1
|
Sharma A, Raut SS, Shukla A, Gupta S, Singh A, Mishra A. DDX3X dynamics, glioblastoma's genetic landscape, therapeutic advances, and autophagic interplay. Med Oncol 2024; 41:258. [PMID: 39368002 DOI: 10.1007/s12032-024-02525-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/23/2024] [Indexed: 10/07/2024]
Abstract
Glioblastoma is one of the most aggressive and deadly forms of cancer, posing significant challenges for the medical community. This review focuses on key aspects of Glioblastoma, including its genetic differences between primary and secondary types. Temozolomide is a major first-line treatment for Glioblastoma, and this article explores its development, how it works, and the issue of resistance that limits its effectiveness, prompting the need for new treatment strategies. Gene expression profiling has greatly advanced cancer research by revealing the molecular mechanisms of tumors, which is essential for creating targeted therapies for Glioblastoma. One important protein in this context is DDX3X, which plays various roles in cancer, sometimes promoting it or otherwise suppressing it. Additionally, autophagy, a process that maintains cellular balance, has complex implications in cancer treatment. Understanding autophagy helps to identify resistance mechanisms and potential treatments, with Chloroquine showing promise in treating Glioblastoma. This review covers the interplay between Glioblastoma, DDX3X, and autophagy, highlighting the challenges and potential strategies in treating this severe disease.
Collapse
Affiliation(s)
- Arpit Sharma
- Biomolecular Engineering Laboratory, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Shruti S Raut
- Biomolecular Engineering Laboratory, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Alok Shukla
- Biomolecular Engineering Laboratory, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Shivani Gupta
- Biomolecular Engineering Laboratory, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Amit Singh
- Department of Pharmacology, IMS-Banaras Hindu University, Varanasi, 221005, India.
| | - Abha Mishra
- Biomolecular Engineering Laboratory, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, India.
| |
Collapse
|
2
|
Sanati M, Binabaj MM, Ahmadi SS, Aminyavari S, Javid H, Mollazadeh H, Bibak B, Mohtashami E, Jamialahmadi T, Afshari AR, Sahebkar A. Recent advances in glioblastoma multiforme therapy: A focus on autophagy regulation. Biomed Pharmacother 2022; 155:113740. [PMID: 36166963 DOI: 10.1016/j.biopha.2022.113740] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 11/02/2022] Open
Abstract
Despite conventional treatment options including chemoradiation, patients with the most aggressive primary brain tumor, glioblastoma multiforme (GBM), experience an average survival time of less than 15 months. Regarding the malignant nature of GBM, extensive research and discovery of novel treatments are urgently required to improve the patients' prognosis. Autophagy, a crucial physiological pathway for the degradation and recycling of cell components, is one of the exciting targets of GBM studies. Interventions aimed at autophagy activation or inhibition have been explored as potential GBM therapeutics. This review, which delves into therapeutic techniques to block or activate autophagy in preclinical and clinical research, aims to expand our understanding of available therapies battling GBM.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran; Experimental and Animal Study Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Maryam Moradi Binabaj
- Non-Communicable Diseases Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Seyed Sajad Ahmadi
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Samaneh Aminyavari
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
| | - Hamid Mollazadeh
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Bahram Bibak
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Elmira Mohtashami
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Yoon AR, Wadhwa R, Kaul SC, Yun CO. Why is Mortalin a Potential Therapeutic Target for Cancer? Front Cell Dev Biol 2022; 10:914540. [PMID: 35859897 PMCID: PMC9290191 DOI: 10.3389/fcell.2022.914540] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide, accounting for nearly 10 million deaths in 2020. Therefore, cancer therapy is a priority research field to explore the biology of the disease and identify novel targets for the development of better treatment strategies. Mortalin is a member of the heat shock 70 kDa protein family. It is enriched in several types of cancer and contributes to carcinogenesis in various ways, including inactivation of the tumor suppressor p53, deregulation of apoptosis, induction of epithelial–mesenchymal transition, and enhancement of cancer stemness. It has been studied extensively as a therapeutic target for cancer treatment, and several types of anti-mortalin molecules have been discovered that effectively suppress the tumor cell growth. In this review, we 1) provide a comprehensive sketch of the role of mortalin in tumor biology; 2) discuss various anti-mortalin molecules, including natural compounds, synthetic small molecules, peptides, antibodies, and nucleic acids, that have shown potential for cancer treatment in laboratory studies; and 3) provide future perspectives in cancer treatment.
Collapse
Affiliation(s)
- A-Rum Yoon
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, South Korea
- Institute of Nano Science and Technology (INST), Hanyang University, Seoul, South Korea
- Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul, South Korea
| | - Renu Wadhwa
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Sunil C Kaul
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, South Korea
- Institute of Nano Science and Technology (INST), Hanyang University, Seoul, South Korea
- Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul, South Korea
- GeneMedicine CO, Ltd, Seoul, South Korea
- *Correspondence: Chae-Ok Yun,
| |
Collapse
|
4
|
ErbB3-Targeting Oncolytic Adenovirus Causes Potent Tumor Suppression by Induction of Apoptosis in Cancer Cells. Int J Mol Sci 2022; 23:ijms23137127. [PMID: 35806132 PMCID: PMC9266575 DOI: 10.3390/ijms23137127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 12/10/2022] Open
Abstract
Cancer is a multifactorial and deadly disease. Despite major advancements in cancer therapy in the last two decades, cancer incidence is on the rise and disease prognosis still remains poor. Furthermore, molecular mechanisms of cancer invasiveness, metastasis, and drug resistance remain largely elusive. Targeted cancer therapy involving the silencing of specific cancer-enriched proteins by small interfering RNA (siRNA) offers a powerful tool. However, its application in clinic is limited by the short half-life of siRNA and warrants the development of efficient and stable siRNA delivery systems. Oncolytic adenovirus-mediated therapy offers an attractive alternative to the chemical drugs that often suffer from innate and acquired drug resistance. In continuation to our reports on the development of oncolytic adenovirus-mediated delivery of shRNA, we report here the replication-incompetent (dAd/shErbB3) and replication-competent (oAd/shErbB3) oncolytic adenovirus systems that caused efficient and persistent targeting of ErbB3. We demonstrate that the E1A coded by oAd/shErbB, in contrast to dAd/shErbB, caused downregulation of ErbB2 and ErbB3, yielding stronger downregulation of the ErbB3-oncogenic signaling axis in in vitro models of lung and breast cancer. These results were validated by in vivo antitumor efficacy of dAd/shErbB3 and oAd/shErbB3.
Collapse
|
5
|
Deng Z, Yang Z, Peng J. Role of bioactive peptides derived from food proteins in programmed cell death to treat inflammatory diseases and cancer. Crit Rev Food Sci Nutr 2021:1-19. [PMID: 34694177 DOI: 10.1080/10408398.2021.1992606] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Bioactive peptides are specific peptide which usually contains 2-20 amino acid residues and actively exerts various functions and biological activities and ultimately affect health. Programmed cell deaths are some styles of cell death discovered in recent years, which is the key to tissue development and balance, eliminating excess, damaged or aging cells. More importantly, programmed cell death is a potential way to treat inflammatory diseases and cancer. In this review, through screening references from 2015 to present, we introduce the effect of bioactive peptides derived from food proteins on inflammatory diseases or cancer through regulating programmed cell deaths, including apoptosis, autophagy, pyroptosis, ferroptosis, and necroptosis. And this review also introduces the targets of these bioactive peptides to regulate programmed cell death. The purpose of this review is to help to expand the prospective applications of bioactive peptides in the field of inflammatory disease and cancer to provide some guidance.
Collapse
Affiliation(s)
- Zhao Deng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China.,State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zhipeng Yang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China.,State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| |
Collapse
|
6
|
Moujalled D, Strasser A, Liddell JR. Molecular mechanisms of cell death in neurological diseases. Cell Death Differ 2021; 28:2029-2044. [PMID: 34099897 PMCID: PMC8257776 DOI: 10.1038/s41418-021-00814-y] [Citation(s) in RCA: 404] [Impact Index Per Article: 101.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023] Open
Abstract
Tightly orchestrated programmed cell death (PCD) signalling events occur during normal neuronal development in a spatially and temporally restricted manner to establish the neural architecture and shaping the CNS. Abnormalities in PCD signalling cascades, such as apoptosis, necroptosis, pyroptosis, ferroptosis, and cell death associated with autophagy as well as in unprogrammed necrosis can be observed in the pathogenesis of various neurological diseases. These cell deaths can be activated in response to various forms of cellular stress (exerted by intracellular or extracellular stimuli) and inflammatory processes. Aberrant activation of PCD pathways is a common feature in neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), Alzheimer's disease, Parkinson's disease, and Huntington's disease, resulting in unwanted loss of neuronal cells and function. Conversely, inactivation of PCD is thought to contribute to the development of brain cancers and to impact their response to therapy. For many neurodegenerative diseases and brain cancers current treatment strategies have only modest effect, engendering the need for investigations into the origins of these diseases. With many diseases of the brain displaying aberrations in PCD pathways, it appears that agents that can either inhibit or induce PCD may be critical components of future therapeutic strategies. The development of such therapies will have to be guided by preclinical studies in animal models that faithfully mimic the human disease. In this review, we briefly describe PCD and unprogrammed cell death processes and the roles they play in contributing to neurodegenerative diseases or tumorigenesis in the brain. We also discuss the interplay between distinct cell death signalling cascades and disease pathogenesis and describe pharmacological agents targeting key players in the cell death signalling pathways that have progressed through to clinical trials.
Collapse
Affiliation(s)
- Diane Moujalled
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
| | - Andreas Strasser
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
| | - Jeffrey R Liddell
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
7
|
Jandrey EHF, Bezerra M, Inoue LT, Furnari FB, Camargo AA, Costa ÉT. A Key Pathway to Cancer Resilience: The Role of Autophagy in Glioblastomas. Front Oncol 2021; 11:652133. [PMID: 34178638 PMCID: PMC8222785 DOI: 10.3389/fonc.2021.652133] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022] Open
Abstract
There are no effective strategies for the successful treatment of glioblastomas (GBM). Current therapeutic modalities effectively target bulk tumor cells but leave behind marginal GBM cells that escape from the surgical margins and radiotherapy field, exhibiting high migratory phenotype and resistance to all available anti-glioma therapies. Drug resistance is mostly driven by tumor cell plasticity: a concept associated with reactivating transcriptional programs in response to adverse and dynamic conditions from the tumor microenvironment. Autophagy, or "self-eating", pathway is an emerging target for cancer therapy and has been regarded as one of the key drivers of cell plasticity in response to energy demanding stress conditions. Many studies shed light on the importance of autophagy as an adaptive mechanism, protecting GBM cells from unfavorable conditions, while others recognize that autophagy can kill those cells by triggering a non-apoptotic cell death program, called 'autophagy cell death' (ACD). In this review, we carefully analyzed literature data and conclude that there is no clear evidence indicating the presence of ACD under pathophysiological settings in GBM disease. It seems to be exclusively induced by excessive (supra-physiological) stress signals, mostly from in vitro cell culture studies. Instead, pre-clinical and clinical data indicate that autophagy is an emblematic example of the 'dark-side' of a rescue pathway that contributes profoundly to a pro-tumoral adaptive response. From a standpoint of treating the real human disease, only combinatorial therapy targeting autophagy with cytotoxic drugs in the adjuvant setting for GBM patients, associated with the development of less toxic and more specific autophagy inhibitors, may inhibit adaptive response and enhance the sensibility of glioma cells to conventional therapies.
Collapse
Affiliation(s)
| | - Marcelle Bezerra
- Molecular Oncology Center, Hospital Sírio-Libanês, São Paulo, Brazil
| | | | - Frank B. Furnari
- Ludwig Institute for Cancer Research, University of California San Diego (UCSD), San Diego, CA, United States
| | | | | |
Collapse
|
8
|
Batara DCR, Choi MC, Shin HU, Kim H, Kim SH. Friend or Foe: Paradoxical Roles of Autophagy in Gliomagenesis. Cells 2021; 10:1411. [PMID: 34204169 PMCID: PMC8227518 DOI: 10.3390/cells10061411] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/30/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive type of primary brain tumor in adults, with a poor median survival of approximately 15 months after diagnosis. Despite several decades of intensive research on its cancer biology, treatment for GBM remains a challenge. Autophagy, a fundamental homeostatic mechanism, is responsible for degrading and recycling damaged or defective cellular components. It plays a paradoxical role in GBM by either promoting or suppressing tumor growth depending on the cellular context. A thorough understanding of autophagy's pleiotropic roles is needed to develop potential therapeutic strategies for GBM. In this paper, we discussed molecular mechanisms and biphasic functions of autophagy in gliomagenesis. We also provided a summary of treatments for GBM, emphasizing the importance of autophagy as a promising molecular target for treating GBM.
Collapse
Affiliation(s)
- Don Carlo Ramos Batara
- Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (D.C.R.B.); (H.-U.S.)
| | - Moon-Chang Choi
- Department of Biomedical Science, Chosun University, Gwangju 61452, Korea;
| | - Hyeon-Uk Shin
- Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (D.C.R.B.); (H.-U.S.)
| | - Hyunggee Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea;
| | - Sung-Hak Kim
- Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (D.C.R.B.); (H.-U.S.)
| |
Collapse
|
9
|
Agarwal S, Maekawa T. Nano delivery of natural substances as prospective autophagy modulators in glioblastoma. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 29:102270. [PMID: 32702467 DOI: 10.1016/j.nano.2020.102270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/14/2022]
Abstract
Glioblastoma is the most destructive type of malignant brain tumor in humans due to cancer relapse. Latest studies have indicated that cancer cells are more reliant on autophagy for survival than non-cancer cells. Autophagy is entitled as programmed cell death type II and studies imply that it is a comeback of cancer cells to innumerable anti-cancer therapies. To diminish the adverse consequences of chemotherapeutics, numerous herbs of natural origin have been retained in cancer treatments. Additionally, autophagy induction occurs via their tumor suppressive actions that could cause cell senescence and increase apoptosis-independent cell death. However, most of the drugs have poor solubility and thus nano drug delivery systems possess excessive potential to improve the aqueous solubility and bioavailability of encapsulated drugs. There is a pronounced need for more therapies for glioblastoma treatment and hereby, the fundamental mechanisms of natural autophagy modulators in glioblastoma are prudently reviewed in this article.
Collapse
Affiliation(s)
- Srishti Agarwal
- Bio-Nano Electronics Research Center, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Saitama, Japan.
| | - Toru Maekawa
- Bio-Nano Electronics Research Center, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Saitama, Japan
| |
Collapse
|
10
|
Yang K, Niu L, Bai Y, Le W. Glioblastoma: Targeting the autophagy in tumorigenesis. Brain Res Bull 2019; 153:334-340. [PMID: 31580908 DOI: 10.1016/j.brainresbull.2019.09.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 09/26/2019] [Indexed: 12/15/2022]
Abstract
Glioblastoma (GBM) is one of the most malignant and aggressive primary brain tumor, with a mean life expectancy of less than 15 months. The malignant nature of GBM prompts the need for further research on its tumorigenesis and novel treatments to improve its outcome. One of the promising research targets is autophagy, a fundamental metabolic process of degrading and recycling cellular components. Interventions to activate or inhibit autophagy have both been proposed as GBM therapies, suggesting a controversial, context-dependent role of autophagy in GBM tumorigenesis. In this review, we highlight the molecular links between GBM and autophagy with the focus on the effects of autophagy on the stemness maintenance, metabolism and proteostasis in GBM tumorigenesis. Understanding the molecular pathways involved in autophagy target is critical for GBM therapy.
Collapse
Affiliation(s)
- Kang Yang
- Department of Neurosurgery, The 2nd Hospital of Dalian Medical University, Dalian, PR China
| | - Long Niu
- Liaoning Provincial Center for Clinical Research on Neurological Diseases, The 1st Hospital of Dalian Medical University, Dalian, PR China; Liaoning Provincial Key Laboratory for Research on Pathogenic Mechanisms of Neurological Diseases, The 1st Hospital of Dalian Medical University, Dalian, PR China
| | - Yijing Bai
- Liaoning Provincial Center for Clinical Research on Neurological Diseases, The 1st Hospital of Dalian Medical University, Dalian, PR China; Liaoning Provincial Key Laboratory for Research on Pathogenic Mechanisms of Neurological Diseases, The 1st Hospital of Dalian Medical University, Dalian, PR China
| | - Weidong Le
- Liaoning Provincial Center for Clinical Research on Neurological Diseases, The 1st Hospital of Dalian Medical University, Dalian, PR China; Liaoning Provincial Key Laboratory for Research on Pathogenic Mechanisms of Neurological Diseases, The 1st Hospital of Dalian Medical University, Dalian, PR China.
| |
Collapse
|
11
|
Sung YK, Kim SW. Recent Advances in the Development of Bio-Reducible Polymers for Efficient Cancer Gene Delivery Systems. CANCER MEDICINE JOURNAL 2019; 2:6-13. [PMID: 31032485 PMCID: PMC6481959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Gene therapy is the unique method for the use of genetic materials such as Messenger ribonucleic acid (mRNA), plasmid deoxyribonucleic acid (pDNA), and small interfering ribonucleic acid (siRNA) into specific host-cells for the treatment of inherited disorders in any diseases. The successful way to utilize the gene therapy is to develop the efficient cancer gene delivery systems. In this paper, the successful and efficient gene delivery systems are briefly reviewed on the basis of bio-reducible polymeric systems for cancer therapy. The viral gene delivery systems such as RNA-based viral and DNA-based viral vectors are also discussed. The development of bio-reducible polymer for gene delivery system has briefly discussed for the efficient cancer gene delivery of viral vectors and non-viral vectors.
Collapse
Affiliation(s)
- Yong Kiel Sung
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
- Center for Chemically Controlled Delivery, University of Utah, Salt Lake City, Utah 84112, USA
| | - Sung Wan Kim
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
- Center for Chemically Controlled Delivery, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
12
|
Hao Y, Bai X, Liu X, Kang S, Zhang X, Liu C, Li Z. Downregulation of survivin by adenovirus-mediated shRNA promotes apoptosis in skin cancer cells. Onco Targets Ther 2019; 12:2921-2930. [PMID: 31118663 PMCID: PMC6475095 DOI: 10.2147/ott.s162150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Background Survivin, a member of the inhibitor of apoptosis protein family, is highly expressed in many cancers and has important roles in inhibiting apoptosis by blocking caspase activation. However, its antitumor effects remain largely unknown. Here we explore the function of survivin in skin cancer. Methods We used qPCR and Western blot to examine survivin expression in skin cancer patients and cell line. We generated several survivin shRNA constructs and tested the effects of survivin shRNA on cancer cell viability using MTT assay, flow cytometry, and TUNEL assay. Results We found that survivin was upregulated in both skin cancer patients and skin cancer cell line A431. Knockdown survivin via shRNA inhibited cancer cell proliferation and promoted apoptosis in both A431 cell and in vivo xenograft tumor mouse model. The antitumor effect is comparable to resveratrol, a drug known to inhibit cancer progression. Moreover, we showed that inhibition of survivin was able to increase the expression of cleaved caspase 7/caspase 9 and activate the ataxia-telangiectasia mutated-NF-κB pathway in A431 cells. Conclusion Survivin-shRNA possesses antitumor abilities in vitro and in vivo by inhibiting the proliferation and promoting apoptosis of A431 cells. It may serve as a potential anticancer target for skin cancer therapy in the future.
Collapse
Affiliation(s)
- Yuqin Hao
- Department of Dermatology, Third Affiliated Hospital of Inner Mongolia Medical University, Baotou, 014010, People's Republic of China
| | - Xuefeng Bai
- Department of Pathology, Baotou Cancer Hospital, Baotou, 014030, People's Republic of China
| | - Xia Liu
- Department of Dermatology, Third Affiliated Hospital of Inner Mongolia Medical University, Baotou, 014010, People's Republic of China.,Inner Mongolia Medical University, Hohhot, 010000, People's Republic of China,
| | - Shuxia Kang
- Department of Dermatology, Third Affiliated Hospital of Inner Mongolia Medical University, Baotou, 014010, People's Republic of China.,Inner Mongolia Medical University, Hohhot, 010000, People's Republic of China,
| | - Xin Zhang
- Department of Dermatology, Third Affiliated Hospital of Inner Mongolia Medical University, Baotou, 014010, People's Republic of China.,Inner Mongolia Medical University, Hohhot, 010000, People's Republic of China,
| | - Caiyun Liu
- Hunan Youcheng Biotechnology Co. Ltd, Changsha, 410000, People's Republic of China
| | - Zhehai Li
- Inner Mongolia Medical University, Hohhot, 010000, People's Republic of China, .,Department of Orthopedics, Beijing Northern Hospital, China North Industries, Beijing, 100089, People's Republic of China,
| |
Collapse
|
13
|
Trejo-Solís C, Serrano-Garcia N, Escamilla-Ramírez Á, Castillo-Rodríguez RA, Jimenez-Farfan D, Palencia G, Calvillo M, Alvarez-Lemus MA, Flores-Nájera A, Cruz-Salgado A, Sotelo J. Autophagic and Apoptotic Pathways as Targets for Chemotherapy in Glioblastoma. Int J Mol Sci 2018; 19:ijms19123773. [PMID: 30486451 PMCID: PMC6320836 DOI: 10.3390/ijms19123773] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/14/2018] [Accepted: 11/21/2018] [Indexed: 01/07/2023] Open
Abstract
Glioblastoma multiforme is the most malignant and aggressive type of brain tumor, with a mean life expectancy of less than 15 months. This is due in part to the high resistance to apoptosis and moderate resistant to autophagic cell death in glioblastoma cells, and to the poor therapeutic response to conventional therapies. Autophagic cell death represents an alternative mechanism to overcome the resistance of glioblastoma to pro-apoptosis-related therapies. Nevertheless, apoptosis induction plays a major conceptual role in several experimental studies to develop novel therapies against brain tumors. In this review, we outline the different components of the apoptotic and autophagic pathways and explore the mechanisms of resistance to these cell death pathways in glioblastoma cells. Finally, we discuss drugs with clinical and preclinical use that interfere with the mechanisms of survival, proliferation, angiogenesis, migration, invasion, and cell death of malignant cells, favoring the induction of apoptosis and autophagy, or the inhibition of the latter leading to cell death, as well as their therapeutic potential in glioma, and examine new perspectives in this promising research field.
Collapse
Affiliation(s)
- Cristina Trejo-Solís
- Departamento de Neuroinmunología, Laboratorio de Neurobiología Molecular y Celular, Laboratorio Experimental de Enfermedades Neurodegenerativas del Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", C.P. 14269 Ciudad de México, Mexico.
| | - Norma Serrano-Garcia
- Departamento de Neuroinmunología, Laboratorio de Neurobiología Molecular y Celular, Laboratorio Experimental de Enfermedades Neurodegenerativas del Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", C.P. 14269 Ciudad de México, Mexico.
| | - Ángel Escamilla-Ramírez
- Departamento de Neuroinmunología, Laboratorio de Neurobiología Molecular y Celular, Laboratorio Experimental de Enfermedades Neurodegenerativas del Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", C.P. 14269 Ciudad de México, Mexico.
- Hospital Regional de Alta Especialidad de Oaxaca, Secretaria de Salud, C.P. 71256 Oaxaca, Mexico.
| | | | - Dolores Jimenez-Farfan
- Laboratorio de Inmunología, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, C.P. 04510 Ciudad de México, Mexico.
| | - Guadalupe Palencia
- Departamento de Neuroinmunología, Laboratorio de Neurobiología Molecular y Celular, Laboratorio Experimental de Enfermedades Neurodegenerativas del Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", C.P. 14269 Ciudad de México, Mexico.
| | - Minerva Calvillo
- Departamento de Neuroinmunología, Laboratorio de Neurobiología Molecular y Celular, Laboratorio Experimental de Enfermedades Neurodegenerativas del Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", C.P. 14269 Ciudad de México, Mexico.
| | - Mayra A Alvarez-Lemus
- División Académica de Ingeniería y Arquitectura, Universidad Juárez Autónoma de Tabasco, C.P. 86040 Tabasco, Mexico.
| | - Athenea Flores-Nájera
- Departamento de Cirugía Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Secretaria de Salud, 14000 Ciudad de México, Mexico.
| | - Arturo Cruz-Salgado
- Departamento de Neuroinmunología, Laboratorio de Neurobiología Molecular y Celular, Laboratorio Experimental de Enfermedades Neurodegenerativas del Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", C.P. 14269 Ciudad de México, Mexico.
| | - Julio Sotelo
- Departamento de Neuroinmunología, Laboratorio de Neurobiología Molecular y Celular, Laboratorio Experimental de Enfermedades Neurodegenerativas del Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", C.P. 14269 Ciudad de México, Mexico.
| |
Collapse
|
14
|
Jia L, Yang X, Tian W, Guo S, Huang W, Zhao W. Increased Expression of c-Met is Associated with Chemotherapy-Resistant Breast Cancer and Poor Clinical Outcome. Med Sci Monit 2018; 24:8239-8249. [PMID: 30444219 PMCID: PMC6251073 DOI: 10.12659/msm.913514] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background The relevance of c-Met expression as a prognostic or predictive clinical indicator in chemotherapy-resistant breast cancer remains unknown. The aims of this study were to investigate the expression of c-Met in breast cancer tissues and its association with expression of type II topoisomerase (TOPO II), including in patients who received neoadjuvant chemotherapy (NAC), and to investigate chemotherapy resistance in vitro in breast cancer cell lines. Material/Methods Tissue samples from 255 patients with breast cancer, with matched adjacent normal breast tissue, were used in tissue microarrays (TMAs). c-Met protein expression levels were determined using immunohistochemistry. Forty-five cases of breast cancer treated with NAC were studied to investigate the association between c-Met and TOPO II expression and clinical outcome. Chemotherapy resistance was evaluated in vitro in the MCF-7 and MDA-MB-231 breast cancer cell lines. Results Expression of c-Met protein was increased in breast cancer tissue compared with normal breast tissue. In breast cancer tissue samples, increased c-Met expression was significantly associated with increased Ki-67 expression, tumor size, tumor stage, and TOPO II expression, and with reduced overall survival (OS) rates. Increased c-Met expression and reduced TOPO II expression were associated with chemotherapy resistance. In breast cancer cell lines, knockdown of c-Met expression induced TOPO II expression and increased tumor cell sensitivity to chemotherapy. Conclusions The findings of this study support a role for c-Met as a clinical prognostic marker and for c-Met and TOPO II as predictive markers for response to chemotherapy in patients with breast cancer.
Collapse
Affiliation(s)
- Lizhou Jia
- Key Laboratory of Antibody Technique of National Health and Family Planning Commission, Nanjing Medical University, Nanjing, Jiangsu, China (mainland).,Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Xiaobing Yang
- Department of Pathology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Wei Tian
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (mainland)
| | - Siqi Guo
- Department of Pathology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Wenbin Huang
- Department of Pathology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Wei Zhao
- Department of Pathology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| |
Collapse
|
15
|
Hong Z, Mao X, You J, Liu Z, Shi Y. An Evaluation of HER2-Positive Ovarian Carcinoma Xenografts: From a Novel Therapy to a Noninvasive Monitoring Method. Cancer Biother Radiopharm 2018; 33:411-419. [PMID: 30052070 DOI: 10.1089/cbr.2018.2516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Zhihui Hong
- Department of Nuclear Medicine, The Second Affiliated Hospital of Soochow University, Suzhou City, People's Republic of China
| | - Xinping Mao
- Division of Medical Imageology, GanSu University of Chinese Medicine, Lanzhou City, People's Republic of China
| | - Jiaxi You
- Department of Nuclear Medicine, The Second Affiliated Hospital of Soochow University, Suzhou City, People's Republic of China
| | - Zengli Liu
- Department of Nuclear Medicine, The Second Affiliated Hospital of Soochow University, Suzhou City, People's Republic of China
| | - Yizhen Shi
- Department of Nuclear Medicine, The Second Affiliated Hospital of Soochow University, Suzhou City, People's Republic of China
| |
Collapse
|
16
|
Cao F, Yin LX. miR-122 enhances sensitivity of hepatocellular carcinoma to oxaliplatin via inhibiting MDR1 by targeting Wnt/β-catenin pathway. Exp Mol Pathol 2018; 106:34-43. [PMID: 30539797 DOI: 10.1016/j.yexmp.2018.10.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/28/2018] [Accepted: 10/26/2018] [Indexed: 01/17/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the primary causes of cancer-related death and resistance to cytotoxic chemotherapy is the major cause of mortality in HCC patients. miR-122 is a liver specific miRNA and is found to be reduced in HCC, however, the function of miR-122 in HCC chemosensitivity remains elusive. METHODS We used qRT-PCR to measure expressions of miR-122, β-catenin and MDR1 in four HCC cell lines. And we assessed the effects of miR-122 or β-catenin on cell viability and apoptosis upon oxaliplatin (OXA) treatment by MTT assay and flow cytometry. In addition, we validated the interactions of miR-122/β-catenin and β-catenin/MDR1 by dual luciferase reporter assay and chromatin immunoprecipitation (ChIP). Western blotting was used to determine the protein levels of β-catenin, Wnt1 and MDR1. In the end, we verified the anti-tumor effect of miR-122 in vivo by using mouse tumor xenograft model. RESULTS We found that miR-122 was down-regulated in HCC cells. Up-regulation of miR-122 or inhibition of Wnt/β-catenin signaling promoted HCC cells apoptosis and increased the sensitivity of HCC cells to OXA. On the molecular level, we showed that miR-122 directly targeted and suppressed Wnt/β-catenin pathway while β-catenin bound with MDR1 promoter and activated its transcription. Overexpression of miR-122 inhibited MDR1 expression via directly suppressing Wnt/β-catenin pathway. CONCLUSION Our study fully demonstrated that miR-122 inhibits MDR1 expression via suppression of Wnt/β-catenin pathway, thereby enhancing HCC sensitivity to OXA. Therefore, miR-122 could serve as a novel potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Fei Cao
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
| | - Li-Xue Yin
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China; Key Laboratory of Ultrasonic Cardiac Electrophysiology and Biomechanics of Sichuan Province, Department of Cardiovascular Ultrasound and Non-invasive Cardiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, P.R. China.
| |
Collapse
|
17
|
Xu Y, Chu L, Yuan S, Yang Y, Yang Y, Xu B, Zhang K, Liu XY, Wang R, Fang L, Chen Z, Liang Z. RGD-modified oncolytic adenovirus-harboring shPKM2 exhibits a potent cytotoxic effect in pancreatic cancer via autophagy inhibition and apoptosis promotion. Cell Death Dis 2017; 8:e2835. [PMID: 28569774 PMCID: PMC5520890 DOI: 10.1038/cddis.2017.230] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 03/24/2017] [Accepted: 03/27/2017] [Indexed: 02/06/2023]
Abstract
The M2 isoform of pyruvate kinase (PKM2) is a key driver of glycolysis in cancer cells and has critical 'non-metabolic' functions in some cancers; however, the role of PKM2 in pancreatic cancer remains unclear. The aim of the current study was to elucidate the role of PKM2 in pancreatic cancer progression and the potential of PKM2 as a therapeutic target. In this study, we observed that PKM2 is highly expressed in patients with pancreatic cancer and is correlated to survival. Elevated PKM2 expression promoted cell proliferation, migration and tumor formation. The inhibition of cell growth by silencing PKM2 is caused by impairment of the autophagy process. To test the potential effects of downregulating PKM2 as a clinical therapy, we constructed an RGD-modified oncolytic adenovirus containing shPKM2 (OAd.R.shPKM2) to knock down PKM2 in pancreatic cancer cells. Cells transduced with OAd.R.shPKM2 exhibited decreased cell viability, and, in a PANC-1 xenograft model, intratumoral injection of OAd.R.shPKM2 resulted in reduced tumor growth. Furthermore, OAd.R.shPKM2 induced apoptosis and impaired autophagy in PANC-1 cells. Our results suggested that targeting PKM2 with an oncolytic adenovirus produced a strong antitumor effect, and that this strategy could broaden the therapeutic options for treating pancreatic cancer.
Collapse
Affiliation(s)
- Yanni Xu
- College of Life Sciences, Northwest Agriculture and Forestry University, Yangling 712100, PR China
| | - Liang Chu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Sujing Yuan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Science, University of Chinese Academy of Science, Shanghai 200031, PR China
| | - Yuanqin Yang
- Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Yu Yang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Science, University of Chinese Academy of Science, Shanghai 200031, PR China
| | - Bin Xu
- Department of General Surgery, Shanghai 10th People’s Hospital, Tongji University School of Medicine, Shanghai 200072, PR China
| | - Kangjian Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Science, University of Chinese Academy of Science, Shanghai 200031, PR China
| | - Xin-Yuan Liu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Science, University of Chinese Academy of Science, Shanghai 200031, PR China
- Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Ruwei Wang
- Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
- Zhejiang Conba Pharmaceutical Co., Ltd, Hangzhou 310018, PR China
| | - Ling Fang
- Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
- Zhejiang Conba Pharmaceutical Co., Ltd, Hangzhou 310018, PR China
| | - Zhinan Chen
- Department of Cell Biology, State Key Laboratory of Cancer Biology, Cell Engineering Research Center, Fourth Military Medical University, Xi’an 710032, PR China
| | - Zongsuo Liang
- College of Life Sciences, Northwest Agriculture and Forestry University, Yangling 712100, PR China
- Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| |
Collapse
|
18
|
Huang M, Yang CS, Xin Y, Jiang G. Epidermal growth factor receptor-targeted poly(amidoamine)-based dendrimer complexed oncolytic adenovirus: is it safe totally? J Thorac Dis 2017; 9:E89-E90. [PMID: 28203445 DOI: 10.21037/jtd.2017.01.41] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Min Huang
- Department of Radiotherapy, the Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Chun-Sheng Yang
- Department of Dermatology, the Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 23002, China
| | - Yong Xin
- Department of Radiotherapy, the Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Guan Jiang
- Department of Dermatology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| |
Collapse
|
19
|
Fan TF, Bu LL, Wang WM, Ma SR, Liu JF, Deng WW, Mao L, Yu GT, Huang CF, Liu B, Zhang WF, Sun ZJ. Tumor growth suppression by inhibiting both autophagy and STAT3 signaling in HNSCC. Oncotarget 2016; 6:43581-93. [PMID: 26561201 PMCID: PMC4791252 DOI: 10.18632/oncotarget.6294] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 10/20/2015] [Indexed: 12/12/2022] Open
Abstract
Autophagy is considered as a double-edged sword. It can prolong the survival of cancer cells and enhance its resistance to apoptosis, and paradoxically, defective autophagy has been linked to increased tumorigenesis, but the mechanism behind this phenomenon is unclear. In this study, we demonstrated that decreased phosphorylation of signal transducer and activator of transcription 3 (p-STAT3) was correlated with increased autophagy through the Akt/mTOR and Erk signaling pathways in human head and neck squamous cell carcinoma (HNSCC). We also showed that blockage of STAT3 by NSC74859 could markedly induce apoptotic cell death and autophagy. Meanwhile, increased autophagy inhibited apoptosis. The pharmacological or genetic inhibition of autophagy and STAT3 further sensitized HNSCC cells to apoptosis. Furthermore, evidence from xenograft model proved that suppressed STAT3 activity combined with inhibition of autophagy promoted tumor regression better than either treatment alone. Taken together, this present study demonstrated that autophagy alleviates apoptotic cell death in HNSCC, and combination of inhibition of STAT3 by NSC74859 and autophagy might be a promising new therapeutic strategy for HNSCC.
Collapse
Affiliation(s)
- Teng-Fei Fan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan University, Wuhan, China
| | - Lin-Lin Bu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan University, Wuhan, China
| | - Wei-Ming Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan University, Wuhan, China
| | - Si-Rui Ma
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan University, Wuhan, China
| | - Jian-Feng Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan University, Wuhan, China
| | - Wei-Wei Deng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan University, Wuhan, China
| | - Liang Mao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan University, Wuhan, China
| | - Guang-Tao Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan University, Wuhan, China
| | - Cong-Fa Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan University, Wuhan, China
| | - Bing Liu
- Department of Oral and Maxillofacial-Head and Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wen-Feng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial-Head and Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial-Head and Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
20
|
Chen X, Tan M, Xie Z, Feng B, Zhao Z, Yang K, Hu C, Liao N, Wang T, Chen D, Xie F, Tang C. Inhibiting ROS-STAT3-dependent autophagy enhanced capsaicin–induced apoptosis in human hepatocellular carcinoma cells. Free Radic Res 2016; 50:744-55. [DOI: 10.3109/10715762.2016.1173689] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
21
|
Yoon AR, Kasala D, Li Y, Hong J, Lee W, Jung SJ, Yun CO. Antitumor effect and safety profile of systemically delivered oncolytic adenovirus complexed with EGFR-targeted PAMAM-based dendrimer in orthotopic lung tumor model. J Control Release 2016; 231:2-16. [PMID: 26951927 DOI: 10.1016/j.jconrel.2016.02.046] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/18/2016] [Accepted: 02/28/2016] [Indexed: 01/24/2023]
Abstract
Adenovirus (Ad)-mediated cancer gene therapy has been proposed as a promising alternative to conventional therapy for cancer. However, success of systemically administered naked Ad has been limited due to the immunogenicity of Ad and the induction of hepatotoxicity caused by Ad's native tropism. In this study, we synthesized an epidermal growth factor receptor (EGFR)-specific therapeutic antibody (ErbB)-conjugated and PEGylated poly(amidoamine) (PAMAM) dendrimer (PPE) for complexation with Ad. Transduction of Ad was inhibited by complexation with PEGylated PAMAM (PP) dendrimer due to steric hindrance. However, PPE-complexed Ad selectively internalized into EGFR-positive cells with greater efficacy than either naked Ad or Ad complexed with PP. Systemically administered PPE-complexed oncolytic Ad elicited significantly reduced immunogenicity, nonspecific liver sequestration, and hepatotoxicity than naked Ad. Furthermore, PPE-complexed oncolytic Ad demonstrated prolonged blood retention time, enhanced intratumoral accumulation of Ad, and potent therapeutic efficacy in EGFR-positive orthotopic lung tumors in comparison with naked Ad. We conclude that ErbB-conjugated and PEGylated PAMAM dendrimer can efficiently mask Ad's capsid and retarget oncolytic Ad to be efficiently internalized into EGFR-positive tumor while attenuating toxicity induced by systemic administration of naked oncolytic Ad.
Collapse
Affiliation(s)
- A-Rum Yoon
- Department of Bioengineering, College of Engineering, Hanyang University, South Korea
| | - Dayananda Kasala
- Department of Bioengineering, College of Engineering, Hanyang University, South Korea
| | - Yan Li
- Department of Bioengineering, College of Engineering, Hanyang University, South Korea
| | - Jinwoo Hong
- Department of Bioengineering, College of Engineering, Hanyang University, South Korea
| | - Wonsig Lee
- Department of Bioengineering, College of Engineering, Hanyang University, South Korea
| | - Soo-Jung Jung
- Department of Bioengineering, College of Engineering, Hanyang University, South Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, South Korea.
| |
Collapse
|
22
|
Choi JW, Kim HA, Nam K, Na Y, Yun CO, Kim S. Hepatoma targeting peptide conjugated bio-reducible polymer complexed with oncolytic adenovirus for cancer gene therapy. J Control Release 2015; 220:691-703. [PMID: 26437261 DOI: 10.1016/j.jconrel.2015.09.068] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/23/2015] [Accepted: 09/30/2015] [Indexed: 11/16/2022]
Abstract
Despite adenovirus (Ad) vector's numerous advantages for cancer gene therapy, such as high ability of endosomal escape, efficient nuclear entry mechanism, and high transduction, and therapeutic efficacy, tumor specific targeting and antiviral immune response still remain as a critical challenge in clinical setting. To overcome these obstacles and achieve cancer-specific targeting, we constructed tumor targeting bioreducible polymer, an arginine grafted bio-reducible polymer (ABP)-PEG-HCBP1, by conjugating PEGylated ABP with HCBP1 peptides which has high affinity and selectivity towards hepatoma. The ABP-PEG-HCBP1-conjugated replication incompetent GFP-expressing ad, (Ad/GFP)-ABP-PEG-HCBP1, showed a hepatoma cancer specific uptake and transduction compared to either naked Ad/GFP or Ad/GFP-ABP. Competition assays demonstrated that Ad/GFP-ABP-PEG-HCBP1-mediated transduction was specifically inhibited by HCBP1 peptide rather than coxsackie and adenovirus receptor specific antibody. In addition, ABP-PEG-HCBP1 can protect biological activity of Ad against serum, and considerably reduced both innate and adaptive immune response against Ad. shMet-expressing oncolytic Ad (oAd; RdB/shMet) complexed with ABP-PEG-HCBP1 delivered oAd efficiently into hepatoma cancer cells. The oAd/ABP-PEG-HCBP1 demonstrated enhanced cancer cell killing efficacy in comparison to oAd/ABP complex. Furthermore, Huh7 and HT1080 cancer cells treated with oAd/shMet-ABP-PEG-HCBP1 complex had significantly decreased Met and VEGF expression in hepatoma cancer, but not in non-hepatoma cancer. In sum, these results suggest that HCBP1-conjugated bioreducible polymer could be used to deliver oncolytic Ad safely and efficiently to treat hepatoma.
Collapse
Affiliation(s)
- Joung-Woo Choi
- Center for Controlled Chemical Delivery (CCCD), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA
| | - Hyun Ah Kim
- Center for Controlled Chemical Delivery (CCCD), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA
| | - Kihoon Nam
- Center for Controlled Chemical Delivery (CCCD), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA
| | - Youjin Na
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea
| | - SungWan Kim
- Center for Controlled Chemical Delivery (CCCD), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA; Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea.
| |
Collapse
|
23
|
Choi JW, Nam JP, Nam K, Lee YS, Yun CO, Kim SW. Oncolytic Adenovirus Coated with Multidegradable Bioreducible Core-Cross-Linked Polyethylenimine for Cancer Gene Therapy. Biomacromolecules 2015; 16:2132-43. [PMID: 26096567 DOI: 10.1021/acs.biomac.5b00538] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Recently, adenovirus (Ad) has been utilized as a viral vector for efficient gene delivery. However, substantial immunogenicity and toxicity have obstructed oncolytic Ad's transition into clinical studies. The goal of this study is to generate an adenoviral vector complexed with multidegradable bioreducible core-cross-linked polyethylenimine (rPEI) polymer that has low immunogenicity and toxicity while having higher transduction efficacy and stability. We have synthesized different molecular weight rPEIs and complexed with Ad at varying molar ratios to optimize delivery of the Ad/polymer complex. The size and surface charge of Ad/rPEIs were characterized. Of note, Ad/rPEIs showed significantly enhanced transduction efficiency compared to either naked Ad or Ad/25 kDa PEI in both coxsackievirus and adenovirus receptor (CAR) positive and negative cancer cells. The cellular uptake result demonstrated that the relatively small size of Ad/16 kDa rPEIs (below 200 nm) was more critical to the complex's internalization than its surface charge. Cancer cell killing effect and viral production were significantly increased when oncolytic Ad (RdB/shMet, or oAd) was complexed with 16 kDa rPEI in comparison to naked oAd-, oAd/25 kDa PEI-, or oAd/32 kDa rPEI-treated cells. This increased anticancer cytotoxicity was more readily apparent in CAR-negative MCF7 cells, implying that it can be used to treat a broad range of cancer cells. Furthermore, A549 and HT1080 cancer cells treated with oAd/16 kDa rPEI had significantly decreased Met and VEGF expression compared to either naked oAd or oAd/25 kDa PEI. Overall, these results demonstrate that shMet expressing oncolytic Ad complexed with multidegradable bioreducible core-cross-linked PEI could be used as efficient and safe cancer gene therapy.
Collapse
Affiliation(s)
- Joung-Woo Choi
- †Center for Controlled Chemical Delivery (CCCD), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Joung-Pyo Nam
- †Center for Controlled Chemical Delivery (CCCD), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Kihoon Nam
- †Center for Controlled Chemical Delivery (CCCD), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Young Sook Lee
- †Center for Controlled Chemical Delivery (CCCD), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Chae-Ok Yun
- ‡Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Republic of Korea
| | - Sung Wan Kim
- †Center for Controlled Chemical Delivery (CCCD), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States.,‡Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Republic of Korea
| |
Collapse
|