1
|
Wang JR, Jurado-Aguilar J, Barroso E, Rodríguez-Calvo R, Camins A, Wahli W, Palomer X, Vázquez-Carrera M. PPARβ/δ upregulates the insulin receptor β subunit in skeletal muscle by reducing lysosomal activity and EphB4 levels. Cell Commun Signal 2024; 22:595. [PMID: 39696437 DOI: 10.1186/s12964-024-01972-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/30/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND The increased degradation of the insulin receptor β subunit (InsRβ) in lysosomes contributes to the development of insulin resistance and type 2 diabetes mellitus. Endoplasmic reticulum (ER) stress contributes to insulin resistance through several mechanisms, including the reduction of InsRβ levels. Here, we examined how peroxisome proliferator-activated receptor (PPAR)β/δ regulates InsRβ levels in mouse skeletal muscle and C2C12 myotubes exposed to the ER stressor tunicamycin. METHODS Wild-type (WT) and Ppard-/- mice, WT mice treated with vehicle or the PPARβ/δ agonist GW501516, and C2C12 myotubes treated with the ER stressor tunicamycin or different activators or inhibitors were used. RESULTS Ppard-/- mice displayed reduced InsRβ protein levels in their skeletal muscle compared to wild-type (WT) mice, while the PPARβ/δ agonist GW501516 increased its levels in WT mice. Co-incubation of tunicamycin-exposed C2C12 myotubes with GW501516 partially reversed the decrease in InsRβ protein levels, attenuating both ER stress and the increase in lysosomal activity. In addition, the protein levels of the tyrosine kinase ephrin receptor B4 (EphB4), which binds to the InsRβ and facilitates its endocytosis and degradation in lysosomes, were increased in the skeletal muscle of Ppard-/- mice, with GW501516 reducing its levels in the skeletal muscle of WT mice. CONCLUSIONS Overall, these findings reveal that PPARβ/δ activation increases InsRβ levels by alleviating ER stress and lysosomal degradation.
Collapse
Affiliation(s)
- Jue-Rui Wang
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, 08028, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, 28029, Spain
- Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Javier Jurado-Aguilar
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, 08028, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, 28029, Spain
- Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Emma Barroso
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, 08028, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, 28029, Spain
- Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Ricardo Rodríguez-Calvo
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, 28029, Spain
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, "Sant Joan" University Hospital, Universitat Rovira i Virgili, Pere Virgili Health Research Institute (IISPV), Reus, 43201, Spain
| | - Antoni Camins
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, 08028, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Walter Wahli
- Center for Integrative Genomics, University of Lausanne, Lausanne, CH-1015, Switzerland
- INRAE ToxAlim, UMR1331, Chemin de Tournefeuille, Toulouse Cedex 3, F-31027, France
| | - Xavier Palomer
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, 08028, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, 28029, Spain
- Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Manuel Vázquez-Carrera
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, 08028, Spain.
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, 28029, Spain.
- Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain.
- Unitat de Farmacologia, Facultat de Farmàcia i Ciències de l'Alimentació, Av. Joan XXIII 27-31, Barcelona, E-08028, Spain.
| |
Collapse
|
2
|
Melnik BC. Acne Transcriptomics: Fundamentals of Acne Pathogenesis and Isotretinoin Treatment. Cells 2023; 12:2600. [PMID: 37998335 PMCID: PMC10670572 DOI: 10.3390/cells12222600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
This review on acne transcriptomics allows for deeper insights into the pathogenesis of acne and isotretinoin's mode of action. Puberty-induced insulin-like growth factor 1 (IGF-1), insulin and androgen signaling activate the kinase AKT and mechanistic target of rapamycin complex 1 (mTORC1). A Western diet (hyperglycemic carbohydrates and milk/dairy products) also co-stimulates AKT/mTORC1 signaling. The AKT-mediated phosphorylation of nuclear FoxO1 and FoxO3 results in their extrusion into the cytoplasm, a critical switch which enhances the transactivation of lipogenic and proinflammatory transcription factors, including androgen receptor (AR), sterol regulatory element-binding transcription factor 1 (SREBF1), peroxisome proliferator-activated receptor γ (PPARγ) and signal transducer and activator of transcription 3 (STAT3), but reduces the FoxO1-dependent expression of GATA binding protein 6 (GATA6), the key transcription factor for infundibular keratinocyte homeostasis. The AKT-mediated phosphorylation of the p53-binding protein MDM2 promotes the degradation of p53. In contrast, isotretinoin enhances the expression of p53, FoxO1 and FoxO3 in the sebaceous glands of acne patients. The overexpression of these proapoptotic transcription factors explains isotretinoin's desirable sebum-suppressive effect via the induction of sebocyte apoptosis and the depletion of BLIMP1(+) sebocyte progenitor cells; it also explains its adverse effects, including teratogenicity (neural crest cell apoptosis), a reduced ovarian reserve (granulosa cell apoptosis), the risk of depression (the apoptosis of hypothalamic neurons), VLDL hyperlipidemia, intracranial hypertension and dry skin.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, 49069 Osnabrück, Germany
| |
Collapse
|
3
|
Франциянц ЕМ, Сурикова ЕИ, Каплиева ИВ, Бандовкина ВA, Нескубина ИВ, Шейко ЕА, Морозова МИ, Котиева ИМ. [Diabetes mellitus and cancer: a system of insulin-like growth factors]. PROBLEMY ENDOKRINOLOGII 2021; 67:34-42. [PMID: 34766488 PMCID: PMC9112852 DOI: 10.14341/probl12741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/28/2021] [Accepted: 09/07/2021] [Indexed: 04/12/2023]
Abstract
Diabetes mellitus and malignant tumors are among the most common and complex diseases. Epidemiological studies have shown a strong relationship between these pathologies. The causality of this relationship has not yet been unambiguously established, but a number of probable biological mechanisms have been proposed to explain it through the effects of hyperglycemia, hyperinsulinemia on the process of oncogenesis. An important role in this is played by the axis of insulin-like growth factors, their receptors and binding proteins (IGF / IGFR / IGFBP). The review provides data on the structural elements of the insulin / IGF / IGFR / IGFBP signaling axis and their internal relationships in diabetes mellitus and in the development of malignant tumors. Significant changes in the axis that occur during the formation of the diabetic environment prepare the background, which, under certain conditions, can lead to the stimulation or inhibition of tumor development. The considered signaling system, playing a significant role in the physiology of normal cells, often functions as a decisive factor in the survival of tumor cells, providing fine context-dependent regulation of many cellular processes associated with oncogenesis. However, despite many years of in-depth studies of the pathogenesis of diabetes mellitus and malignant tumors, the molecular mechanisms of the relationship between these pathologies are still largely unclear, and the internal heterogeneity of pathologies complicates research and interpretation of the results, leaving many questions.
Collapse
Affiliation(s)
| | - Е. И. Сурикова
- Национальный медицинский исследовательский центр онкологии
| | - И. В. Каплиева
- Национальный медицинский исследовательский центр онкологии
| | | | | | - Е. А. Шейко
- Национальный медицинский исследовательский центр онкологии
| | - М. И. Морозова
- Национальный медицинский исследовательский центр онкологии
| | - И. М. Котиева
- Национальный медицинский исследовательский центр онкологии
| |
Collapse
|
4
|
Unraveling the IGF System Interactome in Sarcomas Exploits Novel Therapeutic Options. Cells 2021; 10:cells10082075. [PMID: 34440844 PMCID: PMC8392407 DOI: 10.3390/cells10082075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
Aberrant bioactivity of the insulin-like growth factor (IGF) system results in the development and progression of several pathologic conditions including cancer. Preclinical studies have shown promising anti-cancer therapeutic potentials for anti-IGF targeted therapies. However, a clear but limited clinical benefit was observed only in a minority of patients with sarcomas. The molecular complexity of the IGF system, which comprises multiple regulators and interactions with other cancer-related pathways, poses a major limitation in the use of anti-IGF agents and supports the need of combinatorial therapeutic strategies to better tackle this axis. In this review, we will initially highlight multiple mechanisms underlying IGF dysregulation in cancer and then focus on the impact of the IGF system and its complexity in sarcoma development and progression as well as response to anti-IGF therapies. We will also discuss the role of Ephrin receptors, Hippo pathway, BET proteins and CXCR4 signaling, as mediators of sarcoma malignancy and relevant interactors with the IGF system in tumor cells. A deeper understanding of these molecular interactions might provide the rationale for novel and more effective therapeutic combinations to treat sarcomas.
Collapse
|
5
|
Werner H, Sarfstein R, Laron Z. The Role of Nuclear Insulin and IGF1 Receptors in Metabolism and Cancer. Biomolecules 2021; 11:biom11040531. [PMID: 33918477 PMCID: PMC8065599 DOI: 10.3390/biom11040531] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/24/2021] [Accepted: 04/01/2021] [Indexed: 12/22/2022] Open
Abstract
Insulin (InsR) and insulin-like growth factor-1 (IGF1R) receptors mediate the metabolic and growth-promoting actions of insulin and IGF1/IGF2, respectively. Evidence accumulated in recent years indicates that, in addition to their typical cell-surface localization pattern and ligand-activated mechanism of action, InsR and IGF1R are present in the cell nucleus of both normal and transformed cells. Nuclear translocation seems to involve interaction with a small, ubiquitin-like modifier protein (SUMO-1), although this modification is not always a prerequisite. Nuclear InsR and IGF1R exhibit a number of biological activities that classically fit within the definition of transcription factors. These nuclear activities include, among others, sequence-specific DNA binding and transcriptional control. Of particular interest, nuclear IGF1R was capable of binding and stimulating its cognate gene promoter. The physiological relevance of this autoregulatory mechanism needs to be further investigated. In addition to its nuclear localization, studies have identified IGF1R in the Golgi apparatus, and this particular distribution correlated with a migratory phenotype. In summary, the newly described roles of InsR and IGF1R as gene regulators, in concert with their atypical pattern of subcellular distribution, add a further layer of complexity to traditional models of cell signaling. Furthermore, and in view of the emerging role of IGF1R as a potential therapeutic target, a better understanding of the mechanisms responsible for nuclear IGF1R transport and identification of IGF1R interactors might help optimize target directed therapies in oncology.
Collapse
Affiliation(s)
- Haim Werner
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel;
- Shalom and Varda Yoran Institute for Human Genome Research, Tel Aviv University, Tel Aviv 69978, Israel
- Correspondence:
| | - Rive Sarfstein
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel;
| | - Zvi Laron
- Endocrine and Diabetes Research Unit, Schneider Children’s Medical Center, Petah Tikva 49292, Israel;
| |
Collapse
|
6
|
Novel Regulators of the IGF System in Cancer. Biomolecules 2021; 11:biom11020273. [PMID: 33673232 PMCID: PMC7918569 DOI: 10.3390/biom11020273] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
The insulin-like growth factor (IGF) system is a dynamic network of proteins, which includes cognate ligands, membrane receptors, ligand binding proteins and functional downstream effectors. It plays a critical role in regulating several important physiological processes including cell growth, metabolism and differentiation. Importantly, alterations in expression levels or activation of components of the IGF network are implicated in many pathological conditions including diabetes, obesity and cancer initiation and progression. In this review we will initially cover some general aspects of IGF action and regulation in cancer and then focus in particular on the role of transcriptional regulators and novel interacting proteins, which functionally contribute in fine tuning IGF1R signaling in several cancer models. A deeper understanding of the biological relevance of this network of IGF1R modulators might provide novel therapeutic opportunities to block this system in neoplasia.
Collapse
|