1
|
Kacemi R, Campos MG. Bee Pollen Potential to Modulate Ferroptosis: Phytochemical Insights for Age-Related Diseases. Antioxidants (Basel) 2025; 14:265. [PMID: 40227202 PMCID: PMC11939620 DOI: 10.3390/antiox14030265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 04/15/2025] Open
Abstract
Bee pollen (BP) is one of the richest known natural resources of micronutrients and bioactive phytochemicals. Some captivating bioactivities of BP compounds, although being largely investigated for the latter as individual molecules, remain very scarcely investigated or completely uninvestigated in bee pollen as a whole product. Among the most intriguing of these bioactivities, we identified ferroptosis as a major one. Ferroptosis, a recently discovered form of cell death (connecting oxidative stress and inflammation), is a complex pathophysiological process and one of the most crucial and perplexing events in current challenging human diseases such as cancer, neurodegeneration, and general aging diseases. Many BP compounds were found to intricately modulate ferroptosis depending on the cellular context by inducing this cell death mechanism in malignant cells and preventing it in non-malignant cells. Since research in both fields, i.e., BP and ferroptosis, is still recent, we deemed it necessary to undertake this review to figure out the extent of BP potential in modulating ferroptosis mechanisms. Our research proved that a wide range of BP compounds (polyphenols, phenolamides, carotenoids, vitamins, minerals, and others) substantially modulate diverse ferroptosis mechanisms. Accordingly, these phytochemicals and nutrients showed interesting potential in preclinical studies to lead to ferroptosis-mediated outcomes in important pathophysiological processes, including many aging-related disorders. One of the most paramount challenges that remain to be resolved is to determine how different BP compounds act on ferroptosis in different biological and pathophysiological contexts, either through synergistic or antagonistic behaviors. We hope that our current work constitutes a valuable incentive for future investigations in this promising and very relevant research avenue.
Collapse
Affiliation(s)
- Rachid Kacemi
- Observatory of Drug-Herb Interactions, Faculty of Pharmacy, Heath Sciences Campus, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Maria G. Campos
- Observatory of Drug-Herb Interactions, Faculty of Pharmacy, Heath Sciences Campus, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Coimbra Chemistry Centre (CQC, FCT Unit 313) (FCTUC), University of Coimbra, Rua Larga, 3000-548 Coimbra, Portugal
| |
Collapse
|
2
|
Mokhtarpour K, Razi S, Rezaei N. Ferroptosis as a promising targeted therapy for triple negative breast cancer. Breast Cancer Res Treat 2024:10.1007/s10549-024-07387-7. [PMID: 38874688 DOI: 10.1007/s10549-024-07387-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/22/2024] [Indexed: 06/15/2024]
Abstract
PURPOSE Triple negative breast cancer (TNBC) is a challenging subtype characterized by the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression. Standard treatment options are limited, and approximately 45% of patients develop distant metastasis. Ferroptosis, a regulated form of cell death triggered by iron-dependent lipid peroxidation and oxidative stress, has emerged as a potential targeted therapy for TNBC. METHODS This study utilizes a multifaceted approach to investigate the induction of ferroptosis as a therapeutic strategy for TNBC. It explores metabolic alterations, redox imbalance, and oncogenic signaling pathways to understand their roles in inducing ferroptosis, characterized by lipid peroxidation, reactive oxygen species (ROS) generation, and altered cellular morphology. Critical pathways such as Xc-/GSH/GPX4, ACSL4/LPCAT3, and nuclear factor erythroid 2-related factor 2 (NRF2) are examined for their regulatory roles in ferroptosis and their potential dysregulation contributing to cancer cell survival and resistance. RESULTS Inducing ferroptosis has been shown to inhibit tumor growth, enhance the efficacy of conventional therapies, and overcome drug resistance in TNBC. Lipophilic antioxidants, GPX4 inhibitors, and inhibitors of the Xc- system have been demonstrated to be potential ferroptosis inducers. Additionally, targeting the NRF2 pathway and exploring other ferroptosis regulators, such as ferroptosis suppressor protein 1 (FSP1), and the PERK-eIF2α-ATF4-CHOP pathway, may offer novel therapeutic avenues. CONCLUSION Further research is needed to understand the mechanisms, optimize therapeutic strategies, and evaluate the safety and efficacy of ferroptosis-targeted therapies in TNBC treatment. Overall, targeting ferroptosis represents a promising approach to improving treatment outcomes and overcoming the challenges posed by TNBC.
Collapse
Affiliation(s)
- Kasra Mokhtarpour
- Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Imunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr Qarib St, Keshavarz Blvd, Tehran, 14194, Iran
| | - Nima Rezaei
- Research Center for Imunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr Qarib St, Keshavarz Blvd, Tehran, 14194, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden.
| |
Collapse
|
3
|
Ibáñez-Moragues M, Fernández-Barahona I, Santacruz R, Oteo M, Luján-Rodríguez VM, Muñoz-Hernando M, Magro N, Lagares JI, Romero E, España S, Espinosa-Rodríguez A, García-Díez M, Martínez-Nouvilas V, Sánchez-Tembleque V, Udías JM, Valladolid-Onecha V, Martín-Rey MÁ, Almeida-Cordon EI, Viñals i Onsès S, Pérez JM, Fraile LM, Herranz F, Morcillo MÁ. Zinc-Doped Iron Oxide Nanoparticles as a Proton-Activatable Agent for Dose Range Verification in Proton Therapy. Molecules 2023; 28:6874. [PMID: 37836718 PMCID: PMC10574368 DOI: 10.3390/molecules28196874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/13/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Proton therapy allows the treatment of specific areas and avoids the surrounding tissues. However, this technique has uncertainties in terms of the distal dose fall-off. A promising approach to studying the proton range is the use of nanoparticles as proton-activatable agents that produce detectable signals. For this, we developed an iron oxide nanoparticle doped with Zn (IONP@Zn-cit) with a hydrodynamic size of 10 nm and stability in serum. Cytotoxicity, defined as half of the surveillance, was 100 μg Zn/mL in the U251 cell line. The effect on clonogenic cell death was tested after X-ray irradiation, which suggested a radioprotective effect of these nanoparticles at low concentrations (1-10 μg Zn/mL). To evaluate the production of positron emitters and prompt-gamma signals, IONP@Zn-cit was irradiated with protons, obtaining prompt-gamma signals at the lowest measured concentration (10 mg Zn/mL). Finally, 67Ga-IONP@Zn-cit showed accumulation in the liver and spleen and an accumulation in the tumor tissue of 0.95% ID/g in a mouse model of U251 cells. These results suggest the possibility of using Zn nanoparticles as proton-activatable agents to verify the range by prompt gamma detection and face the challenges of prompt gamma detection in a specific biological situation, opening different avenues to go forward in this field.
Collapse
Affiliation(s)
- Marta Ibáñez-Moragues
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas CIEMAT, Medical Applications of Ionizing Radiation Unit, 28040 Madrid, Spain; (R.S.); (M.O.); (V.M.L.-R.); (N.M.); (J.I.L.); (E.R.); (J.M.P.)
| | - Irene Fernández-Barahona
- Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain;
- Instituto de Química Médica—Consejo Superior de Investigaciones Científicas IQM-CSIC, Nanomedicine and Molecular Imaging Group, 28006 Madrid, Spain; (M.M.-H.)
| | - Rocío Santacruz
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas CIEMAT, Medical Applications of Ionizing Radiation Unit, 28040 Madrid, Spain; (R.S.); (M.O.); (V.M.L.-R.); (N.M.); (J.I.L.); (E.R.); (J.M.P.)
| | - Marta Oteo
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas CIEMAT, Medical Applications of Ionizing Radiation Unit, 28040 Madrid, Spain; (R.S.); (M.O.); (V.M.L.-R.); (N.M.); (J.I.L.); (E.R.); (J.M.P.)
| | - Víctor M. Luján-Rodríguez
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas CIEMAT, Medical Applications of Ionizing Radiation Unit, 28040 Madrid, Spain; (R.S.); (M.O.); (V.M.L.-R.); (N.M.); (J.I.L.); (E.R.); (J.M.P.)
| | - María Muñoz-Hernando
- Instituto de Química Médica—Consejo Superior de Investigaciones Científicas IQM-CSIC, Nanomedicine and Molecular Imaging Group, 28006 Madrid, Spain; (M.M.-H.)
| | - Natalia Magro
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas CIEMAT, Medical Applications of Ionizing Radiation Unit, 28040 Madrid, Spain; (R.S.); (M.O.); (V.M.L.-R.); (N.M.); (J.I.L.); (E.R.); (J.M.P.)
| | - Juan I. Lagares
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas CIEMAT, Medical Applications of Ionizing Radiation Unit, 28040 Madrid, Spain; (R.S.); (M.O.); (V.M.L.-R.); (N.M.); (J.I.L.); (E.R.); (J.M.P.)
| | - Eduardo Romero
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas CIEMAT, Medical Applications of Ionizing Radiation Unit, 28040 Madrid, Spain; (R.S.); (M.O.); (V.M.L.-R.); (N.M.); (J.I.L.); (E.R.); (J.M.P.)
| | - Samuel España
- Nuclear Physics Group, Universidad Complutense de Madrid, IPARCOS &EMFTEL, CEI Moncloa, 28040 Madrid, Spain; (S.E.); (A.E.-R.); (M.G.-D.); (V.M.-N.); (V.S.-T.); (J.M.U.); (V.V.-O.); (L.M.F.)
- Instituto de Investigación del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, 28040 Madrid, Spain
| | - Andrea Espinosa-Rodríguez
- Nuclear Physics Group, Universidad Complutense de Madrid, IPARCOS &EMFTEL, CEI Moncloa, 28040 Madrid, Spain; (S.E.); (A.E.-R.); (M.G.-D.); (V.M.-N.); (V.S.-T.); (J.M.U.); (V.V.-O.); (L.M.F.)
- Instituto de Investigación del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, 28040 Madrid, Spain
| | - Miguel García-Díez
- Nuclear Physics Group, Universidad Complutense de Madrid, IPARCOS &EMFTEL, CEI Moncloa, 28040 Madrid, Spain; (S.E.); (A.E.-R.); (M.G.-D.); (V.M.-N.); (V.S.-T.); (J.M.U.); (V.V.-O.); (L.M.F.)
- Instituto de Investigación del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, 28040 Madrid, Spain
| | - Víctor Martínez-Nouvilas
- Nuclear Physics Group, Universidad Complutense de Madrid, IPARCOS &EMFTEL, CEI Moncloa, 28040 Madrid, Spain; (S.E.); (A.E.-R.); (M.G.-D.); (V.M.-N.); (V.S.-T.); (J.M.U.); (V.V.-O.); (L.M.F.)
- Instituto de Investigación del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, 28040 Madrid, Spain
| | - Víctor Sánchez-Tembleque
- Nuclear Physics Group, Universidad Complutense de Madrid, IPARCOS &EMFTEL, CEI Moncloa, 28040 Madrid, Spain; (S.E.); (A.E.-R.); (M.G.-D.); (V.M.-N.); (V.S.-T.); (J.M.U.); (V.V.-O.); (L.M.F.)
- Instituto de Investigación del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, 28040 Madrid, Spain
| | - José Manuel Udías
- Nuclear Physics Group, Universidad Complutense de Madrid, IPARCOS &EMFTEL, CEI Moncloa, 28040 Madrid, Spain; (S.E.); (A.E.-R.); (M.G.-D.); (V.M.-N.); (V.S.-T.); (J.M.U.); (V.V.-O.); (L.M.F.)
- Instituto de Investigación del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, 28040 Madrid, Spain
| | - Víctor Valladolid-Onecha
- Nuclear Physics Group, Universidad Complutense de Madrid, IPARCOS &EMFTEL, CEI Moncloa, 28040 Madrid, Spain; (S.E.); (A.E.-R.); (M.G.-D.); (V.M.-N.); (V.S.-T.); (J.M.U.); (V.V.-O.); (L.M.F.)
- Instituto de Investigación del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, 28040 Madrid, Spain
| | - Miguel Á. Martín-Rey
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas CIEMAT, Hematopoietic Innovative Therapies Unit, 28040 Madrid, Spain;
| | - Edilia I. Almeida-Cordon
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas CIEMAT, Animal Facility Unit, 28040 Madrid, Spain;
| | - Sílvia Viñals i Onsès
- Center for Microanalysis of Materials (CMAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - José Manuel Pérez
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas CIEMAT, Medical Applications of Ionizing Radiation Unit, 28040 Madrid, Spain; (R.S.); (M.O.); (V.M.L.-R.); (N.M.); (J.I.L.); (E.R.); (J.M.P.)
| | - Luis Mario Fraile
- Nuclear Physics Group, Universidad Complutense de Madrid, IPARCOS &EMFTEL, CEI Moncloa, 28040 Madrid, Spain; (S.E.); (A.E.-R.); (M.G.-D.); (V.M.-N.); (V.S.-T.); (J.M.U.); (V.V.-O.); (L.M.F.)
- Instituto de Investigación del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, 28040 Madrid, Spain
| | - Fernando Herranz
- Instituto de Química Médica—Consejo Superior de Investigaciones Científicas IQM-CSIC, Nanomedicine and Molecular Imaging Group, 28006 Madrid, Spain; (M.M.-H.)
| | - Miguel Ángel Morcillo
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas CIEMAT, Medical Applications of Ionizing Radiation Unit, 28040 Madrid, Spain; (R.S.); (M.O.); (V.M.L.-R.); (N.M.); (J.I.L.); (E.R.); (J.M.P.)
| |
Collapse
|
4
|
Bartos A, Sikora J. Bioinorganic Modulators of Ferroptosis: A Review of Recent Findings. Int J Mol Sci 2023; 24:3634. [PMID: 36835045 PMCID: PMC9967694 DOI: 10.3390/ijms24043634] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Ferroptosis was first reported as a separate modality of regulated cell death in 2008 and distinguished under its current name in 2012 after it was first induced with erastin. In the following decade, multiple other chemical agents were researched for their pro- or anti-ferroptotic properties. Complex organic structures with numerous aromatic moieties make up the majority of this list. This review fills a more overlooked niche by gathering, outlining and setting out conclusions regarding less prominent cases of ferroptosis induced by bioinorganic compounds and reported on within the last few years. The article contains a short summary of the application of bioinorganic chemicals based on gallium, several chalcogens, transition metals and elements known as human toxicants used for the purpose of evoking ferroptotic cell death in vitro or in vivo. These are used in the form of free ions, salts, chelates, gaseous and solid oxides or nanoparticles. Knowledge of how exactly these modulators promote or inhibit ferroptosis could be beneficial in the context of future therapies aimed against cancer or neurodegenerative diseases, respectively.
Collapse
Affiliation(s)
- Adrian Bartos
- Department of Bioinorganic Chemistry, Faculty of Pharmacy, Medical University of Lodz, Jana Muszynskiego 1, 90-151 Lodz, Poland
| | - Joanna Sikora
- Department of Bioinorganic Chemistry, Faculty of Pharmacy, Medical University of Lodz, Jana Muszynskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
5
|
Ferroptosis as a mechanism of non-ferrous metal toxicity. Arch Toxicol 2022; 96:2391-2417. [PMID: 35727353 DOI: 10.1007/s00204-022-03317-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/11/2022] [Indexed: 11/02/2022]
Abstract
Ferroptosis is a recently discovered form of regulated cell death, implicated in multiple pathologies. Given that the toxicity elicited by some metals is linked to alterations in iron metabolism and induction of oxidative stress and lipid peroxidation, ferroptosis might be involved in such toxicity. Although direct evidence is insufficient, certain pioneering studies have demonstrated a crosstalk between metal toxicity and ferroptosis. Specifically, the mechanisms underlying metal-induced ferroptosis include induction of ferritinophagy, increased DMT-1 and TfR cellular iron uptake, mitochondrial dysfunction and mitochondrial reactive oxygen species (mitoROS) generation, inhibition of Xc-system and glutathione peroxidase 4 (GPX4) activity, altogether resulting in oxidative stress and lipid peroxidation. In addition, there is direct evidence of the role of ferroptosis in the toxicity of arsenic, cadmium, zinc, manganese, copper, and aluminum exposure. In contrast, findings on the impact of cobalt and nickel on ferroptosis are scant and nearly lacking altogether for mercury and especially lead. Other gaps in the field include limited studies on the role of metal speciation in ferroptosis and the critical cellular targets. Although further detailed studies are required, it seems reasonable to propose even at this early stage that ferroptosis may play a significant role in metal toxicity, and its modulation may be considered as a potential therapeutic tool for the amelioration of metal toxicity.
Collapse
|