1
|
Li H, Wang S, Li X, Weng Y, Guo D, Kong P, Cheng C, Wang Y, Zhang L, Cheng X, Cui Y. CDCA7 promotes TGF-β-induced epithelial-mesenchymal transition via transcriptionally regulating Smad4/Smad7 in ESCC. Cancer Sci 2022; 114:91-104. [PMID: 36056599 PMCID: PMC9807500 DOI: 10.1111/cas.15560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 01/07/2023] Open
Abstract
Cell division cycle associated 7 (CDCA7) is a copy number amplification gene that contributes to the metastasis and invasion of tumors, including esophageal squamous cell carcinoma (ESCC). This present study aimed at clarifying whether high expression of CDCA7 promotes the metastasis and invasion of ESCC cell lines and exploring the underlying mechanisms implicated in epithelial-mesenchymal transition (EMT) of ESCC. The role of CDCA7 in the regulation of ESCC metastasis and invasion was evaluated using ESCC cell lines. Expression of EMT-related markers including E-cadherin, N-cadherin, Vimentin, Snail, and Slug, transforming growth factor β (TGF-β) signaling pathway including Smad2/3, p-Smad2/3, Smad4, and Smad7 were detected in CDCA7 knockdown and overexpressed cell lines. Dual-luciferase reporter assay and rescue assay were used to explore the underlying mechanisms that CDCA7 contributed to the metastasis and invasion of ESCC. High CDCA7 expression significantly promoted the metastasis and invasion of ESCC cell lines both in vivo and in vitro. Additionally, the expression of CDCA7 positively correlated with the expression of N-cadherin, Vimentin, Snail, Slug, TGF-β signaling pathway and negatively correlated with the expression of E-cadherin. Furthermore, CDCA7 transcriptionally regulated the expression of Smad4 and Smad7. Knockdown of CDCA7 inhibited the TGF-β signaling pathway and therefore inhibited EMT. Our data indicated that CDCA7 was heavily involved in EMT by regulating the expression of Smad4 and Smad7 in TGF-β signaling pathway. CDCA7 might be a new therapeutic target in the suppression of metastasis and invasion of ESCC.
Collapse
Affiliation(s)
- Hongyi Li
- Department of Pathology, School of Basic Medical ScienceShanxi Medical UniversityTaiyuanChina,Key Laboratory of Cellular Physiology, Ministry of EducationShanxi Medical UniversityTaiyuanChina
| | - Shaojie Wang
- Department of Pathology, School of Basic Medical ScienceShanxi Medical UniversityTaiyuanChina,Key Laboratory of Cellular Physiology, Ministry of EducationShanxi Medical UniversityTaiyuanChina
| | - Xiubo Li
- Department of Pathology, School of Basic Medical ScienceShanxi Medical UniversityTaiyuanChina,Key Laboratory of Cellular Physiology, Ministry of EducationShanxi Medical UniversityTaiyuanChina
| | - Yongjia Weng
- Department of Pathology, School of Basic Medical ScienceShanxi Medical UniversityTaiyuanChina,Key Laboratory of Cellular Physiology, Ministry of EducationShanxi Medical UniversityTaiyuanChina
| | - Dinghe Guo
- Department of Pathology, School of Basic Medical ScienceShanxi Medical UniversityTaiyuanChina,Key Laboratory of Cellular Physiology, Ministry of EducationShanxi Medical UniversityTaiyuanChina
| | - Pengzhou Kong
- Department of Pathology, School of Basic Medical ScienceShanxi Medical UniversityTaiyuanChina,Key Laboratory of Cellular Physiology, Ministry of EducationShanxi Medical UniversityTaiyuanChina
| | - Caixia Cheng
- Department of Pathology, The First HospitalShanxi Medical UniversityTaiyuanChina
| | - Yanqiang Wang
- Department of Pathology, School of Basic Medical ScienceShanxi Medical UniversityTaiyuanChina,Key Laboratory of Cellular Physiology, Ministry of EducationShanxi Medical UniversityTaiyuanChina
| | - Ling Zhang
- Department of Pathology, School of Basic Medical ScienceShanxi Medical UniversityTaiyuanChina,Key Laboratory of Cellular Physiology, Ministry of EducationShanxi Medical UniversityTaiyuanChina
| | - Xiaolong Cheng
- Department of Pathology, School of Basic Medical ScienceShanxi Medical UniversityTaiyuanChina,Key Laboratory of Cellular Physiology, Ministry of EducationShanxi Medical UniversityTaiyuanChina
| | - Yongping Cui
- Department of Pathology, School of Basic Medical ScienceShanxi Medical UniversityTaiyuanChina,Key Laboratory of Cellular Physiology, Ministry of EducationShanxi Medical UniversityTaiyuanChina
| |
Collapse
|
2
|
Lohan-Codeço M, Barambo-Wagner ML, Nasciutti LE, Ribeiro Pinto LF, Meireles Da Costa N, Palumbo A. Molecular mechanisms associated with chemoresistance in esophageal cancer. Cell Mol Life Sci 2022; 79:116. [PMID: 35113247 PMCID: PMC11073146 DOI: 10.1007/s00018-022-04131-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 02/07/2023]
Abstract
Esophageal cancer (EC) is one of the most incident and lethal tumors worldwide. Although surgical resection is an important approach in EC treatment, late diagnosis, metastasis and recurrence after surgery have led to the management of adjuvant and neoadjuvant therapies over the past few decades. In this scenario, 5-fluorouracil (5-FU) and cisplatin (CISP), and more recently paclitaxel (PTX) and carboplatin (CBP), have been traditionally used in EC treatment. However, chemoresistance to these agents along EC therapeutic management represents the main obstacle to successfully treat this malignancy. In this sense, despite the fact that most of chemotherapy drugs were discovered several decades ago, in many cases, including EC, they still represent the most affordable and widely employed treatment approach for these tumors. Therefore, this review summarizes the main mechanisms through which the response to the most widely chemotherapeutic agents used in EC treatment is impaired, such as drug metabolism, apoptosis resistance, cancer stem cells (CSCs), cell cycle, autophagy, energetic metabolism deregulation, tumor microenvironment and epigenetic modifications.
Collapse
Affiliation(s)
- Matheus Lohan-Codeço
- Laboratório de Interações Celulares, Instituto de Ciências Biomédicas, Programa de Pesquisa em Biologia Celular e do Desenvolvimento, Universidade Federal do Rio de Janeiro, Prédio do Centro de Ciências da Saúde-Cidade Universitária, Ilha do Fundão, Rua César Pernetta, 1766 (LS.3.01), Rio de Janeiro, RJ, Brasil
| | - Maria Luísa Barambo-Wagner
- Programa de Carcinogênese Molecular Coordenação de Pesquisa, Instituto Nacional de Câncer-INCA, Rua André Cavalcanti, 37-6ºandar-Centro, Rio de Janeiro, RJ, 20231-050, Brazil
| | - Luiz Eurico Nasciutti
- Laboratório de Interações Celulares, Instituto de Ciências Biomédicas, Programa de Pesquisa em Biologia Celular e do Desenvolvimento, Universidade Federal do Rio de Janeiro, Prédio do Centro de Ciências da Saúde-Cidade Universitária, Ilha do Fundão, Rua César Pernetta, 1766 (LS.3.01), Rio de Janeiro, RJ, Brasil
| | - Luis Felipe Ribeiro Pinto
- Programa de Carcinogênese Molecular Coordenação de Pesquisa, Instituto Nacional de Câncer-INCA, Rua André Cavalcanti, 37-6ºandar-Centro, Rio de Janeiro, RJ, 20231-050, Brazil
| | - Nathalia Meireles Da Costa
- Programa de Carcinogênese Molecular Coordenação de Pesquisa, Instituto Nacional de Câncer-INCA, Rua André Cavalcanti, 37-6ºandar-Centro, Rio de Janeiro, RJ, 20231-050, Brazil.
| | - Antonio Palumbo
- Laboratório de Interações Celulares, Instituto de Ciências Biomédicas, Programa de Pesquisa em Biologia Celular e do Desenvolvimento, Universidade Federal do Rio de Janeiro, Prédio do Centro de Ciências da Saúde-Cidade Universitária, Ilha do Fundão, Rua César Pernetta, 1766 (LS.3.01), Rio de Janeiro, RJ, Brasil.
| |
Collapse
|
3
|
Veen LM, Skrabanja TLP, Derks S, de Gruijl TD, Bijlsma MF, van Laarhoven HWM. The role of transforming growth factor β in upper gastrointestinal cancers: A systematic review. Cancer Treat Rev 2021; 100:102285. [PMID: 34536730 DOI: 10.1016/j.ctrv.2021.102285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 01/02/2023]
Abstract
Esophageal and gastric malignancies are associated with poor prognosis, in part due to development of recurrences or metastases after curative treatment. The transforming growth factor β (TGF-β) pathway might play a role in the development of treatment resistance. In this systematic review, we provide an overview of preclinical studies investigating the role of TGF-β in esophageal and gastric malignancies. We systematically searched MEDLINE/PubMed and EMBASE for eligible preclinical studies describing the effect of TGF-β or TGF-β inhibition on hallmarks of cancer, such as proliferation, migration, invasion, angiogenesis and immune evasion. In total, 2107 records were screened and 45 articles were included, using mouse models and 45 different cell lines. TGF-β failed to induce apoptosis in twelve of sixteen tested cell lines. TGF-β could either decrease (five cell lines) or increase proliferation (seven cell lines) in gastric cancer cells, but had no effect in esophageal cancer cells. In all esophageal and all but two gastric cancer cell lines, TGF-β increased migratory, adhesive and invasive capacities. In vivo studies showed increased metastasis in response to TGF-β treatment. Additionally, TGF-β was shown to induce vascular endothelial growth factor production and differentiation of cancer-associated fibroblasts and regulatory T-cells. In conclusion, we found that TGF-β enhances hallmarks of cancer in most gastric and esophageal cancer cell lines, but not in all. Therefore, targeting the TGF-β pathway could be an attractive strategy in patients with gastric or esophageal cancer, but additional clinical trials are needed to define patient groups who would benefit most.
Collapse
Affiliation(s)
- Linde M Veen
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, University of Amsterdam, De Boelelaan 1117-1118, 1081 HV Amsterdam, The Netherlands.
| | - Tim L P Skrabanja
- Laboratory of Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Sarah Derks
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, University of Amsterdam, De Boelelaan 1117-1118, 1081 HV Amsterdam, The Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, De Boelelaan 1117-1118, 1081 HV Amsterdam, The Netherlands
| | - Maarten F Bijlsma
- Laboratory of Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Hanneke W M van Laarhoven
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, University of Amsterdam, De Boelelaan 1117-1118, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
4
|
Jia L, Wang Y, Wang C. circFAT1 Promotes Cancer Stemness and Immune Evasion by Promoting STAT3 Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003376. [PMID: 34258151 PMCID: PMC8261519 DOI: 10.1002/advs.202003376] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/27/2020] [Indexed: 05/04/2023]
Abstract
Cancer stemness and immune evasion are closely associated, and play critical roles in tumor development and resistance to immunotherapy. However, little is known about the underlying molecular mechanisms that coordinate this association. Here, it is reported that elevated circular RNA FAT1 (circFAT1) in squamous cell carcinoma (SCC) unifies and regulates the positive association between cancer stemness and immune evasion by promoting STAT3 activation. circFAT1 knockdown (KD) reduces tumorsphere formation of SCC cells in vitro and tumor growth in vivo. Bioinformatic analysis reveals that circFAT1 KD impairs the cancer stemness signature and activates tumor cell-intrinsic immunity. Mechanistically, circFAT1 binding to STAT3 in the cytoplasm prevents STAT3 dephosphorylation by SHP1 and promotes STAT3 activation, resulting in inhibition of STAT1-mediated transcription. Moreover, circFAT1 KD significantly enhances PD1 blockade immunotherapy by promoting CD8+ cell infiltration into tumor microenvironment. Taken together, the results demonstrate that circFAT1 is an important regulator of cancer stemness and antitumor immunity.
Collapse
Affiliation(s)
- Lingfei Jia
- Jonsson Comprehensive Cancer CenterUCLALos AngelesCA90095USA
- Laboratory of Molecular SignalingDivision of Oral Biology and MedicineSchool of DentistryUCLALos AngelesCA90095USA
| | - Yilun Wang
- Jonsson Comprehensive Cancer CenterUCLALos AngelesCA90095USA
- Laboratory of Molecular SignalingDivision of Oral Biology and MedicineSchool of DentistryUCLALos AngelesCA90095USA
| | - Cun‐Yu Wang
- Jonsson Comprehensive Cancer CenterUCLALos AngelesCA90095USA
- Laboratory of Molecular SignalingDivision of Oral Biology and MedicineSchool of DentistryUCLALos AngelesCA90095USA
- Department of BioengineeringHenry Samueli School of Engineering and Applied ScienceUCLALos AngelesCA90095USA
| |
Collapse
|
5
|
Aghamaliyev U, Gaitantzi H, Thomas M, Simon-Keller K, Gaiser T, Marx A, Yagublu V, Araos J, Cai C, Valous NA, Halama N, Kiesslich T, Ebert M, Grützmann R, Rückert F, Breitkopf-Heinlein K. Downregulation of SPARC Is Associated with Epithelial-Mesenchymal Transition and Low Differentiation State of Biliary Tract Cancer Cells. Eur Surg Res 2019; 60:1-12. [PMID: 30650425 DOI: 10.1159/000494734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 10/19/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND Biliary tract cancers (BTCs) have a poor prognosis. BTCs are characterized by a prominent desmoplastic reaction which possibly contributes to the aggressive phenotype of this tumor. The desmoplastic reaction includes excessive production and deposition of extracellular matrix proteins such as periostin, secreted protein acidic and rich in cysteine (SPARC), thrombospondin-1, as well as accumulation of α-smooth muscle actin-positive cancer-associated fibroblasts and immune cells, secreting growth factors and cytokines including transforming growth factor (TGF)-β. In the present study, we investigated the expression of SPARC in BTC as well as its possible regulation by TGF-β. METHODS Expression levels of Sparc, TGF-β1 and its receptor ALK5 were evaluated by quantitative real-time PCR in 6 biliary tract cell lines as well as 1 immortalized cholangiocyte cell line (MMNK-1). RNAs from tumor samples of 7 biliary tract cancer patients were analyzed for expression of Sparc, TGF-β type II receptor (TbRII) as well as Twist and ZO-1. MMNK-1 cells were stimulated with TGF-β for 24 h, and Sparc, ZO-1 and E-Cadherin expressions were determined. The presence of SPARC protein was analyzed by immunohistochemistry in tumor specimens from 10 patients. RESULTS When comparing basal Sparc transcript levels in diverse BTC cell lines to MMNK-1 cells, we found that it was strongly downregulated in all cancer cell lines. The remaining expression levels were higher in highly differentiated cell lines (CCSW1, MZChA1, MZChA2 and TFK-1) than in less differentiated and undifferentiated ones (BDC, SKChA1). Expression of Sparc in BTC patient samples showed a significant positive correlation with expression of the epithelial marker ZO-1. In contrast, the mesenchymal marker Twist and the TbRII showed a trend of negative correlation with expression of Sparc in these samples. TGF-β exposure significantly downregulated Sparc expression in MMNK-1 cholangiocytes in vitro in parallel to downregulation of epithelial markers (E-Cadherin and ZO-1). Finally, SPARC immunostaining was performed in 10 patient samples, and the correlation between absence of SPARC and survival times was analyzed. CONCLUSIONS These data imply that a decrease in SPARC expression is correlated with dedifferentiation of BTC cells resulting in enhanced EMT being possibly mediated by TGF-β. Thereby SPARC levels might be a marker for individual prognosis of a patient, and strategies aiming at inhibition of SPARC downregulation might have potential for new future therapies.
Collapse
Affiliation(s)
- Ughur Aghamaliyev
- Department of Surgery, University Medicine Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Haristi Gaitantzi
- Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Maria Thomas
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and University of Tuebingen, Stuttgart, Germany
| | - Katja Simon-Keller
- Institute of Pathology, University Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Timo Gaiser
- Institute of Pathology, University Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Alexander Marx
- Institute of Pathology, University Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Vugar Yagublu
- Department of Surgery, Klinikum Frankfurt Höchst, Frankfurt am Main, Germany
| | - Joaquin Araos
- Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Chen Cai
- Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Nektarios A Valous
- Applied Tumor Immunity Clinical Cooperation Unit, National Center for Tumor Diseases, German Cancer Research Center, Heidelberg, Germany
| | - Niels Halama
- Applied Tumor Immunity Clinical Cooperation Unit, National Center for Tumor Diseases, German Cancer Research Center, Heidelberg, Germany
| | - Tobias Kiesslich
- Department of Medicine I, University Hospital Salzburg, Salzburg, Austria
| | - Matthias Ebert
- Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Robert Grützmann
- Department of Surgery, University Medical Center Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Felix Rückert
- Department of Surgery, University Medicine Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Katja Breitkopf-Heinlein
- Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany,
| |
Collapse
|
6
|
Wang J, Duan Y, Meng QH, Gong R, Guo C, Zhao Y, Zhang Y. Integrated analysis of DNA methylation profiling and gene expression profiling identifies novel markers in lung cancer in Xuanwei, China. PLoS One 2018; 13:e0203155. [PMID: 30286088 PMCID: PMC6171826 DOI: 10.1371/journal.pone.0203155] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 08/15/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Aberrant DNA methylation occurs frequently in cancer. The aim of this study was to identify novel methylation markers in lung cancer in Xuanwei, China, through integrated genome-wide DNA methylation and gene expression studies. METHODS Differentially methylated regions (DMRs) and differentially expressed genes (DEGs) were detected on 10 paired lung cancer tissues and noncancerous lung tissues by methylated DNA immunoprecipitation combined with microarray (MeDIP-chip) and gene expression microarray analyses, respectively. Integrated analysis of DMRs and DEGs was performed to screen out candidate methylation-related genes. Both methylation and expression changes of the candidate genes were further validated and analyzed. RESULTS Compared with normal lung tissues, lung cancer tissues expressed a total of 6,899 DMRs, including 5,788 hypermethylated regions and 1,111 hypomethylated regions. Integrated analysis of DMRs and DEGs identified 45 tumor-specific candidate genes: 38 genes whose DMRs were hypermethylated and expression was downregulated, and 7 genes whose DMRs were hypomethylated and expression was upregulated. The methylation and expression validation results identified 4 candidate genes (STXBP6, BCL6B, FZD10, and HSPB6) that were significantly hypermethylated and downregulated in most of the tumor tissues compared with the noncancerous lung tissues. CONCLUSIONS This integrated analysis of genome-wide DNA methylation and gene expression in lung cancer in Xuanwei revealed several genes regulated by promoter methylation that have not been described in lung cancer before. These results provide new insight into the carcinogenesis of lung cancer in Xuanwei and represent promising new diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Juan Wang
- Department of Clinical Laboratory, First Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Institute of Experimental Diagnosis, Kunming, China
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, China
| | - Yong Duan
- Department of Clinical Laboratory, First Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Institute of Experimental Diagnosis, Kunming, China
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, China
| | - Qing-He Meng
- Department of Laboratory Medicine, the University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Rong Gong
- Department of Clinical Laboratory, First Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Institute of Experimental Diagnosis, Kunming, China
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, China
| | - Chong Guo
- Department of Clinical Laboratory, First Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Institute of Experimental Diagnosis, Kunming, China
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, China
| | - Ying Zhao
- Department of Clinical Laboratory, First Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Institute of Experimental Diagnosis, Kunming, China
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, China
| | - Yanliang Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Institute of Experimental Diagnosis, Kunming, China
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, China
- * E-mail:
| |
Collapse
|
7
|
Zhang S, Pei M, Li Z, Li H, Liu Y, Li J. Double-negative feedback interaction between DNA methyltransferase 3A and microRNA-145 in the Warburg effect of ovarian cancer cells. Cancer Sci 2018; 109:2734-2745. [PMID: 29993160 PMCID: PMC6125441 DOI: 10.1111/cas.13734] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/06/2018] [Indexed: 12/14/2022] Open
Abstract
Ovarian cancer is the most lethal gynecological malignancy because of its poor prognosis. The Warburg effect is one of the key mechanisms mediating cancer progression. Molecules targeting the Warburg effect are therefore of significant therapeutic value for the treatment of cancers. Many microRNAs (miR) are dysregulated in cancers, and aberrant miR expression patterns have been suggested to correlate with the Warburg effect in cancer cells. In our study, we found that miR-145 negatively correlated with DNA methyltransferase (DNMT)3A expression at cellular/histological levels. miR-145 inhibited the Warburg effect by targeting HK2. Luciferase reporter assays confirmed that miR-145-mediated downregulation of DNMT3A occurred through direct targeting of its mRNA 3'-UTRs, whereas methylation-specific PCR (MSP) assays found that knockdown of DNMT3A increased mRNA level of miR-145 and decreased methylation levels of promoter regions in the miR-145 precursor gene, thus suggesting a crucial crosstalk between miR-145 and DNMT3A by a double-negative feedback loop. DNMT3A promoted the Warburg effect through miR-145. Coimmunoprecipitation assays confirmed no direct binding between DNMT3A and HK2. In conclusion, a feedback loop between miR-145 and DNMT3A is a potent signature for the Warburg effect in ovarian cancer, promising a potential target for improved anticancer treatment.
Collapse
Affiliation(s)
- Songlin Zhang
- Department of Structural Heart Disease, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Meili Pei
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhen Li
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Han Li
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yanli Liu
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jie Li
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
8
|
Grassi D, Franz H, Vezzali R, Bovio P, Heidrich S, Dehghanian F, Lagunas N, Belzung C, Krieglstein K, Vogel T. Neuronal Activity, TGFβ-Signaling and Unpredictable Chronic Stress Modulate Transcription of Gadd45 Family Members and DNA Methylation in the Hippocampus. Cereb Cortex 2018; 27:4166-4181. [PMID: 28444170 DOI: 10.1093/cercor/bhx095] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/04/2017] [Indexed: 02/06/2023] Open
Abstract
Neuronal activity is altered in several neurological and psychiatric diseases. Upon depolarization not only neurotransmitters are released but also cytokines and other activators of signaling cascades. Unraveling their complex implication in transcriptional control in receiving cells will contribute to understand specific central nervous system (CNS) pathologies and will be of therapeutically interest. In this study we depolarized mature hippocampal neurons in vitro using KCl and revealed increased release not only of brain-derived neurotrophic factor (BDNF) but also of transforming growth factor beta (TGFB). Neuronal activity together with BDNF and TGFB controls transcription of DNA modifying enzymes specifically members of the DNA-damage-inducible (Gadd) family, Gadd45a, Gadd45b, and Gadd45g. MeDIP followed by massive parallel sequencing and transcriptome analyses revealed less DNA methylation upon KCl treatment. Psychiatric disorder-related genes, namely Tshz1, Foxn3, Jarid2, Per1, Map3k5, and Arc are transcriptionally activated and demethylated upon neuronal activation. To analyze whether misexpression of Gadd45 family members are associated with psychiatric diseases, we applied unpredictable chronic mild stress (UCMS) as established model for depression to mice. UCMS led to reduced expression of Gadd45 family members. Taken together, our data demonstrate that Gadd45 family members are new putative targets for UCMS treatments.
Collapse
Affiliation(s)
- Daniela Grassi
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.,Department of Basic Biomedical Sciences, Faculty of Biomedical Science and Health, Universidad Europea de Madrid, Madrid, Spain
| | - Henriette Franz
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Riccardo Vezzali
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Patrick Bovio
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.,Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Stefanie Heidrich
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Fariba Dehghanian
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Natalia Lagunas
- Inserm U 930, Université François Rabelais, 37200 Tours, France
| | | | - Kerstin Krieglstein
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Tanja Vogel
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
9
|
Zhou DZ, Sun HY, Yue JQ, Peng Y, Chen YM, Zhong ZJ. Dihydromyricetin induces apoptosis and cytoprotective autophagy through ROS-NF-κB signalling in human melanoma cells. Free Radic Res 2018; 51:517-528. [PMID: 28482716 DOI: 10.1080/10715762.2017.1328552] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Dihydromyricetin (DHM), a Rattan tea extract, has recently been shown to have anti-cancer activity in mammalian cells. In this study, we investigated the effect of DHM on human melanoma cells. Apart from induction of apoptosis, we demonstrated that DHM induced an autophagic response. Moreover, pharmacological inhibition or genetic blockade of autophagy enhanced DHM-induced cell death and apoptosis, indicating the cytoprotective role of autophagy in DHM-treated human melanoma cells. Further study suggested that the nuclear factor kappa B (NF-κB) signalling pathway was involved in DHM-induced autophagy. Moreover, N-acetyl-cysteine (NAC), an ROS scavenger, abrogated the effects of DHM on NF-κB-dependent autophagy. Taken together, this evidence demonstrates that a strategy of blocking ROS-NF-κB-dependent autophagy to enhance the activity of DHM warrants further attention for the treatment of human melanoma.
Collapse
Affiliation(s)
- Ding-Zhou Zhou
- a Department of Neurosurgery , The Central Hospital of ShaoYang , Shaoyang , PR China
| | - Hai-Ying Sun
- a Department of Neurosurgery , The Central Hospital of ShaoYang , Shaoyang , PR China
| | - Jing-Qi Yue
- a Department of Neurosurgery , The Central Hospital of ShaoYang , Shaoyang , PR China
| | - Yong Peng
- b Department of Neurosurgery , The Second Xiangya Hospital of Central South University , Changsha , PR China
| | - Yi-Min Chen
- a Department of Neurosurgery , The Central Hospital of ShaoYang , Shaoyang , PR China
| | - Zhi-Jian Zhong
- a Department of Neurosurgery , The Central Hospital of ShaoYang , Shaoyang , PR China
| |
Collapse
|
10
|
Li YP, Zhu JF, Huang KT, Wang RR, Cai B, Xie H, Chen HD. Reduction of Tat-interacting Protein 30 Expression Could be a Prognostic Marker in Bladder Urothelial Cancer. Chin Med J (Engl) 2018; 131:188-193. [PMID: 29336367 PMCID: PMC5776849 DOI: 10.4103/0366-6999.222325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Background: Tat-interacting protein 30 (TIP30) has been reported to be a tumor suppressor, with reduced or absent expression in various tumors. However, its role in bladder urothelial cancer (BUC) has not been investigated. Therefore, herein, we investigated the expression of TIP30 protein in BUC and normal bladder mucosa and the clinical significance of TIP30 expression in the prognosis of BUC. Methods: We reviewed data from 79 cases of BUC and 15 adjacent tissue samples from 79 patients treated at our institution between 2004 and 2007. TIP30 expression was examined by immunohistochemistry. The relationship between TIP30 expression and tumor stage, histological grade, and survival was analyzed. Differences between groups were evaluated using the t-test or matched-pairs test, and differences in the survival rates were analyzed with the log-rank test. Results: TIP30 protein expression was significantly reduced in BUC tissue (t = −6.91, P < 0.05) compared with normal tissue samples, and in invasive bladder cancer (t = 10.89, P < 0.05) compared with superficial bladder cancer. TIP30 protein expression differed significantly among different differentiated groups classified either according to the World Health Organization (2004, F = 17.48, P < 0.01) or World Health Organization (1973, F = 10.68, P < 0.01). TIP30 protein expression was significantly reduced in high-grade papillary urothelial carcinoma compared with papillary urothelial neoplasm of low malignant potential (P < 0.05) and low-grade papillary urothelial carcinoma (P < 0.05). Meanwhile, TIP30 protein expression was significantly reduced in Grade III BUC, compared with Grade I (P < 0.05) and Grade II (P < 0.05). Patients with low TIP30 expression showed a higher incidence of disease progression than those with high TIP30 expression (t = 2.63, P < 0.05). Kaplan-Meier survival analysis showed a strong positive relationship between TIP30 expression and overall survival (OS) (χ2 = 17.29, P < 0.05). Conclusions: TIP30 expression was associated with clinical tumor stage in BUC, suggesting that it might play an important role in disease progression. Furthermore, TIP30 might predict postoperative OS. Thus, its evaluation might be useful for predicting prognosis.
Collapse
Affiliation(s)
- Ye-Ping Li
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Jian-Fang Zhu
- Department of Vascular Surgery, The Second Hospital of Shaoxing City, Shaoxing, Zhejiang 312000, China
| | - Ka-Te Huang
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Rong-Rong Wang
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Bing Cai
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Hui Xie
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Hong-De Chen
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| |
Collapse
|
11
|
Zhang XF, Pan K, Weng DS, Chen CL, Wang QJ, Zhao JJ, Pan QZ, Liu Q, Jiang SS, Li YQ, Zhang HX, Xia JC. Cytotoxic T lymphocyte antigen-4 expression in esophageal carcinoma: implications for prognosis. Oncotarget 2018; 7:26670-9. [PMID: 27050369 PMCID: PMC5042006 DOI: 10.18632/oncotarget.8476] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/02/2016] [Indexed: 02/07/2023] Open
Abstract
To examine the relationship between cytotoxic T lymphocyte antigen-4 (CTLA-4) expression and esophageal carcinoma prognosis, CTLA-4 expression was immunohistochemically detected in paraffin-embedded primary tumor specimens from 158 patients with esophageal cancer. CTLA-4 was detected in the cytoplasm and cell membranes of esophageal cancer cells and in interstitial lymphocytes. In univariate analyses (log-rank), higher interstitial CTLA-4+ lymphocyte density and higher tumor CTLA-4 expression were associated with shorter overall survival (OS). After controlling for age and clinical stage, multivariate analysis (Cox) found that tumor CTLA-4 expression was an independent predictor of shorter OS (HR 2.016, P = 0.004). These results indicate that CTLA-4 expression in the tumor environment (both lymphocytes and tumor cells) is associated with poorer prognosis. In addition, CTLA-4 profiles may be useful for predicting the benefits and toxicity of CTLA-4 blockade in patients with esophageal carcinoma.
Collapse
Affiliation(s)
- Xiao-Fei Zhang
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China
| | - Ke Pan
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China
| | - De-Sheng Weng
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China
| | - Chang-Long Chen
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China
| | - Qi-Jing Wang
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China
| | - Jing-Jing Zhao
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China
| | - Qiu-Zhong Pan
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China
| | - Qing Liu
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China
| | - Shan-Shan Jiang
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China
| | - Yong-Qiang Li
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China
| | - Hong-Xia Zhang
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China
| | - Jian-Chuan Xia
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China
| |
Collapse
|
12
|
Li J, Lu J, Ye Z, Han X, Zheng X, Hou H, Chen W, Li X, Zhao L. 20(S)-Rg3 blocked epithelial-mesenchymal transition through DNMT3A/miR-145/FSCN1 in ovarian cancer. Oncotarget 2017; 8:53375-53386. [PMID: 28881818 PMCID: PMC5581117 DOI: 10.18632/oncotarget.18482] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 05/29/2017] [Indexed: 12/22/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is one of the key mechanisms mediating cancer progression. MicroRNAs (miRs) are essential regulators of gene expression by suppressing translation or causing degradation of target mRNA. Growing evidence illustrates the crucial roles of miRs dysregulation in cancer development and progression. Here, we have found for the first time that the ginsenoside 20(S)-Rg3, a pharmacologically active component of Panax ginseng, potently increases miR-145 expression by downregulating methyltransferase DNMT3A to attenuate the hypermethylation of the promoter region in the miR-145 precursor gene. Restoration of DNMT3A reverses the inhibitory effect of 20(S)-Rg3 on EMT. FSCN1 is verified as the target of miR-145 to suppress EMT in human ovarian cancer cells. The results from nude mouse xenograft models further demonstrate the suppressive effect of miR-145 on malignant progression of ovarian cancer. Taken together, our results show that 20(S)-Rg3 blocks EMT by targeting DNMT3A/miR-145/FSCN1 pathway in ovarian cancer cells, highlighting the potentiality of 20(S)-Rg3 to be used as a therapeutic agent for ovarian cancer.
Collapse
Affiliation(s)
- Jie Li
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiaojiao Lu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhongxue Ye
- Department of Gynecology, Ningbo No. 2 Hospital, Ningbo, China
| | - Xi Han
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xia Zheng
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Huilian Hou
- Department of Pathology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wei Chen
- Center for Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xu Li
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Le Zhao
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
13
|
TIP30 regulates lipid metabolism in hepatocellular carcinoma by regulating SREBP1 through the Akt/mTOR signaling pathway. Oncogenesis 2017; 6:e347. [PMID: 28604762 PMCID: PMC5519197 DOI: 10.1038/oncsis.2017.49] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 03/18/2017] [Accepted: 05/02/2017] [Indexed: 12/24/2022] Open
Abstract
Lipid reprogramming has been considered as a crucial characteristic in hepatocellular carcinoma (HCC) initiation and progression. However, detailed molecular mechanisms have yet to be clearly defined. Here, we examined the effects of tumor suppressor TIP30 on the regulation of HCC lipid metabolism. We found that decreased TIP30 expression leads to elevated fatty acid synthesis and enhanced levels of lipogenic enzymes SCD and FASN in HCC cells. Moreover, SREBP1 is one of the key transcription factors regulating liver lipid metabolism, and TIP30 deficiency significantly increased SREBP1 expression and nuclear accumulation. Small interfering RNAs targeting SREBP1 could reverse fatty acid synthesis induced by TIP30 deficiency. Furthermore, downregulating TIP30 activated the Akt/mTOR signaling pathway to upregulate SREBP1 expression, which promoted lipid metabolism by activating gene transcription of lipogenesis, including fasn and scd. We also showed that TIP30 deficiency-regulated lipid metabolism promoted proliferation of HCC cells. Clinically, our data revealed that TIP30 expression significantly correlated with SREBP1 in patients with HCC and that a combination of TIP30 and SREBP1 is a powerful predictor of HCC prognosis. Together, our data suggested a novel function of TIP30 in HCC progression and indicate that TIP30 regulation of SREBP1 may represent a novel target for HCC treatment.
Collapse
|
14
|
Cancer stem cells with increased metastatic potential as a therapeutic target for esophageal cancer. Semin Cancer Biol 2017; 44:60-66. [DOI: 10.1016/j.semcancer.2017.03.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/12/2017] [Accepted: 03/15/2017] [Indexed: 02/07/2023]
|
15
|
Tan B, Wang J, Song Q, Wang N, Jia Y, Wang C, Yao B, Liu Z, Zhang X, Cheng Y. Prognostic value of PAX9 in patients with esophageal squamous cell carcinoma and its prediction value to radiation sensitivity. Mol Med Rep 2017; 16:806-816. [PMID: 28560390 PMCID: PMC5482201 DOI: 10.3892/mmr.2017.6626] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 03/27/2017] [Indexed: 12/25/2022] Open
Abstract
Abnormal paired box 9 (PAX9) expression is associated with tumorigenesis, cancer development, invasion and metastasis. The present study investigated the prognostic significance of PAX9 in esophageal squamous cell carcinoma (ESCC) and its role in predicting radiation sensitivity. A total of 52.8% (121/229) ESCC tissues were positive for PAX9. The 1-, 3- and 5-year disease-free survival (DFS) rates were 72.2, 35.2 and 5.6%, respectively, and the overall survival (OS) rates were and 86.1, 44.4, and 23.1%, respectively, in PAX9-positive tumors. In PAX9-negative tumors, the one-, three- and five-year DFS rates were 76.9, 47.9 and 24.0%, and the OS rates were 90.9, 57.9 and 38.8%, respectively. Univariate analysis revealed that PAX9, differentiation, T stage, lymph node metastasis, and tumor-node-metastasis stage were associated with OS. Multivariate analysis of DFS and OS revealed that the hazard ratios for PAX9 were 0.624 (95% CI: 0.472–0.869, P=0.004) and 0.673 (95% CI: 0.491–0.922, P=0.014), respectively. Patients that received adjuvant therapy exhibited significant differences in the 5-year DFS (P<0.001) and OS (P<0.001). PAX9-positive ESCC patients who received post-surgery radiotherapy had a significantly greater 5-year DFS (P=0.011) and OS (P=0.009) than patients who received surgery only. Thus, PAX9 may be an independent prognostic factor for the surgical treatment of ESCC and a possible predictor of radiation sensitivity.
Collapse
Affiliation(s)
- Bingxu Tan
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jianbo Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Qingxu Song
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Nana Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yibin Jia
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Cong Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Bin Yao
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Zhulong Liu
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xiaomei Zhang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yufeng Cheng
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
16
|
Zou Y, Liu FY, Wang LQ, Guo JB, Yang BC, Wan XD, Wang F, He M, Huang OP. Downregulation of DNA methyltransferase 3 alpha promotes cell proliferation and invasion of ectopic endometrial stromal cells in adenomyosis. Gene 2017; 604:41-47. [DOI: 10.1016/j.gene.2016.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 11/22/2016] [Accepted: 12/12/2016] [Indexed: 02/06/2023]
|
17
|
Pan F, Mao H, Bu F, Tong X, Li J, Zhang S, Liu X, Wang L, Wu L, Chen R, Wei H, Li B, Li C, Yang Y, Steer CJ, Zhao J, Guo Y. Sp1-mediated transcriptional activation of miR-205 promotes radioresistance in esophageal squamous cell carcinoma. Oncotarget 2017; 8:5735-5752. [PMID: 27974696 PMCID: PMC5351585 DOI: 10.18632/oncotarget.13902] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 11/24/2016] [Indexed: 12/14/2022] Open
Abstract
Radiotherapy for esophageal squamous cell carcinoma (ESCC) patients is limited by resistance to ionizing radiation (IR). However, the roles and mechanisms of microRNAs in radioresistance are obscure. Here, we investigated that microRNA-205 (miR-205) was upregulated in radioresistant (RR) ESCC cells compared with the parental cells. Overexpression of miR-205 promoted colony survival post-IR, whereas depletion of miR-205 sensitized ESCC cells to IR in vitro and in vivo. Further, we demonstrated that miR-205 promoted radioresistance by enhancing DNA repair, inhibiting apoptosis and activating epithelial-mesenchymal transition (EMT). Mechanistically, miR-205, upregulated post-IR, was demonstrated to be activated by Sp1 in parallel with its host gene, miR-205HG, both of which showed a perfect correlation. We also identified and validated phosphatase and tensin homolog (PTEN), as a target of miR-205 that promoted radioresistance via PI3K/AKT pathway. Lastly, increased miR-205 expression was closely associated with decreased PTEN expression in ESCC tissues and miR-205 expression predicted poor prognosis in patients with ESCC. Taken together, these findings identify miR-205 as a critical determinant of radioresistance and a biomarker of prognosis. The Sp1-mediated transcriptional activation of miR-205 promotes radioresistance through PTEN via PI3K/AKT pathway in ESCC. Inhibition of miR-205 expression may be a new strategy for radiotherapy in ESCC.
Collapse
Affiliation(s)
- Fei Pan
- Key Laboratory of Cancer Center, Chinese PLA General Hospital & Chinese PLA Medical School, Beijing, P.R. China
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, P.R. China
| | - Hui Mao
- Key Laboratory of Cancer Center, Chinese PLA General Hospital & Chinese PLA Medical School, Beijing, P.R. China
| | - Fangfang Bu
- Key Laboratory of Cancer Center, Chinese PLA General Hospital & Chinese PLA Medical School, Beijing, P.R. China
- International Joint Cancer Institute, the Second Military Medical University, Shanghai, P.R. China
- Beijing Key Laboratory of Cell Engineering & Antibody, Beijing, P.R. China
| | - Xin Tong
- Key Laboratory of Cancer Center, Chinese PLA General Hospital & Chinese PLA Medical School, Beijing, P.R. China
- International Joint Cancer Institute, the Second Military Medical University, Shanghai, P.R. China
- Beijing Key Laboratory of Cell Engineering & Antibody, Beijing, P.R. China
| | - Jingjing Li
- Key Laboratory of Cancer Center, Chinese PLA General Hospital & Chinese PLA Medical School, Beijing, P.R. China
| | - Sujie Zhang
- The 150th Hospital of Chinese PLA, Luoyang, P.R. China
| | - Xing Liu
- The 150th Hospital of Chinese PLA, Luoyang, P.R. China
| | - Lingxiong Wang
- Key Laboratory of Cancer Center, Chinese PLA General Hospital & Chinese PLA Medical School, Beijing, P.R. China
| | - Liangliang Wu
- Key Laboratory of Cancer Center, Chinese PLA General Hospital & Chinese PLA Medical School, Beijing, P.R. China
| | - Rui Chen
- International Joint Cancer Institute, the Second Military Medical University, Shanghai, P.R. China
| | - Huafeng Wei
- Key Laboratory of Cancer Center, Chinese PLA General Hospital & Chinese PLA Medical School, Beijing, P.R. China
- Beijing Key Laboratory of Cell Engineering & Antibody, Beijing, P.R. China
| | - Bohua Li
- International Joint Cancer Institute, the Second Military Medical University, Shanghai, P.R. China
| | - Cheng Li
- Key Laboratory of Cancer Center, Chinese PLA General Hospital & Chinese PLA Medical School, Beijing, P.R. China
| | - Yunsheng Yang
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, P.R. China
| | - Clifford J. Steer
- Departments of Medicine and Genetics, Cell Biology and Development, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Jian Zhao
- Key Laboratory of Cancer Center, Chinese PLA General Hospital & Chinese PLA Medical School, Beijing, P.R. China
- International Joint Cancer Institute, the Second Military Medical University, Shanghai, P.R. China
- Beijing Key Laboratory of Cell Engineering & Antibody, Beijing, P.R. China
| | - Yajun Guo
- State Key Laboratory of Antibody Medicine and Targeting Therapy, Shanghai, P.R. China
| |
Collapse
|
18
|
Xu T, Jin Z, Yuan Y, Zheng H, Li C, Hou W, Guo Q, Hua B. Tat-Interacting Protein 30 (TIP30) Expression Serves as a New Biomarker for Tumor Prognosis: A Systematic Review and Meta-Analysis. PLoS One 2016; 11:e0168408. [PMID: 28036326 PMCID: PMC5201241 DOI: 10.1371/journal.pone.0168408] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/29/2016] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Tat-interacting protein 30 (TIP30) is a tumor suppressor protein that has been found to be expressed in a wide variety of tumor tissues. TIP30 is involved in the control of cell apoptosis, growth, metastasis, angiogenesis, DNA repair, and tumor cell metabolism. The methylation of the TIP30 promoter is also associated with tumor prognosis. To evaluate this topic further, we conducted a systematic meta-analysis to explore the clinicopathological and prognostic significance of TIP30 for tumor patients. METHODS We searched PubMed and EMBASE for eligible studies. We manually searched for printed journals and relevant textbooks. Subgroup analyses were performed based on the region, manuscript quality, methods of vasculogenic mimicry identification, pathology, and number of patients. RESULTS Fourteen studies with 1705 patients were included in this meta-analysis. A significant association was observed between high expression of TIP30 in patients with cancer with a good overall survival (hazard ratio = 0.53, 95% confidence interval: 0.41-0.69), and good recurrence-free survival or disease free survival (hazard ratio = 0.49, 95% confidence interval: 0.37-0.66). Lack of expression of TIP30 had an association with lymph node metastasis (odds ratio = 3.90, 95% confidence interval: 2.21-6.89) and high tumor node metastasis clinical stage (odds ratio = 2.10, 95% confidence interval: 1.68-2.62). The methylation of the TIP30 promoter did not significantly influence the overall survival (hazard ratio = 0.99, 95% confidence interval: 0.88-1.13) or disease free survival (hazard ratio = 0.62, 95% confidence interval: 0.19-2.02). CONCLUSIONS TIP30 expression is associated with a good prognosis in patients with tumors. Clinical studies with large samples are needed worldwide and standardized protocols should be adopted in the future to achieve a better understanding of the relationship between tumor prognosis and TIP30.
Collapse
Affiliation(s)
- Tao Xu
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medicine Sciences, Xicheng District, Beijing, China
- Department of Oncology, Xiyuan Hospital, China Academy of Chinese Medicine Sciences, Haidian District, Beijing, China
| | - Zhichao Jin
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medicine Sciences, Xicheng District, Beijing, China
| | - Yuan Yuan
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medicine Sciences, Xicheng District, Beijing, China
- Beijing University of Chinese Medicine, Chaoyang District, Beijing, China
| | - Honggang Zheng
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medicine Sciences, Xicheng District, Beijing, China
| | - Conghuang Li
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medicine Sciences, Xicheng District, Beijing, China
| | - Wei Hou
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medicine Sciences, Xicheng District, Beijing, China
| | - Qiujun Guo
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medicine Sciences, Xicheng District, Beijing, China
- Beijing University of Chinese Medicine, Chaoyang District, Beijing, China
- * E-mail: (BH); (QG)
| | - Baojin Hua
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medicine Sciences, Xicheng District, Beijing, China
- * E-mail: (BH); (QG)
| |
Collapse
|
19
|
Kai M, Niinuma T, Kitajima H, Yamamoto E, Harada T, Aoki H, Maruyama R, Toyota M, Sasaki Y, Sugai T, Tokino T, Nakase H, Suzuki H. TET1 Depletion Induces Aberrant CpG Methylation in Colorectal Cancer Cells. PLoS One 2016; 11:e0168281. [PMID: 27977763 PMCID: PMC5158030 DOI: 10.1371/journal.pone.0168281] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/29/2016] [Indexed: 01/02/2023] Open
Abstract
Aberrant DNA methylation is commonly observed in colorectal cancer (CRC), but the underlying mechanism is not fully understood. 5-hydroxymethylcytosine levels and TET1 expression are both reduced in CRC, while epigenetic silencing of TET1 is reportedly associated with the CpG island methylator phenotype. In the present study, we aimed to clarify the relationship between loss of TET1 and aberrant DNA methylation in CRC. Stable TET1 knockdown clones were established using Colo320DM cells, which express high levels of TET1, and HCT116 cells, which express TET1 at a level similar to that in normal colonic tissue. Infinium HumanMethylation450 BeadChip assays revealed increased levels of 5-methylcytosine at more than 10,000 CpG sites in TET1-depleted Colo320DM cells. Changes in DNA methylation were observed at various positions within the genome, including promoters, gene bodies and intergenic regions, and the altered methylation affected expression of a subset of genes. By contrast, TET1 knockdown did not significantly affect DNA methylation in HCT116 cells. However, TET1 depletion was associated with attenuated effects of 5-aza-2’-deoxycytidine on gene expression profiles in both cell lines. These results suggest that loss of TET1 may induce aberrant DNA methylation and may attenuate the effect of 5-aza-2’-deoxycytidine in CRC cells.
Collapse
Affiliation(s)
- Masahiro Kai
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takeshi Niinuma
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Kitajima
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Eiichiro Yamamoto
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Taku Harada
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hironori Aoki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Reo Maruyama
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Mutsumi Toyota
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yasushi Sasaki
- Medical Genome Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tamotsu Sugai
- Department of Molecular Diagnostic Pathology, Iwate Medical University, Morioka, Japan
| | - Takashi Tokino
- Medical Genome Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Nakase
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
- * E-mail:
| |
Collapse
|
20
|
Chen C, Peng H, Huang X, Zhao M, Li Z, Yin N, Wang X, Yu F, Yin B, Yuan Y, Lu Q. Genome-wide profiling of DNA methylation and gene expression in esophageal squamous cell carcinoma. Oncotarget 2016; 7:4507-21. [PMID: 26683359 PMCID: PMC4826222 DOI: 10.18632/oncotarget.6607] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/26/2015] [Indexed: 01/02/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is the leading cause of cancer-related death worldwide. Previous studies have suggested that DNA methylation involved in the development of ESCC. However, the precise mechanisms underlying the regulation and maintenance of the methylome as well as their relationship with ESCC remain poorly understood. Herein, we used methylated DNA immunoprecipitation sequencing (MeDIP-Seq) and RNA-Seq to investigate whole-genome DNA methylation patterns and the genome expression profiles in ESCC samples. The results of MeDIP-Seq analyses identified differentially methylated regions (DMRs) covering almost the entire genome with sufficient depth and high resolution. The gene ontology (GO) analysis showed that the DMRs related genes belonged to several different ontological domains, such as cell cycle, adhesion, proliferation and apoptosis. The RNA-Seq analysis identified a total of 6150 differentially expressed genes (3423 up-regulated and 2727 down-regulated). The significant GO terms showed that these genes belonged to several molecular functions and biological pathways. Moreover, the bisulfite-sequencing of genes MLH1, CDH5, TWIST1 and CDX1 confirmed the methylation status identified by MeDIP-Seq. And the mRNA expression levels of MLH1, TWIST1 and CDX1 were consistent with their DNA methylation profiles. The DMR region of MLH1 was found to correlate with survival. The identification of whole-genome DNA methylation patterns and gene expression profiles in ESCC provides new insight into the carcinogenesis of ESCC and represents a promising avenue through which to investigate novel therapeutic targets.
Collapse
Affiliation(s)
- Chen Chen
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Hao Peng
- Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Xiaojie Huang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Ming Zhao
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Zhi Li
- Beijing Genomics Institute at Shenzhen, Shenzhen, P.R. China
| | - Ni Yin
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Xiang Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Fenglei Yu
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Bangliang Yin
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Yunchang Yuan
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Qianjin Lu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, P.R. China
| |
Collapse
|
21
|
CCR7 enhances TGF-β1-induced epithelial-mesenchymal transition and is associated with lymph node metastasis and poor overall survival in gastric cancer. Oncotarget 2016; 6:24348-60. [PMID: 26176983 PMCID: PMC4695190 DOI: 10.18632/oncotarget.4484] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/25/2015] [Indexed: 01/13/2023] Open
Abstract
CCR7 is a G protein-coupled chemokine receptor. In this study, we used immunohistochemistry with tissue microarrays to measure CCR7 expression in tumor specimens from 122 patients with gastric cancer. We show that CCR7 expression is associated with lymph node metastasis (P = 0.022) and overall survival (OS; P = 0.025), and is an independent factor associated with poorer overall survival (P = 0.032). The CCR7 mechanism was predicted based on bioinformatic analysis and verified in gastric cancer cell lines and primary tumor samples. The data show that CCR7 contributes to TGF-β1-induced epithelial-mesenchymal transition (EMT) and that the effects of TGF-β1 are inhibited by a CCR7 neutralizing antibody or a NF-κB inhibitor. Increased TGF-β1 expression was accompanied by nuclear localization of NF-κB-p65 and higher levels of the mesenchymal marker vimentin in human gastric cancer samples. We conclude that the CCR7 axis mediates TGF-β1-induced EMT via crosstalk with NF-κB signaling, facilitating lymph node metastasis and poorer overall survival in patients with gastric cancer. These findings suggest CCR7 is a novel prognostic indicator and a potential target for gastric cancer therapy.
Collapse
|
22
|
Moustakas A, Heldin CH. Mechanisms of TGFβ-Induced Epithelial-Mesenchymal Transition. J Clin Med 2016; 5:jcm5070063. [PMID: 27367735 PMCID: PMC4961994 DOI: 10.3390/jcm5070063] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/22/2016] [Accepted: 06/22/2016] [Indexed: 02/07/2023] Open
Abstract
Transitory phenotypic changes such as the epithelial–mesenchymal transition (EMT) help embryonic cells to generate migratory descendants that populate new sites and establish the distinct tissues in the developing embryo. The mesenchymal descendants of diverse epithelia also participate in the wound healing response of adult tissues, and facilitate the progression of cancer. EMT can be induced by several extracellular cues in the microenvironment of a given epithelial tissue. One such cue, transforming growth factor β (TGFβ), prominently induces EMT via a group of specific transcription factors. The potency of TGFβ is partly based on its ability to perform two parallel molecular functions, i.e. to induce the expression of growth factors, cytokines and chemokines, which sequentially and in a complementary manner help to establish and maintain the EMT, and to mediate signaling crosstalk with other developmental signaling pathways, thus promoting changes in cell differentiation. The molecules that are activated by TGFβ signaling or act as cooperating partners of this pathway are impossible to exhaust within a single coherent and contemporary report. Here, we present selected examples to illustrate the key principles of the circuits that control EMT under the influence of TGFβ.
Collapse
Affiliation(s)
- Aristidis Moustakas
- Ludwig Cancer Research, Science for Life Laboratory, Uppsala University, Box 595, SE 751 24 Uppsala, Sweden.
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE 751 23 Uppsala, Sweden.
| | - Carl-Henrik Heldin
- Ludwig Cancer Research, Science for Life Laboratory, Uppsala University, Box 595, SE 751 24 Uppsala, Sweden.
| |
Collapse
|
23
|
Ye Z, Li J, Han X, Hou H, Chen H, Zheng X, Lu J, Wang L, Chen W, Li X, Zhao L. TET3 inhibits TGF-β1-induced epithelial-mesenchymal transition by demethylating miR-30d precursor gene in ovarian cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:72. [PMID: 27141829 PMCID: PMC4855705 DOI: 10.1186/s13046-016-0350-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/28/2016] [Indexed: 01/22/2023]
Abstract
Background Abnormal DNA methylation/demethylation is recognized as a hallmark of cancer. TET (ten-eleven translocation) family members are novel DNA demethylation related proteins that dysregulate in multiple malignances. However, their effects on ovarian cancer remain to be elucidated. Methods The changes of TET family members during TGF-β1-induced epithelial-mesenchymal transition (EMT) in SKOV3 and 3AO ovarian cancer cells were detected. TET3 was ectopically expressed in TGF-β1-treated ovarian cancer cells to examine its effect on TGF-β1-induced EMT phenotype. The downstream target of TET3 was further identified. Finally, the relationships of TET3 expression to clinic-pathological parameters of ovarian cancer were investigated with a tissue microarray using immunohistochemistry. Results TET3 was downregulated during TGF-β1-initiatd epithelial-mesenchymal transition (EMT) in SKOV3 and 3AO ovarian cancer cells. Overexpression of TET3 reversed TGF-β1-induced EMT phenotypes including the expression pattern of molecular markers (E-cadherin, Vimentin, N-cadherin, Snail) and migratory and invasive capabilities of ovarian cancer cells. miR-30d was identified as a downstream target of TET3, and TET3 overexpression resumed the demethylation status in the promoter region of miR-30d precursor gene, resulting in restoration of miR-30d (an EMT suppressor of ovarian cancer cells proven in our previous study) level in TGF-β1-induced EMT. We further found that TET3 expression was decreased in ovarian cancer tissues, especially in serous ovarian cancers. The overall positivity of TET3 was inversely correlated with the grade of differentiation status of ovarian cancer. Conclusion Our results revealed that TET3 acted as a suppressor of ovarian cancer by demethylating miR-30d precursor gene promoter to block TGF-β1-induced EMT. Electronic supplementary material The online version of this article (doi:10.1186/s13046-016-0350-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhongxue Ye
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Jie Li
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Xi Han
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Huilian Hou
- Department of Pathology, the First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - He Chen
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Xia Zheng
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Jiaojiao Lu
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Lijie Wang
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Wei Chen
- Center of Laboratory Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Xu Li
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, China. .,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, China.
| | - Le Zhao
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, China. .,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
24
|
Chen X, Tan M, Xie Z, Feng B, Zhao Z, Yang K, Hu C, Liao N, Wang T, Chen D, Xie F, Tang C. Inhibiting ROS-STAT3-dependent autophagy enhanced capsaicin–induced apoptosis in human hepatocellular carcinoma cells. Free Radic Res 2016; 50:744-55. [DOI: 10.3109/10715762.2016.1173689] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
25
|
Tao H, Yang JJ, Zhou X, Deng ZY, Shi KH, Li J. Emerging role of long noncoding RNAs in lung cancer: Current status and future prospects. Respir Med 2015; 110:12-9. [PMID: 26603340 DOI: 10.1016/j.rmed.2015.10.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/08/2015] [Accepted: 10/09/2015] [Indexed: 01/01/2023]
Abstract
Lung cancer is the leading cause of cancer-related death worldwide with a 5-year survival rate of less than 15%, despite significant advances in both diagnostic and therapeutic approaches. Combined genomic and transcriptomic sequencing studies have identified numerous genetic driver mutations that are responsible for the development of lung cancer. Importantly, these approaches have also uncovered the widespread expression of "noncoding RNAs" including long noncoding RNAs (LncRNAs), which impact biologic responses through the regulation of mRNA transcription or translation. To date, most studies of the role of noncoding RNAs have focused on LncRNAs, which regulate mRNA translation via the RNA interference pathway. Although many of their attributes, such as patterns of expression, remain largely unknown, LncRNAs have key functions in transcriptional, post-transcriptional, and epigenetic gene regulation. Recent research showed that LncRNAs regulate flowering time in the lung cancer. In this review, we discuss these investigations into long noncoding RNAs were performed almost exclusively in lung cancer. Future work will need to extend these into lung cancer and to analyze how LncRNAs interact to regulate mRNA expression. From a clinical perspective, the targeting of LncRNAs as a novel therapeutic approach will require a deeper understanding of their function and mechanism of action.
Collapse
Affiliation(s)
- Hui Tao
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Jing-Jing Yang
- Department of Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Xiao Zhou
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei 230601, China.
| | - Zi-Yu Deng
- Department of Scientific and Educational, The Second Hospital of Anhui Medical University, China
| | - Kai-Hu Shi
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei 230601, China.
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
26
|
He E, Pan F, Li G, Li J. Fractionated Ionizing Radiation Promotes Epithelial-Mesenchymal Transition in Human Esophageal Cancer Cells through PTEN Deficiency-Mediated Akt Activation. PLoS One 2015; 10:e0126149. [PMID: 26000878 PMCID: PMC4441389 DOI: 10.1371/journal.pone.0126149] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 03/29/2015] [Indexed: 01/10/2023] Open
Abstract
In some esophageal cancer patients, radiotherapy may not prevent distant metastasis thus resulting in poor survival. The underlying mechanism of metastasis in these patients is not well established. In this study, we have demonstrated that ionizing radiation may induce epithelial-mesenchymal transition (EMT) accompanied with increased cell migration and invasion, through downregulation of phosphatase and tensin homolog (PTEN), and activation of Akt/GSK-3β/Snail signaling. We developed a radioresistant (RR) esophageal squamous cancer cell line, KYSE-150/RR, by fractionated ionizing radiation (IR) treatment, and confirmed its radioresistance using a clonogenic survival assay. We found that the KYSE-150/RR cell line displayed typical morphological and molecular characteristics of EMT. In comparison to the parental cells, KYSE-150/RR cells showed an increase in post-IR colony survival, migration, and invasiveness. Furthermore, a decrease in PTEN in KYSE-150/RR cells was observed. We postulated that over-expression of PTEN may induce mesenchymal-epithelial transition in KYSE-150/RR cells and restore IR-induced increase of cell migration. Mechanistically, fractionated IR inhibits expression of PTEN, which leads to activation of Akt/GSK-3β signaling and is associated with the elevated levels of Snail protein, a transcription factor involved in EMT. Correspondingly, treatment with LY294002, a phosphatidylinositol-3-kinase inhibitor, mimicked PTEN overexpression effect in KYSE-150/RR cells, further suggesting a role for the Akt/GSK-3β/Snail signaling in effects mediated through PTEN. Together, these results strongly suggest that fractionated IR-mediated EMT in KYSE-150/RR cells is through PTEN-dependent pathways, highlighting a direct proinvasive effect of radiation treatment on tumor cells.
Collapse
Affiliation(s)
- Enhui He
- Nankai University School of Medicine, Tianjin, China
- Chinese PLA General Hospital and Chinese PLA Medical School, Beijing, China
- Beijing Friendship Hospital, affiliated with Capital Medical University, Beijing, China
| | - Fei Pan
- Nankai University School of Medicine, Tianjin, China
| | - Guangchao Li
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Jingjing Li
- Chinese PLA General Hospital and Chinese PLA Medical School, Beijing, China
- Beijing Friendship Hospital, affiliated with Capital Medical University, Beijing, China
- * E-mail:
| |
Collapse
|