1
|
Mayasin YP, Osinnikova MN, Kharisova CB, Kitaeva KV, Filin IY, Gorodilova AV, Kutovoi GI, Solovyeva VV, Golubev AI, Rizvanov AA. Extracellular Matrix as a Target in Melanoma Therapy: From Hypothesis to Clinical Trials. Cells 2024; 13:1917. [PMID: 39594665 PMCID: PMC11592585 DOI: 10.3390/cells13221917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/10/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Melanoma is a malignant, highly metastatic neoplasm showing increasing morbidity and mortality. Tumor invasion and angiogenesis are based on remodeling of the extracellular matrix (ECM). Selective inhibition of functional components of cell-ECM interaction, such as hyaluronic acid (HA), matrix metalloproteinases (MMPs), and integrins, may inhibit tumor progression and enhance the efficacy of combination treatment with immune checkpoint inhibitors (ICIs), chemotherapy, or immunotherapy. In this review, we combine the results of different approaches targeting extracellular matrix elements in melanoma in preclinical and clinical studies. The identified limitations of many approaches, including side effects, low selectivity, and toxicity, indicate the need for further studies to optimize therapy. Nevertheless, significant progress in expanding our understanding of tumor biology and the development of targeted therapies holds great promise for the early approaches developed several decades ago to inhibit metastasis through ECM targeting.
Collapse
Affiliation(s)
- Yuriy P. Mayasin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Maria N. Osinnikova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Chulpan B. Kharisova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Kristina V. Kitaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Ivan Y. Filin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Anna V. Gorodilova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Grigorii I. Kutovoi
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Anatolii I. Golubev
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, 420111 Kazan, Russia
| |
Collapse
|
2
|
Banella S, Saraswat A, Patel A, Serajuddin ATM, Colombo P, Patel K, Colombo G. In Vitro Assessment of Cisplatin/Hyaluronan Complex for Loco-Regional Chemotherapy. Int J Mol Sci 2023; 24:15725. [PMID: 37958708 PMCID: PMC10647681 DOI: 10.3390/ijms242115725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/27/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Loco-regional chemotherapy is a strategy used to achieve more precise anticancer drug effect directly on tumor mass, while decreasing whole body exposure, which can lead to undesirable side effects. Thus, the loco-regional chemotherapy is conceptually similar to the targeted drug delivery systems for delivering chemotherapeutics to cancer cells in a certain location of the body. Recently, it has been demonstrated that a novel polymeric film containing the complex between cisplatin (cisPt) and hyaluronan (sodium salt of hyaluronic acid; NaHA) enhanced in vivo efficacy and safety of cisplatin (cisPt) by loco-regional delivery in pleural mesothelioma. Biologically, hyaluronic acid (HA) binds with the CD44 receptor, which is a transmembrane glycoprotein overexpressed by other cancer cells. Thus, administering both cisPt and hyaluronan together as a complex loco-regionally to the tumor site could target cancer cells locally and enhance treatment safety. A slight excess of hyaluronan was required to have more than 85% cisPt complexation. In cell monolayers (2D model) the cisPt/NaHA complex in solution demonstrated dose- and time-dependent cytotoxic effect by decreasing the viability of pancreatic, melanoma, and lung cell lines (they all express CD44). At the same concentration in solution, the complex was as effective as cisPt alone. However, when applied as film to melanoma spheroids (3D model), the complex was superior because it prevented the tumor spheroid growth and, more importantly, the formation of new cell colonies. Hence, cisPt/NaHA complex could work in preventing metastases loco-regionally and potentially avoiding systemic relapses.
Collapse
Affiliation(s)
- Sabrina Banella
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (S.B.); (G.C.)
- College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA; (A.S.); (A.P.); (A.T.M.S.)
| | - Aishwarya Saraswat
- College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA; (A.S.); (A.P.); (A.T.M.S.)
| | - Akanksha Patel
- College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA; (A.S.); (A.P.); (A.T.M.S.)
| | - Abu T. M. Serajuddin
- College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA; (A.S.); (A.P.); (A.T.M.S.)
| | | | - Ketan Patel
- College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA; (A.S.); (A.P.); (A.T.M.S.)
| | - Gaia Colombo
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (S.B.); (G.C.)
| |
Collapse
|
3
|
Yan J, Long X, Liang Y, Li F, Yu H, Li Y, Li Z, Tian Y, He B, Sun Y. Nanodrug delivery systems and cancer stem cells: From delivery carriers to treatment. Colloids Surf B Biointerfaces 2022. [DOI: 10.1016/j.colsurfb.2022.112701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Relevance of 2'-O-Methylation and Pseudouridylation for the Malignant Melanoma. Cancers (Basel) 2021; 13:cancers13051167. [PMID: 33803145 PMCID: PMC7963185 DOI: 10.3390/cancers13051167] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/04/2021] [Indexed: 01/23/2023] Open
Abstract
Simple Summary This study investigates the expression, the histological localization, and the influence of the factors involved in 2′-O-methylation and pseudouridylation on prognostic relevant markers, proliferation markers, overall survival, molecular immune surveillance and evasion mechanisms within the malignant melanoma. Statistically significant positive correlations to the expression of markers involved in cell proliferation were observed. The upregulation of the RNA modifying factors was of prognostic relevance in this tumor disease with a negative impact on the overall survival of melanoma patients. Furthermore, the factors involved in 2′-O-methylation and pseudouridylation were statistically significant negative correlated to the expression of human leukocyte antigen class I genes as well as of components of the antigen processing machinery. Abstract The two RNA modifications 2′-O-methylation and pseudouridylation occur on several RNA species including ribosomal RNAs leading to an increased translation as well as cell proliferation associated with distinct functions. Using malignant melanoma (MM) as a model system the proteins mediating these RNA modifications were for the first time analyzed by different bioinformatics tools and public available databases regarding their expression and histological localization. Next to this, the impact of these RNA-modifying factors on prognostic relevant processes and marker genes of malignant melanoma was investigated and correlated to immune surveillance and evasion strategies. The RNA modifying factors exerted statistically significant positive correlations to the expression of genes involved in cell proliferation and were statistically significant negative correlated to the expression of human leukocyte antigen class I genes as well as of components of the antigen processing machinery in malignant melanoma. Upregulation of the RNA modifying proteins was of prognostic relevance in this tumor disease with a negative impact on the overall survival of melanoma patients. Furthermore, the expression of known oncogenic miRs, which are induced in malignant melanoma, directly correlated to the expression of factors involved in these two RNA modifications.
Collapse
|
5
|
Lazaridou MF, Massa C, Handke D, Mueller A, Friedrich M, Subbarayan K, Tretbar S, Dummer R, Koelblinger P, Seliger B. Identification of microRNAs Targeting the Transporter Associated with Antigen Processing TAP1 in Melanoma. J Clin Med 2020; 9:jcm9092690. [PMID: 32825219 PMCID: PMC7563967 DOI: 10.3390/jcm9092690] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 12/15/2022] Open
Abstract
The underlying molecular mechanisms of the aberrant expression of components of the HLA class I antigen processing and presentation machinery (APM) in tumors leading to evasion from T cell-mediated immune surveillance could be due to posttranscriptional regulation mediated by microRNAs (miRs). So far, some miRs controlling the expression of different APM components have been identified. Using in silico analysis and an miR enrichment protocol in combination with small RNA sequencing, miR-26b-5p and miR-21-3p were postulated to target the 3′ untranslated region (UTR) of the peptide transporter TAP1, which was confirmed by high free binding energy and dual luciferase reporter assays. Overexpression of miR-26b-5p and miR-21-3p in melanoma cells downregulated the TAP1 protein and reduced expression of HLA class I cell surface antigens, which could be reverted by miR inhibitors. Moreover, miR-26b-5p overexpression induced a decreased T cell recognition. Furthermore, an inverse expression of miR-26b-5p and miR-21-3p with TAP1 was found in primary melanoma lesions, which was linked with the frequency of CD8+ T cell infiltration. Thus, miR-26-5p and miR-21-3p are involved in the HLA class I-mediated immune escape and might be used as biomarkers or therapeutic targets for HLA class Ilow melanoma cells.
Collapse
Affiliation(s)
- Maria-Filothei Lazaridou
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany; (M.-F.L.); (C.M.); (D.H.); (A.M.); (M.F.); (K.S.); (S.T.)
| | - Chiara Massa
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany; (M.-F.L.); (C.M.); (D.H.); (A.M.); (M.F.); (K.S.); (S.T.)
| | - Diana Handke
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany; (M.-F.L.); (C.M.); (D.H.); (A.M.); (M.F.); (K.S.); (S.T.)
| | - Anja Mueller
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany; (M.-F.L.); (C.M.); (D.H.); (A.M.); (M.F.); (K.S.); (S.T.)
| | - Michael Friedrich
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany; (M.-F.L.); (C.M.); (D.H.); (A.M.); (M.F.); (K.S.); (S.T.)
| | - Karthikeyan Subbarayan
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany; (M.-F.L.); (C.M.); (D.H.); (A.M.); (M.F.); (K.S.); (S.T.)
| | - Sandy Tretbar
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany; (M.-F.L.); (C.M.); (D.H.); (A.M.); (M.F.); (K.S.); (S.T.)
| | - Reinhard Dummer
- Institute of Dermatology, University Hospital Zürich, 8091 Zürich, Switzerland;
| | - Peter Koelblinger
- Department of Dermatology and Allergology, University Hospital Salzburg, 5020 Salzburg, Austria;
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany; (M.-F.L.); (C.M.); (D.H.); (A.M.); (M.F.); (K.S.); (S.T.)
- Correspondence: ; Tel.: +49-(0)-345-557-4054
| |
Collapse
|