1
|
Stopka-Farooqui U, Stavrinides V, Simpson BS, Qureshi H, Carmona Echevierra LM, Pye H, Ahmed Z, Alawami MF, Kay JD, Olivier J, Heavey S, Patel D, Freeman A, Haider A, Moore CM, Ahmed HU, Whitaker HC. Combining tissue biomarkers with mpMRI to diagnose clinically significant prostate cancer. Analysis of 21 biomarkers in the PICTURE study. Prostate Cancer Prostatic Dis 2024:10.1038/s41391-024-00920-1. [PMID: 39578642 DOI: 10.1038/s41391-024-00920-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND Serum PSA and digital rectal examination remain the key diagnostic tools for detecting prostate cancer. However, due to the limited specificity of serum PSA, the applicability of this marker continues to be controversial. Recent use of image-guided biopsy along with pathological assessment and the use of biomarkers has dramatically improved the diagnosis of clinically significant cancer. Despite the two modalities working together for diagnosis biomarker research often fails to correlate findings with imaging. METHODS AND RESULTS We looked at 21 prostate cancer biomarkers correlating our results with mpMRI data to investigate the hypothesis that biomarkers along with mpMRI data make a powerful tool to detect clinically significant prostate cancer. Biomarkers were selected based on the existing literature. Using a tissue microarray comprised of samples from the PICTURE study, with biopsies at 5 mm intervals and mpMRI data we analysed which biomarkers could differentiate benign and malignant tissue. Biomarker data were also correlated with pathological grading, mpMRI, serum PSA, age and family history. AGR2, CD10 and EGR protein expression was significantly different in both matched malignant and benign tissues. AMACR, ANPEP, GDF15, MSMB, PSMA, PTEN, TBL1XR1, TP63, VPS13A and VPS28 showed significantly different expression between Gleason grades in malignant tissue. The majority of the biomarkers tested did not correlate with mpMRI data. However, CD10, KHDRBS3, PCLAF, PSMA, SIK2 and GDF15 were differentially expressed with prostate cancer progression. AMACR and PTEN were identified in both pathological and image data evaluation. CONCLUSIONS There is a high demand to develop biomarkers that would help the diagnosis and prognosis of prostate cancer. Tissue biomarkers are of particular interest since immunohistochemistry remains a cheap, reliable method that is widely available in pathology departments. These results demonstrate that testing biomarkers in a cohort consistent with the current diagnostic pathway is crucial to identifying biomarker with potential clinical utility.
Collapse
Affiliation(s)
| | - Vasilis Stavrinides
- Division of Surgery and Interventional Science, University College London, London, UK
- Department of Urology, UCLH NHS Foundation Trust, London, UK
| | - Benjamin S Simpson
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Hania Qureshi
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Lina M Carmona Echevierra
- Division of Surgery and Interventional Science, University College London, London, UK
- Department of Urology, UCLH NHS Foundation Trust, London, UK
| | - Hayley Pye
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Zeba Ahmed
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Mohammed F Alawami
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Jonathan D Kay
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Jonathan Olivier
- Division of Surgery and Interventional Science, University College London, London, UK
- Department of Urology, Hospital Huriez, University Lille Nord de France, Lille, France
| | - Susan Heavey
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Dominic Patel
- Department of Pathology, UCLH NHS Foundation Trust, London, UK
| | - Alex Freeman
- Department of Pathology, UCLH NHS Foundation Trust, London, UK
| | - Aiman Haider
- Department of Pathology, UCLH NHS Foundation Trust, London, UK
| | - Caroline M Moore
- Division of Surgery and Interventional Science, University College London, London, UK
- Department of Urology, UCLH NHS Foundation Trust, London, UK
| | - Hashim U Ahmed
- Division of Surgery, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
- Imperial Urology, Charing Cross Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Hayley C Whitaker
- Division of Surgery and Interventional Science, University College London, London, UK
| |
Collapse
|
2
|
Alkahtani S, Alkahtane AA, Alarifi S. Physiological and Pathogenesis Significance of Chorein in Health and Disease. Physiol Res 2024; 73:189-203. [PMID: 38710051 PMCID: PMC11081191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/30/2023] [Indexed: 05/08/2024] Open
Abstract
This comprehensive review explores the physiological and pathophysiological significance of VPS13A, a protein encoded by the VPS13A gene. The VPS13A gene is associated with Chorea-acanthocytosis (ChAc), a rare hereditary neurodegenerative disorder. The review covers essential aspects, beginning with the genetics of VPS13A, highlighting its role in the pathogenesis of ChAc, and addressing the spectrum of genetic variants involved. It delves into the structure and function of the VPS13A protein, emphasizing its presence in various tissues and its potential involvement in protein trafficking and lipid homeostasis. Molecular functions of VPS13A in the brain tissue and other cell types or tissues with respect to their role in cytoskeletal regulation and autophagy are explored. Finally, it explores the intriguing link between VPS13A mutations, lipid imbalances, and neurodegeneration, shedding light on future research directions. Overall, this review serves as a comprehensive resource for understanding the pivotal role of VPS13A in health and disease, particularly in the context of ChAc. Key words: Chorein , Tumor, Actin, Microfilament, Gene expression, Chorea-acanthocytosis.
Collapse
Affiliation(s)
- S Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.
| | | | | |
Collapse
|
3
|
Alkahtani S, Alkahtane AA, Stournaras C, Alarifi S. Chorein sensitive microtubule organization in tumor cells. PeerJ 2023; 11:e16074. [PMID: 37744224 PMCID: PMC10517657 DOI: 10.7717/peerj.16074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/20/2023] [Indexed: 09/26/2023] Open
Abstract
Background The purpose of this study is to analyzed the involvement of chorein in microtubules organization of three types of malignant; rhabdomyosarcoma tumor cells (ZF), rhabdomyosarcoma cells (RH30), and rhabdomyosarcoma cells (RD). ZF are expressing high chorein levels. Previous studies revealed that chorein protein silencing in ZF tumor cells persuaded apoptotic response followed by cell death. In addition, in numerous malignant and non-malignant cells this protein regulates actin cytoskeleton structure and cellular signaling. However, the function of chorein protein in microtubular organization is yet to be established. Methods In a current research study, we analyzed the involvement of chorein in microtubules organization by using three types of malignant rhabdomyosarcoma cells. We have applied confocal laser-scanning microscopy to analyze microtubules structure and RT-PCR to examine cytoskeletal gene transcription. Results We report here that in rhabdomyosarcoma cells (RH30), chorein silencing induced disarrangement of microtubular network. This was documented by laser scanning microscopy and further quantified by FACS analysis. Interestingly and in agreement with previous reports, tubulin gene transcription in RH cells was unchanged upon silencing of chorein protein. Equally, confocal analysis showed minor disordered microtubules organization with evidently weakened staining in rhabdomyosarcoma cells (RD and ZF) after silencing of chorein protein. Conclusion These results disclose that chorein silencing induces considerable structural disorganization of tubulin network in RH30 human rhabdomyosarcoma tumor cells. Additional studies are now needed to establish the role of chorein in regulating cytoskeleton architecture in tumor cells.
Collapse
Affiliation(s)
- Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah A. Alkahtane
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Christos Stournaras
- Department of Biochemistry, University of Crete Medical School, Heraklion, Greece
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Hu JX, Yang Y, Xu YY, Shen HB. GraphLoc: a graph neural network model for predicting protein subcellular localization from immunohistochemistry images. Bioinformatics 2022; 38:4941-4948. [DOI: 10.1093/bioinformatics/btac634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/07/2022] [Accepted: 09/15/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Motivation
Recognition of protein subcellular distribution patterns and identification of location biomarker proteins in cancer tissues are important for understanding protein functions and related diseases. Immunohistochemical (IHC) images enable visualizing the distribution of proteins at the tissue level, providing an important resource for the protein localization studies. In the past decades, several image-based protein subcellular location prediction methods have been developed, but the prediction accuracies still have much space to improve due to the complexity of protein patterns resulting from multi-label proteins and variation of location patterns across cell types or states.
Results
Here, we propose a multi-label multi-instance model based on deep graph convolutional neural networks, GraphLoc, to recognize protein subcellular location patterns. GraphLoc builds a graph of multiple IHC images for one protein, learns protein-level representations by graph convolutions, and predicts multi-label information by a dynamic threshold method. Our results show that GraphLoc is a promising model for image-based protein subcellular location prediction with model interpretability. Furthermore, we apply GraphLoc to the identification of candidate location biomarkers and potential members for protein networks. A large portion of the predicted results have supporting evidence from the existing literatures and the new candidates also provide guidance for further experimental screening.
Availability
The dataset and code are available at: www.csbio.sjtu.edu.cn/bioinf/GraphLoc.
Supplementary information
Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jin-Xian Hu
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing , Ministry of Education of China, Shanghai 200240, China
| | - Yang Yang
- Shanghai Jiao Tong University Department of Computer Science and Engineering, Center for Brain-Like Computing and Machine Intelligence, , Shanghai 200240, China
| | - Ying-Ying Xu
- Southern Medical University School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Medical Image Processing, , Guangzhou 510515, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University , Guangzhou 510515, China
| | - Hong-Bin Shen
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing , Ministry of Education of China, Shanghai 200240, China
| |
Collapse
|
5
|
Hosseinzadeh Z, Hauser S, Singh Y, Pelzl L, Schuster S, Sharma Y, Höflinger P, Zacharopoulou N, Stournaras C, Rathbun DL, Zrenner E, Schöls L, Lang F. Decreased Na +/K + ATPase Expression and Depolarized Cell Membrane in Neurons Differentiated from Chorea-Acanthocytosis Patients. Sci Rep 2020; 10:8391. [PMID: 32439941 PMCID: PMC7242441 DOI: 10.1038/s41598-020-64845-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 04/17/2020] [Indexed: 02/03/2023] Open
Abstract
Loss of function mutations of the chorein-encoding gene VPS13A lead to chorea-acanthocytosis (ChAc), a neurodegenerative disorder with accelerated suicidal neuronal cell death, which could be reversed by lithium. Chorein upregulates the serum and glucocorticoid inducible kinase SGK1. Targets of SGK1 include the Na+/K+-ATPase, a pump required for cell survival. To explore whether chorein-deficiency affects Na+/K+ pump capacity, cortical neurons were differentiated from iPSCs generated from fibroblasts of ChAc patients and healthy volunteers. Na+/K+ pump capacity was estimated from K+-induced whole cell outward current (pump capacity). As a result, the pump capacity was completely abolished in the presence of Na+/K+ pump-inhibitor ouabain (100 µM), was significantly smaller in ChAc neurons than in control neurons, and was significantly increased in ChAc neurons by lithium treatment (24 hours 2 mM). The effect of lithium was reversed by SGK1-inhibitor GSK650394 (24 h 10 µM). Transmembrane potential (Vm) was significantly less negative in ChAc neurons than in control neurons, and was significantly increased in ChAc neurons by lithium treatment (2 mM, 24 hours). The effect of lithium on Vm was virtually abrogated by ouabain. Na+/K+ α1-subunit transcript levels and protein abundance were significantly lower in ChAc neurons than in control neurons, an effect reversed by lithium treatment (2 mM, 24 hours). In conclusion, consequences of chorein deficiency in ChAc include impaired Na+/K+ pump capacity.
Collapse
Affiliation(s)
- Zohreh Hosseinzadeh
- Paul Flechsig Institute of Brain Research, University of Leipzig, Leipzig, Germany.,Department of Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Stefan Hauser
- German Center for Neurodegenerative Diseases, Tübingen, Germany.,Department of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Yogesh Singh
- Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Lisann Pelzl
- Transfusion Medicine, Medical Faculty, Eberhard Karl University, Tübingen, Germany
| | - Stefanie Schuster
- German Center for Neurodegenerative Diseases, Tübingen, Germany.,Department of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Yamini Sharma
- Department of Internal Medicine III, University of Tübingen, Tübingen, Germany
| | - Philip Höflinger
- German Center for Neurodegenerative Diseases, Tübingen, Germany.,Department of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Nefeli Zacharopoulou
- Department of Biochemistry, University of Crete Medical School, Heraklion, Greece.,Department of Vegetative and Clinical Physiology, University of Tübingen, Tübingen, Germany
| | - Christos Stournaras
- Department of Biochemistry, University of Crete Medical School, Heraklion, Greece
| | - Daniel L Rathbun
- Department of Ophthalmology, University of Tübingen, Tübingen, Germany.,Department Ophthalmology, Bionics and Vision, Henry Ford Hospital, Henry Ford, United States
| | - Eberhart Zrenner
- Department of Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Ludger Schöls
- German Center for Neurodegenerative Diseases, Tübingen, Germany.,Department of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Florian Lang
- Department of Vegetative and Clinical Physiology, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
6
|
Kolakowski D, Kaminska J, Zoladek T. The binding of the APT1 domains to phosphoinositides is regulated by metal ions in vitro. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183349. [PMID: 32407779 DOI: 10.1016/j.bbamem.2020.183349] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/27/2020] [Accepted: 05/07/2020] [Indexed: 01/01/2023]
Abstract
Chorein is a protein of the Vps13 family, and defects in this protein cause the rare neurodegenerative disorder chorea-acanthocytosis (ChAc). Chorein is involved in the actin cytoskeleton organization, calcium ion flux, neuronal cell excitability, exocytosis and autophagy. The function of this protein is poorly understood, and obtaining this knowledge is a key to finding a cure for ChAc. Chorein, as well as the Vps13 protein from yeast, contains the APT1 domain. Our previous research has shown that the APT1 domain from yeast Vps13 (yAPT1v) binds phosphatidylinositol 3-phosphate (PI3P) in vitro. In this study, we showed that although the APT1 domain from chorein (hAPT1) binds to PI3P it could not functionally replace yAPT1v. The hAPT1 domain binds, in addition to PI3P, to phosphatidylinositol 5-phosphate (PI5P). The binding of hAPT1 to PI3P, unlike the binding of yAPT1v to PI3P, is regulated by the bivalent ions, calcium and magnesium. Regulation of PI3P binding via calcium is also observed for the APT1 domain of yeast autophagy protein Atg2. The substitution I2771R, found in chorein of patient suffering from ChAc, reduces the binding of the hAPT1 domain to PI3P and PI5P. These results suggest that the ability of APT1 domains to bind phosphoinositides is regulated differently in yeast and human protein and that this regulation is important for chorein function.
Collapse
Affiliation(s)
- Damian Kolakowski
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Joanna Kaminska
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland.
| | - Teresa Zoladek
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| |
Collapse
|
7
|
Peikert K, Danek A, Hermann A. Current state of knowledge in Chorea-Acanthocytosis as core Neuroacanthocytosis syndrome. Eur J Med Genet 2018; 61:699-705. [DOI: 10.1016/j.ejmg.2017.12.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/01/2017] [Accepted: 12/14/2017] [Indexed: 11/30/2022]
|
8
|
Lang F, Pelzl L, Hauser S, Hermann A, Stournaras C, Schöls L. To die or not to die SGK1-sensitive ORAI/STIM in cell survival. Cell Calcium 2018; 74:29-34. [PMID: 29807219 DOI: 10.1016/j.ceca.2018.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 05/02/2018] [Accepted: 05/02/2018] [Indexed: 12/31/2022]
Abstract
The pore forming Ca2+ release activated Ca2+ channel (CRAC) isoforms ORAI1-3 and their regulators STIM1,2 accomplish store operated Ca2+ entry (SOCE). Activation of SOCE may lead to cytosolic Ca2+ oscillations, which in turn support cell proliferation and cell survival. ORAI/STIM and thus SOCE are upregulated by the serum and glucocorticoid inducible kinase SGK1, a kinase under powerful genomic regulation and activated by phosphorylation via the phosphoinositol-3-phosphate pathway. SGK1 enhances ORAI1 abundance partially by phosphorylation of Nedd4-2, an ubiquitin ligase priming the channel protein for degradation. The SGK1-phosphorylated Nedd4-2 binds to the protein 14-3-3 and is thus unable to ubiquinate ORAI1. SGK1 further increases the ORAI1 and STIM1 protein abundance by activating nuclear factor kappa B (NF-κB), a transcription factor upregulating the expression of STIM1 and ORAI1. SGK1-sensitive upregulation of ORAI/STIM and thus SOCE is triggered by a wide variety of hormones and growth factors, as well as several cell stressors including ischemia, radiation, and cell shrinkage. SGK1 dependent upregulation of ORAI/STIM confers survival of tumor cells and thus impacts on growth and therapy resistance of cancer. On the other hand, SGK1-dependent upregulation of ORAI1 and STIM1 may support survival of neurons and impairment of SGK1-dependent ORAI/STIM activity may foster neurodegeneration. Clearly, further experimental effort is needed to define the mechanisms linking SGK1-dependent upregulation of ORAI1 and STIM1 to cell survival and to define the impact of SGK1-dependent upregulation of ORAI1 and STIM1 on malignancy and neurodegenerative disease.
Collapse
Affiliation(s)
- Florian Lang
- Department of Vegetative Physiology, Eberhad Karls University, Wilhelmstr. 56, D-72074 Tübingen, Germany.
| | - Lisann Pelzl
- Department of Vegetative Physiology, Eberhad Karls University, Wilhelmstr. 56, D-72074 Tübingen, Germany
| | - Stefan Hauser
- German Center for Neurodegenerative Diseases, Research Site Tübingen, Germany; Department of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Andreas Hermann
- Department of Neurology and Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Germany & DZNE, German Center for Neurodegenerative Diseases, Research Site Dresden, Germany
| | - Christos Stournaras
- Department of Biochemistry, University of Crete Medical School, Heraklion, Greece
| | - Ludger Schöls
- German Center for Neurodegenerative Diseases, Research Site Tübingen, Germany; Department of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| |
Collapse
|
9
|
Sawaki K, Kanda M, Miwa T, Umeda S, Tanaka H, Tanaka C, Kobayashi D, Suenaga M, Hattori N, Hayashi M, Yamada S, Nakayama G, Fujiwara M, Kodera Y. Troponin I2 as a Specific Biomarker for Prediction of Peritoneal Metastasis in Gastric Cancer. Ann Surg Oncol 2018; 25:2083-2090. [PMID: 29663169 DOI: 10.1245/s10434-018-6480-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Although peritoneal metastasis is a serious concern in patients with gastric cancer, no acceptable and specific biomarker is available. We aimed to identify a candidate biomarker to predict peritoneal metastasis of gastric cancer. METHODS Metastatic pathway-specific transcriptome analysis was conducted by comparison of patient groups with no recurrence and with peritoneal, hepatic, and nodal recurrence. Fifteen cell lines and 262 pairs of surgically resected gastric tissues were subjected to messenger RNA (mRNA) expression analysis. Polymerase chain reaction array analysis was performed to explore coordinately expressed cancer-related genes. To evaluate the in situ protein localization and expression patterns, immunohistochemical staining was performed. RESULTS From transcriptome data, troponin I2 (TNNI2) was identified as a candidate molecule specifically overexpressed in gastric cancer prone to peritoneal metastasis. TNNI2 mRNA was expressed at differential levels, independent of differentiated phenotype of cell lines. Epithelial to mesenchymal transition-related genes, tumor inhibitor of metalloproteinase 1 (TIMP1), and vacuolar protein sorting 13 homolog A (VPS13A) were expressed with TNNI2 at correlation coefficient > 0.7. The optimal cutoff of TNNI2 expression was determined as 0.00017. High TNNI2 expression was significantly and specifically associated with peritoneal metastasis and served as an independent risk marker for peritoneal recurrence after curative gastrectomy. Prevalence of peritoneal recurrence increased in parallel with staining intensity of TNNI2. CONCLUSIONS TNNI2 expression in gastric tissues may serve as a specific biomarker for prediction of peritoneal metastasis of gastric cancer and contribute to improvement of patient management.
Collapse
Affiliation(s)
- Koichi Sawaki
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mitsuro Kanda
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Takashi Miwa
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinichi Umeda
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Haruyoshi Tanaka
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Chie Tanaka
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Daisuke Kobayashi
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masaya Suenaga
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norifumi Hattori
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masamichi Hayashi
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Suguru Yamada
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Goro Nakayama
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Michitaka Fujiwara
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
10
|
Lithium Sensitive ORAI1 Expression, Store Operated Ca 2+ Entry and Suicidal Death of Neurons in Chorea-Acanthocytosis. Sci Rep 2017; 7:6457. [PMID: 28743945 PMCID: PMC5526875 DOI: 10.1038/s41598-017-06451-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/13/2017] [Indexed: 12/11/2022] Open
Abstract
Chorea-Acanthocytosis (ChAc), a neurodegenerative disorder, results from loss-of-function-mutations of chorein-encoding gene VPS13A. In tumour cells chorein up-regulates ORAI1, a Ca2+-channel accomplishing store operated Ca2+-entry (SOCE) upon stimulation by STIM1. Furthermore SOCE could be up-regulated by lithium. The present study explored whether SOCE impacts on neuron apoptosis. Cortical neurons were differentiated from induced pluripotent stem cells generated from fibroblasts of ChAc patients and healthy volunteers. ORAI1 and STIM1 transcript levels and protein abundance were estimated from qRT-PCR and Western blotting, respectively, cytosolic Ca2+-activity ([Ca2+]i) from Fura-2-fluorescence, as well as apoptosis from annexin-V-binding and propidium-iodide uptake determined by flow cytometry. As a result, ORAI1 and STIM1 transcript levels and protein abundance and SOCE were significantly smaller and the percentage apoptotic cells significantly higher in ChAc neurons than in control neurons. Lithium treatment (2 mM, 24 hours) increased significantly ORAI1 and STIM1 transcript levels and protein abundance, an effect reversed by inhibition of Serum & Glucocorticoid inducible Kinase 1. ORAI1 blocker 2-APB (50 µM, 24 hours) significantly decreased SOCE, markedly increased apoptosis and abrogated the anti-apoptotic effect of lithium. In conclusion, enhanced neuronal apoptosis in ChAc at least partially results from decreased ORAI1 expression and SOCE, which could be reversed by lithium treatment.
Collapse
|
11
|
Hu Y, Zhang C, Li S, Jiao Y, Qi T, Wei G, Han G. Effects of Photodynamic Therapy Using Yellow LED-light with Concomitant Hypocrellin B on Apoptotic Signaling in Keloid Fibroblasts. Int J Biol Sci 2017; 13:319-326. [PMID: 28367096 PMCID: PMC5370439 DOI: 10.7150/ijbs.17920] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 11/21/2016] [Indexed: 12/11/2022] Open
Abstract
Keloid is a common and refractory disease characterized by abnormal fibroblast proliferation and excessive deposition of extracellular matrix components. Hypocrellin B (HB) is a natural perylene quinone photosensitizer. In this experiment, we studied the effects of photodynamic therapy (PDT) using yellow light from light-emitting diode (LED) combined with HB on keloid fibroblasts (KFB) in vitro. Our results showed that HB-LED PDT treatment induced significant KFB apoptosis and decreased KFB cell viability. HB-LED PDT treatment lead to significant BAX upregulation and BCL-2 downregulation in KFB cells, which led to elevation of intracellular free Ca2+ and activation of caspase-3. Our data provides preliminary evidence for the potential of HB-LED PDT as a therapeutic strategy for keloid.
Collapse
Affiliation(s)
- Yongqing Hu
- Department of Dermatology, the Second Hospital of Shandong University, Jinan 250033, Shandong, China
| | - Chunmin Zhang
- Department of Dermatology, the Second Hospital of Shandong University, Jinan 250033, Shandong, China
| | - Shengli Li
- Department of Hematology, the Second Hospital of Shandong University, Jinan 250033, Shandong, China
| | - Ya Jiao
- Department of Plastic Surgery, the Second Hospital of Shandong University, Jinan 250033, Shandong, China
| | - Tonggang Qi
- Central Research Laboratory, the Second Hospital of Shandong University, Jinan 250033, Shandong, China
| | - Guo Wei
- Department of Dermatology, the Second Hospital of Shandong University, Jinan 250033, Shandong, China
| | - Gangwen Han
- Department of Dermatology, the Second Hospital of Shandong University, Jinan 250033, Shandong, China.; Department of Dermatology, Peking University International Hospital, Beijing 102206, China
| |
Collapse
|
12
|
Liu Y, Wang XC, Hu D, Huang SR, Li QS, Li Z, Qu Y. Heat shock protein 70 protects PC12 cells against ischemia-hypoxia/reoxygenation by maintaining intracellular Ca(2+) homeostasis. Neural Regen Res 2016; 11:1134-40. [PMID: 27630698 PMCID: PMC4994457 DOI: 10.4103/1673-5374.187051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Heat shock protein 70 (HSP70) maintains Ca2+ homeostasis in PC12 cells, which may protect against apoptosis; however, the mechanisms of neuroprotection are unclear. Therefore, in this study, we examined Ca2+ levels in PC12 cells transfected with an exogenous lentiviral HSP70 gene expression construct, and we subsequently subjected the cells to ischemia-hypoxia/reoxygenation injury. HSP70 overexpression increased neuronal viability and ATPase activity, and it decreased cellular reactive oxygen species levels and intracellular Ca2+ concentration after hypoxia/reoxygenation. HSP70 overexpression enhanced the protein and mRNA expression levels of sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA), but it decreased the protein and mRNA levels of inositol 1,4,5-trisphosphate receptor (IP3R), thereby leading to decreased intracellular Ca2+ concentration after ischemia-hypoxia/reoxygenation. These results suggest that exogenous HSP70 protects against ischemia-hypoxia/reoxygenation injury, at least in part, by maintaining cellular Ca2+ homeostasis, by upregulating SERCA expression and by downregulating IP3R expression.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Intensive Care Unit, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xue-Chun Wang
- Department of Intensive Care Unit, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Dan Hu
- Department of Intensive Care Unit, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Shu-Ran Huang
- Department of Intensive Care Unit, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, China
| | - Qing-Shu Li
- Department of Intensive Care Unit, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Zhi Li
- Department of Intensive Care Unit, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Yan Qu
- Department of Intensive Care Unit, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|