression levels of fibronectin, alpha-smooth muscle actin, and vimentin, whereas they restored E-cadherin expression in TGF-β1-exposed SW480 and HCT116 cells. In addition, we elucidated that bevacizumab and TP-0903 inhibited the migration and invasion of TGF-β1-exposed colon cancer cells using scratched wound healing, transwell migration, and Matrigel-coated invasion assays. Finally, we discovered that bevacizumab and TP-0903 inactivated the Smad 2/3 signaling pathway in TGF-β1-exposed SW480 and HCT116 cells. Therefore, we suggest that treatment of bevacizumab and TP-0903 inhibits TGF-β1-induced EMT of colon cancer cells through inactivation of the Smad 2/3 signaling pathway.
Collapse
Affiliation(s)
- Se-Hee Kim
- Gachon Medical Research Institute, Gil Medical Center, Gachon University
| | - Sangtae Choi
- Department of Surgery and Peritoneal Surface Malignancy Clinic, Gil Medical Center, Colloege of Medicine, Gachon University, Incheon, Korea
| | - Won-Suk Lee
- Department of Surgery and Peritoneal Surface Malignancy Clinic, Gil Medical Center, Colloege of Medicine, Gachon University, Incheon, Korea
| |
Collapse
|
27
|
Challenge and countermeasures for EGFR targeted therapy in non-small cell lung cancer. Biochim Biophys Acta Rev Cancer 2021; 1877:188645. [PMID: 34793897 DOI: 10.1016/j.bbcan.2021.188645] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/18/2021] [Accepted: 11/03/2021] [Indexed: 12/25/2022]
Abstract
Lung cancer causes the highest mortality compared to other cancers in the world according to the latest WHO reports. Non-small cell lung cancer (NSCLC) contributes about 85% of total lung cancer cases. An extensive number of risk factors are attributed to the progression of lung cancer. Epidermal growth factor receptor (EGFR), one of the most frequently mutant driver genes, is closely involved in the development of lung cancer through regulation of the PI3K/AKT and MAPK pathways. As a representative of precision medicine, EGFR-tyrosine kinase inhibitors (TKIs) targeted therapy significantly relieves the development of activating mutant EGFR-driven NSCLC. However, treatment with TKIs facilitates the emergence of acquired resistance that continues to pose a significant hurdle with respect to EGFR targeted therapy. In this review, the development of current approved EGFR-TKIs as well as the related supporting clinical trials are summarized and discussed. Mechanisms of action and resistance were addressed respectively, which serve as important guides to understanding acquired resistance. We also explored the corresponding combination treatment options according to different resistance mechanisms. Future challenges include more comprehensive characterization of unclear resistance mechanisms in different populations and the development of more efficient and precision synthetic therapeutic strategies.
Collapse
|
28
|
Yan D, Earp HS, DeRyckere D, Graham DK. Targeting MERTK and AXL in EGFR Mutant Non-Small Cell Lung Cancer. Cancers (Basel) 2021; 13:5639. [PMID: 34830794 PMCID: PMC8616094 DOI: 10.3390/cancers13225639] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/20/2022] Open
Abstract
MERTK and AXL are members of the TAM family of receptor tyrosine kinases and are abnormally expressed in 69% and 93% of non-small cell lung cancers (NSCLCs), respectively. Expression of MERTK and/or AXL provides a survival advantage for NSCLC cells and correlates with lymph node metastasis, drug resistance, and disease progression in patients with NSCLC. The TAM receptors on host tumor infiltrating cells also play important roles in the immunosuppressive tumor microenvironment. Thus, MERTK and AXL are attractive biologic targets for NSCLC treatment. Here, we will review physiologic and oncologic roles for MERTK and AXL with an emphasis on the potential to target these kinases in NSCLCs with activating EGFR mutations.
Collapse
Affiliation(s)
- Dan Yan
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA; (D.Y.); (D.D.)
| | - H. Shelton Earp
- UNC Lineberger Comprehensive Cancer Center, Department of Medicine, Chapel Hill, NC 27599, USA;
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Deborah DeRyckere
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA; (D.Y.); (D.D.)
| | - Douglas K. Graham
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA; (D.Y.); (D.D.)
| |
Collapse
|
29
|
Fragment-based lead discovery of indazole-based compounds as AXL kinase inhibitors. Bioorg Med Chem 2021; 49:116437. [PMID: 34600239 DOI: 10.1016/j.bmc.2021.116437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/16/2021] [Accepted: 09/19/2021] [Indexed: 11/22/2022]
Abstract
AXL is a member of the TAM (TYRO3, AXL, MER) subfamily of receptor tyrosine kinases. It is upregulated in a variety of cancers and its overexpression is associated with poor disease prognosis and acquired drug resistance. Utilizing a fragment-based lead discovery approach, a new indazole-based AXL inhibitor was obtained. The indazole fragment hit 11, identified through a high concentration biochemical screen, was expeditiously improved to fragment 24 by screening our in-house expanded library of fragments (ELF) collection. Subsequent fragment optimization guided by docking studies provided potent inhibitor 54 with moderate exposure levels in mice. X-ray crystal structure of analog 50 complexed with the I650M mutated kinase domain of Mer revealed the key binding interactions for the scaffold. The good potency coupled with reasonable kinase selectivity, moderate in vivo exposure levels, and availability of structural information for the series makes it a suitable starting point for further optimization efforts.
Collapse
|
30
|
McCoull W, Boyd S, Brown MR, Coen M, Collingwood O, Davies NL, Doherty A, Fairley G, Goldberg K, Hardaker E, He G, Hennessy EJ, Hopcroft P, Hodgson G, Jackson A, Jiang X, Karmokar A, Lainé AL, Lindsay N, Mao Y, Markandu R, McMurray L, McLean N, Mooney L, Musgrove H, Nissink JWM, Pflug A, Reddy VP, Rawlins PB, Rivers E, Schimpl M, Smith GF, Tentarelli S, Travers J, Troup RI, Walton J, Wang C, Wilkinson S, Williamson B, Winter-Holt J, Yang D, Zheng Y, Zhu Q, Smith PD. Optimization of an Imidazo[1,2- a]pyridine Series to Afford Highly Selective Type I1/2 Dual Mer/Axl Kinase Inhibitors with In Vivo Efficacy. J Med Chem 2021; 64:13524-13539. [PMID: 34478292 DOI: 10.1021/acs.jmedchem.1c00920] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inhibition of Mer and Axl kinases has been implicated as a potential way to improve the efficacy of current immuno-oncology therapeutics by restoring the innate immune response in the tumor microenvironment. Highly selective dual Mer/Axl kinase inhibitors are required to validate this hypothesis. Starting from hits from a DNA-encoded library screen, we optimized an imidazo[1,2-a]pyridine series using structure-based compound design to improve potency and reduce lipophilicity, resulting in a highly selective in vivo probe compound 32. We demonstrated dose-dependent in vivo efficacy and target engagement in Mer- and Axl-dependent efficacy models using two structurally differentiated and selective dual Mer/Axl inhibitors. Additionally, in vivo efficacy was observed in a preclinical MC38 immuno-oncology model in combination with anti-PD1 antibodies and ionizing radiation.
Collapse
Affiliation(s)
| | - Scott Boyd
- Oncology R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Martin R Brown
- Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Muireann Coen
- Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | | | | | - Ann Doherty
- Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Gary Fairley
- Oncology R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | | | | | - Guang He
- Pharmaron Beijing Co., Ltd., 6 Taihe Road BDA, Beijing 100176, P. R. China
| | - Edward J Hennessy
- Oncology R&D, AstraZeneca, Gatehouse Park, Waltham, Massachusetts 02451, United States
| | - Philip Hopcroft
- Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - George Hodgson
- Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Anne Jackson
- Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Xiefeng Jiang
- Pharmaron Beijing Co., Ltd., 6 Taihe Road BDA, Beijing 100176, P. R. China
| | - Ankur Karmokar
- Oncology R&D, AstraZeneca, Mereside, Alderley Park, Macclesfield SK10 4TG, U.K
| | - Anne-Laure Lainé
- Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | | | - Yumeng Mao
- Oncology R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | | | | | | | - Lorraine Mooney
- Oncology R&D, AstraZeneca, Mereside, Alderley Park, Macclesfield SK10 4TG, U.K
| | - Helen Musgrove
- Oncology R&D, AstraZeneca, Mereside, Alderley Park, Macclesfield SK10 4TG, U.K
| | | | - Alexander Pflug
- Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Venkatesh Pilla Reddy
- Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | | | - Emma Rivers
- Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | | | - Graham F Smith
- Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Sharon Tentarelli
- Oncology R&D, AstraZeneca, Gatehouse Park, Waltham, Massachusetts 02451, United States
| | - Jon Travers
- Oncology R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | | | | | - Cheng Wang
- Pharmaron Beijing Co., Ltd., 6 Taihe Road BDA, Beijing 100176, P. R. China
| | | | | | | | - Dejian Yang
- Pharmaron Beijing Co., Ltd., 6 Taihe Road BDA, Beijing 100176, P. R. China
| | - Yuting Zheng
- Pharmaron Beijing Co., Ltd., 6 Taihe Road BDA, Beijing 100176, P. R. China
| | - Qianxiu Zhu
- Pharmaron Beijing Co., Ltd., 6 Taihe Road BDA, Beijing 100176, P. R. China
| | - Paul D Smith
- Oncology R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| |
Collapse
|
31
|
Shaikh M, Shinde Y, Pawara R, Noolvi M, Surana S, Ahmad I, Patel H. Emerging Approaches to Overcome Acquired Drug Resistance Obstacles to Osimertinib in Non-Small-Cell Lung Cancer. J Med Chem 2021; 65:1008-1046. [PMID: 34323489 DOI: 10.1021/acs.jmedchem.1c00876] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The pyrimidine core-containing compound Osimertinib is the only epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) from the third generation that has been approved by the U.S. Food and Drug Administration to target threonine 790 methionine (T790M) resistance while sparing the wild-type epidermal growth factor receptor (WT EGFR). It is nearly 200-fold more selective toward the mutant EGFR as compared to the WT EGFR. A tertiary cystein 797 to serine 797 (C797S) mutation in the EGFR kinase domain has hampered Osimertinib treatment in patients with advanced EGFR-mutated non-small-cell lung cancer (NSCLC). This C797S mutation is presumed to induce a tertiary-acquired resistance to all current reversible and irreversible EGFR TKIs. This review summarizes the molecular mechanisms of resistance to Osimertinib as well as different strategies for overcoming the EGFR-dependent and EGFR-independent mechanisms of resistance, new challenges, and a future direction.
Collapse
Affiliation(s)
- Matin Shaikh
- H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India 425405
| | - Yashodeep Shinde
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India 425405
| | - Rahul Pawara
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India 425405
| | - Malleshappa Noolvi
- Shree Dhanvantari College of Pharmacy, Kim, Surat, Gujarat, India 394111
| | - Sanjay Surana
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India 425405
| | - Iqrar Ahmad
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India 425405
| | - Harun Patel
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India 425405
| |
Collapse
|
32
|
Inoue S, Yamane Y, Tsukamoto S, Azuma H, Nagao S, Murai N, Nishibata K, Fukushima S, Ichikawa K, Nakagawa T, Hata Sugi N, Ito D, Kato Y, Goto A, Kakiuchi D, Ueno T, Matsui J, Matsushima T. Discovery of a potent and selective Axl inhibitor in preclinical model. Bioorg Med Chem 2021; 39:116137. [PMID: 33930844 DOI: 10.1016/j.bmc.2021.116137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 11/16/2022]
Abstract
Axl and Mer are a members of the TAM (Tyro3-Axl-Mer) family of receptor tyrosine kinases, which, when activated, can promote tumor cell survival, proliferation, migration, invasion, angiogenesis, and tumor-host interactions. Chronic inhibition of Mer leads to retinal toxicity in mice. Therefore, successful development of an Axl targeting agent requires ensuring that it is safe for prolonged treatment. Here, to clarify whether enzyme inhibition of Mer by a small molecule leads to retinal toxicity in mice, we designed and synthesized Axl/Mer inhibitors and Axl-selective inhibitors. We identified an Axl/Mer dual inhibitor 28a, which showed retinal toxicity at a dose of 100 mg/kg in mice. Subsequent derivatization of a pyridine derivative led to the discovery of a pyrimidine derivative, 33g, which selectively inhibited the activity of Axl over Mer without retinal toxicity at a dose of 100 mg/kg in mice. Additionally, the compound displayed in vivo anti-tumor effects without influencing body weight in a Ba/F3-Axl isogenic subcutaneous model.
Collapse
Affiliation(s)
- Satoshi Inoue
- Medicinal Chemistry, Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba-shi, Ibaraki 300-2635, Japan.
| | - Yoshinobu Yamane
- Medicinal Chemistry, Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba-shi, Ibaraki 300-2635, Japan
| | - Shuntaro Tsukamoto
- Biopharmacology, Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba-shi, Ibaraki 300-2635, Japan
| | - Hiroshi Azuma
- Medicinal Chemistry, Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba-shi, Ibaraki 300-2635, Japan
| | - Satoshi Nagao
- Medicinal Chemistry, Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba-shi, Ibaraki 300-2635, Japan
| | - Norio Murai
- Medicinal Chemistry, Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba-shi, Ibaraki 300-2635, Japan
| | - Kyoko Nishibata
- Biopharmacology, Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba-shi, Ibaraki 300-2635, Japan
| | - Sayo Fukushima
- Biopharmacology, Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba-shi, Ibaraki 300-2635, Japan
| | - Kenji Ichikawa
- Biopharmacology, Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba-shi, Ibaraki 300-2635, Japan
| | - Takayuki Nakagawa
- Biopharmacology, Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba-shi, Ibaraki 300-2635, Japan
| | - Naoko Hata Sugi
- Biopharmacology, Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba-shi, Ibaraki 300-2635, Japan
| | - Daisuke Ito
- Biopharmacology, Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba-shi, Ibaraki 300-2635, Japan
| | - Yu Kato
- Biopharmacology, Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba-shi, Ibaraki 300-2635, Japan
| | - Aya Goto
- Drug Safety, Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba-shi, Ibaraki 300-2635, Japan
| | - Dai Kakiuchi
- Drug Safety, Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba-shi, Ibaraki 300-2635, Japan
| | - Takashi Ueno
- Drug Metabolism and Pharmacokinetics, Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba-shi, Ibaraki 300-2635, Japan
| | - Junji Matsui
- Biopharmacology, Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba-shi, Ibaraki 300-2635, Japan
| | - Tomohiro Matsushima
- Medicinal Chemistry, Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba-shi, Ibaraki 300-2635, Japan
| |
Collapse
|
33
|
Kumar V, Yadavilli S, Kannan R. A review on RNAi therapy for NSCLC: Opportunities and challenges. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1677. [PMID: 33174364 DOI: 10.1002/wnan.1677] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 12/11/2022]
Abstract
Non-small cell lung cancer (NSCLC) is the primary cause of cancer death worldwide. Despite developments in chemotherapy and targeted therapies, the 5-year survival rate has remained at approximately 16% for the last four decades. NSCLC is a heterogeneous group of tumors that, through mutations and drivers, also demonstrate intra-tumor heterogeneity. Thus, current treatment approaches revolve around targeting these oncogenes, often using small molecule inhibitors and chemotherapeutics. However, the efficacy of these therapies has been crippled by acquired and inherent drug-resistance in the tumor, accompanied by increased therapeutic dosages and subsequent devastating off-target effects for patients. Evidently, there is a critical need for developing treatment methodologies more effective than the current standard of care. Fortunately, RNA interference, particularly small interfering RNA (siRNA), presents an alternative of silencing specific oncogenes to control tumor growth. Although siRNA therapy is subject to rapid degradation and poor internalization in vivo, nanoparticles can serve as nontoxic and efficient delivery vehicles, even introducing combinational delivery of multiple therapeutic agents. Indeed, siRNA-nanoconstructs possess extraordinary potential as an innovative modality to address clinical needs. This state-of-the-art review summarizes the recent advancements in the development of novel nanosystems for delivering siRNA to NSCLC tumors and analyzes the efficacy of representative examples. By illuminating the most promising biomarkers for silencing, we hope to streamline current therapeutic efforts and highlight powerful translational opportunities to combat NSCLC. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Lipid-Based Structures Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Vignesh Kumar
- Department of Radiology, University of Missouri, Columbia, Missouri, USA
| | - Sairam Yadavilli
- Department of Radiology, University of Missouri, Columbia, Missouri, USA
| | - Raghuraman Kannan
- Department of Radiology, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
34
|
Di Stasi R, De Rosa L, D'Andrea LD. Therapeutic aspects of the Axl/Gas6 molecular system. Drug Discov Today 2020; 25:2130-2148. [PMID: 33002607 DOI: 10.1016/j.drudis.2020.09.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/14/2020] [Accepted: 09/21/2020] [Indexed: 12/17/2022]
Abstract
Axl receptor tyrosine kinase (RTK) and its ligand, growth arrest-specific protein 6 (Gas6), are involved in several biological functions and participate in the development and progression of a range of malignancies and autoimmune disorders. In this review, we present this molecular system from a drug discovery perspective, highlighting its therapeutic implications and challenges that need to be addressed. We provide an update on Axl/Gas6 axis biology, exploring its role in fields ranging from angiogenesis, cancer development and metastasis, immune response and inflammation to viral infection. Finally, we summarize the molecules that have been developed to date to target the Axl/Gas6 molecular system for therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Rossella Di Stasi
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Lucia De Rosa
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Luca D D'Andrea
- Istituto di Biostrutture e Bioimmagini, CNR, Via Nizza 52, 10126 Torino, Italy.
| |
Collapse
|
35
|
Theard PL, Sheffels E, Sealover NE, Linke AJ, Pratico DJ, Kortum RL. Marked synergy by vertical inhibition of EGFR signaling in NSCLC spheroids shows SOS1 is a therapeutic target in EGFR-mutated cancer. eLife 2020; 9:58204. [PMID: 32897190 PMCID: PMC7478890 DOI: 10.7554/elife.58204] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/14/2020] [Indexed: 01/13/2023] Open
Abstract
Drug treatment of 3D cancer spheroids more accurately reflects in vivo therapeutic responses compared to adherent culture studies. In EGFR-mutated lung adenocarcinoma, EGFR-TKIs show enhanced efficacy in spheroid cultures. Simultaneous inhibition of multiple parallel RTKs further enhances EGFR-TKI effectiveness. We show that the common RTK signaling intermediate SOS1 was required for 3D spheroid growth of EGFR-mutated NSCLC cells. Using two distinct measures of pharmacologic synergy, we demonstrated that SOS1 inhibition strongly synergized with EGFR-TKI treatment only in 3D spheroid cultures. Combined EGFR- and SOS1-inhibition markedly inhibited Raf/MEK/ERK and PI3K/AKT signaling. Finally, broad assessment of the pharmacologic landscape of drug-drug interactions downstream of mutated EGFR revealed synergy when combining an EGFR-TKI with inhibitors of proximal signaling intermediates SOS1 and SHP2, but not inhibitors of downstream RAS effector pathways. These data indicate that vertical inhibition of proximal EGFR signaling should be pursued as a potential therapy to treat EGFR-mutated tumors. Lung cancer is the leading cause of cancer-related deaths worldwide. In non-smokers, this disease is usually caused by a mutation in a protein found on the surface of a cell, called EGFR. In healthy lung cells, these proteins trigger a chain of chemical signals that tell the cells to multiply. However, faulty forms of EFGR make the cells grow uncontrollably, leading to the formation of tumors. Current treatments use EGFR inhibitors that block the activity of these proteins. But cancer cells often become resistant to these treatments by activating other types of growth proteins. One way to overcome this resistance has been by targeting the signaling pathways within individual tumors. But since those pathways differ between tumors, it has been challenging to find a single therapy that can treat all drug-resistant cancer cells. Now, Theard et al. assessed the therapeutic effects of blocking a specific protein inside lung cells, called SOS1, which is involved in growth signaling in all tumor cells. Six different types of human lung cancer cells were used, all of which had faulty forms of EGFR, with three of the cell types showing drug resistance to current therapies. The cancer cells were either exposed to EGFR inhibitors only or to a combination of EGFR and SOS1 inhibitors. The most effective treatment was found to be through combinational therapy, with enhanced killing of drug-resistant cells. Theard et al. further assessed the effect of combinational therapy using cells kept in two different ways. Cancer cells were either grown in a two-dimensional format, with cells forming a single cell layer, or in a three-dimensional format, where cells were multi-layered and grew on top of each other as self-aggregating spheroids. Combinational therapy treatment was only successful when the cells where grown in a three-dimensional format. These findings highlight that future drug development studies should give consideration to the way cells are grown, as it can impact the results. They also provide a steppingstone towards tackling drug resistance in lung cancers that arise from EGFR mutations.
Collapse
Affiliation(s)
- Patricia L Theard
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, United States
| | - Erin Sheffels
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, United States
| | - Nancy E Sealover
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, United States
| | - Amanda J Linke
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, United States
| | - David J Pratico
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, United States
| | - Robert L Kortum
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, United States
| |
Collapse
|
36
|
Lotsberg ML, Wnuk-Lipinska K, Terry S, Tan TZ, Lu N, Trachsel-Moncho L, Røsland GV, Siraji MI, Hellesøy M, Rayford A, Jacobsen K, Ditzel HJ, Vintermyr OK, Bivona TG, Minna J, Brekken RA, Baguley B, Micklem D, Akslen LA, Gausdal G, Simonsen A, Thiery JP, Chouaib S, Lorens JB, Engelsen AST. AXL Targeting Abrogates Autophagic Flux and Induces Immunogenic Cell Death in Drug-Resistant Cancer Cells. J Thorac Oncol 2020; 15:973-999. [PMID: 32018052 PMCID: PMC7397559 DOI: 10.1016/j.jtho.2020.01.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/29/2019] [Accepted: 01/19/2020] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Acquired cancer therapy resistance evolves under selection pressure of immune surveillance and favors mechanisms that promote drug resistance through cell survival and immune evasion. AXL receptor tyrosine kinase is a mediator of cancer cell phenotypic plasticity and suppression of tumor immunity, and AXL expression is associated with drug resistance and diminished long-term survival in a wide range of malignancies, including NSCLC. METHODS We aimed to investigate the mechanisms underlying AXL-mediated acquired resistance to first- and third-generation small molecule EGFR tyrosine kinase inhibitors (EGFRi) in NSCLC. RESULTS We found that EGFRi resistance was mediated by up-regulation of AXL, and targeting AXL reduced reactivation of the MAPK pathway and blocked onset of acquired resistance to long-term EGFRi treatment in vivo. AXL-expressing EGFRi-resistant cells revealed phenotypic and cell signaling heterogeneity incompatible with a simple bypass signaling mechanism, and were characterized by an increased autophagic flux. AXL kinase inhibition by the small molecule inhibitor bemcentinib or siRNA mediated AXL gene silencing was reported to inhibit the autophagic flux in vitro, bemcentinib treatment blocked clonogenicity and induced immunogenic cell death in drug-resistant NSCLC in vitro, and abrogated the transcription of autophagy-associated genes in vivo. Furthermore, we found a positive correlation between AXL expression and autophagy-associated gene signatures in a large cohort of human NSCLC (n = 1018). CONCLUSION Our results indicate that AXL signaling supports a drug-resistant persister cell phenotype through a novel autophagy-dependent mechanism and reveals a unique immunogenic effect of AXL inhibition on drug-resistant NSCLC cells.
Collapse
Affiliation(s)
- Maria L Lotsberg
- Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway; Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Katarzyna Wnuk-Lipinska
- Department of Biomedicine, University of Bergen, Bergen, Norway; BerGenBio ASA, Bergen, Norway
| | - Stéphane Terry
- INSERM UMR 1186, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Ning Lu
- Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway; Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Laura Trachsel-Moncho
- Department of Molecular Medicine, Institute of Basic Medical Sciences and Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Gro V Røsland
- Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | | | | | - Austin Rayford
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Kirstine Jacobsen
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Henrik J Ditzel
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark; Department of Oncology, Odense University Hospital, Odense, Denmark
| | - Olav K Vintermyr
- Department of Pathology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Trever G Bivona
- Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - John Minna
- Hamon Center for Therapeutic Oncology Research, Simmons Comprehensive Cancer Center, Departments of Surgery, Pharmacology and Internal Medicine, UT Southwestern Medical Center, Dallas, Texas
| | - Rolf A Brekken
- Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway; Hamon Center for Therapeutic Oncology Research, Simmons Comprehensive Cancer Center, Departments of Surgery, Pharmacology and Internal Medicine, UT Southwestern Medical Center, Dallas, Texas
| | - Bruce Baguley
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | | | - Lars A Akslen
- Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway; Department of Pathology, Haukeland University Hospital, Bergen, Norway; Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | | | - Anne Simonsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences and Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Jean Paul Thiery
- Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway; INSERM UMR 1186, Gustave Roussy, Université Paris-Saclay, Villejuif, France; Cancer Science Institute of Singapore, National University of Singapore, Singapore; Biomedical Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, A-STAR, Singapore; Guangzhou Institutes of Biomedicine and Health, Guangzhou, People's Republic of China; Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, Hong Kong University, Hong Kong
| | - Salem Chouaib
- Department of Pathology, Haukeland University Hospital, Bergen, Norway; Thumbay Research Institute for Precision Medicine, GMU Ajman, United Arab Emirates
| | - James B Lorens
- Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway; Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Agnete Svendsen Tenfjord Engelsen
- Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway; Department of Biomedicine, University of Bergen, Bergen, Norway; INSERM UMR 1186, Gustave Roussy, Université Paris-Saclay, Villejuif, France.
| |
Collapse
|