1
|
Frey RR, Jana N, Gorman JV, Wang J, Smith HA, Bromberg KD, Thakur A, Doktor SZ, Indulkar AS, Jakob CG, Upadhyay AK, Qiu W, Manaves V, Gambino F, Valentino SA, Montgomery D, Zhou Y, Li T, Buchanan FG, Ferguson DC, Kurnick MD, Kapecki N, Lai A, Michaelides MR, Penning TD. Discovery of Potent Azetidine-Benzoxazole MerTK Inhibitors with In Vivo Target Engagement. J Med Chem 2024; 67:17033-17052. [PMID: 39350472 DOI: 10.1021/acs.jmedchem.4c01451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Inhibition of the receptor tyrosine kinase MerTK by small molecules has the potential to augment the immune response to tumors. Potent, selective inhibitors with high levels of in vivo target engagement are needed to fully evaluate the potential use of MerTK inhibitors as cancer therapeutics. We report the discovery and optimization of a series of pyrazinamide-based type 1.5 MerTK inhibitors bearing an azetidine-benzoxazole substituent. Compound 31 potently engages the target in vivo and demonstrates single agent activity in the immune-driven MC-38 murine syngeneic tumor model.
Collapse
Affiliation(s)
- Robin R Frey
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Navendu Jana
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Jacob V Gorman
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Jin Wang
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Heath A Smith
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Kenneth D Bromberg
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Ashish Thakur
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Stella Z Doktor
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Anura S Indulkar
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Clarissa G Jakob
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Anup K Upadhyay
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Wei Qiu
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Vlasios Manaves
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Frank Gambino
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Stephen A Valentino
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Debra Montgomery
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Yebin Zhou
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Tao Li
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Fritz G Buchanan
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Debra C Ferguson
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Matthew D Kurnick
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Nicolas Kapecki
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Albert Lai
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Michael R Michaelides
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Thomas D Penning
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| |
Collapse
|
2
|
Tomuleasa C, Tigu AB, Munteanu R, Moldovan CS, Kegyes D, Onaciu A, Gulei D, Ghiaur G, Einsele H, Croce CM. Therapeutic advances of targeting receptor tyrosine kinases in cancer. Signal Transduct Target Ther 2024; 9:201. [PMID: 39138146 PMCID: PMC11323831 DOI: 10.1038/s41392-024-01899-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 08/15/2024] Open
Abstract
Receptor tyrosine kinases (RTKs), a category of transmembrane receptors, have gained significant clinical attention in oncology due to their central role in cancer pathogenesis. Genetic alterations, including mutations, amplifications, and overexpression of certain RTKs, are critical in creating environments conducive to tumor development. Following their discovery, extensive research has revealed how RTK dysregulation contributes to oncogenesis, with many cancer subtypes showing dependency on aberrant RTK signaling for their proliferation, survival and progression. These findings paved the way for targeted therapies that aim to inhibit crucial biological pathways in cancer. As a result, RTKs have emerged as primary targets in anticancer therapeutic development. Over the past two decades, this has led to the synthesis and clinical validation of numerous small molecule tyrosine kinase inhibitors (TKIs), now effectively utilized in treating various cancer types. In this manuscript we aim to provide a comprehensive understanding of the RTKs in the context of cancer. We explored the various alterations and overexpression of specific receptors across different malignancies, with special attention dedicated to the examination of current RTK inhibitors, highlighting their role as potential targeted therapies. By integrating the latest research findings and clinical evidence, we seek to elucidate the pivotal role of RTKs in cancer biology and the therapeutic efficacy of RTK inhibition with promising treatment outcomes.
Collapse
Affiliation(s)
- Ciprian Tomuleasa
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania.
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj Napoca, Romania.
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania.
| | - Adrian-Bogdan Tigu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Raluca Munteanu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Cristian-Silviu Moldovan
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - David Kegyes
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Anca Onaciu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Gulei
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gabriel Ghiaur
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Department of Leukemia, Sidney Kimmel Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hermann Einsele
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Universitätsklinikum Würzburg, Medizinische Klinik II, Würzburg, Germany
| | - Carlo M Croce
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
3
|
Chen P, Li Z, Li N. Establishment of a novel efferocytosis potential index predicts prognosis and immunotherapy response in cancers. Heliyon 2024; 10:e30337. [PMID: 38707349 PMCID: PMC11068824 DOI: 10.1016/j.heliyon.2024.e30337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024] Open
Abstract
The biological function and prognostic value of efferocytosis in cancer remains unclear. In this study, we systematically analysed the expression profiles and genetic variations of 50 efferocytosis-related regulator genes in 33 cancer types. Using data from The Cancer Genome Atlas, we established an efferocytosis potential index (EPI) model to represent the efferocytosis level in each cancer type. The relationship between the EPI and prognosis, immune-related molecules, specific pathways, and drug sensitivity was determined. We found that efferocytosis regulator genes were abnormally expressed in cancer tissue, perhaps owing to copy number variations, gene alterations, and DNA methylation. For the most part, the EPI was higher in tumour vs. normal tissues. In most of the 33 cancer types, it positively correlated with cell death- and immune-related pathway enrichment, the tumour microenvironment, immune infiltration, and drug sensitivity. For specific cancers, a high EPI may be a prognostic risk factor and, in patients treated receiving immune checkpoint therapy, a predictor of poor prognosis. Our study reveals the biological functions of efferocytosis-related regulator genes in distinct cancers and highlights the potential of efferocytosis intervention in cancer therapy.
Collapse
Affiliation(s)
- Peng Chen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Zhanzhan Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
| | - Na Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
| |
Collapse
|
4
|
Liu Y, Lan L, Li Y, Lu J, He L, Deng Y, Fei M, Lu JW, Shangguan F, Lu JP, Wang J, Wu L, Huang K, Lu B. N-glycosylation stabilizes MerTK and promotes hepatocellular carcinoma tumor growth. Redox Biol 2022; 54:102366. [PMID: 35728303 PMCID: PMC9214875 DOI: 10.1016/j.redox.2022.102366] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/25/2022] Open
Abstract
Despite the evidences of elevated expression of Mer tyrosine kinase (MerTK) in multiple human cancers, mechanisms underlying the oncogenic roles of MerTK in hepatocellular carcinoma (HCC) remains undefined. We explored the functional effects of MerTK and N-Glycosylated MerTK on HCC cell survival and tumor growth. Here, we show that MerTK ablation increases reactive oxygen species (ROS) production and promotes the switching from glycolytic metabolism to oxidative phosphorylation in HCC cells, thus suppressing HCC cell proliferation and tumor growth. MerTK is N-glycosylated in HCC cells at asparagine 294 and 454 that stabilizes MerTK to promote oncogenic transformation. Moreover, we observed that nuclear located non-glycosylated MerTK is indispensable for survival of HCC cells under stress. Pathologically, tissue microarray (TMA) data indicate that MerTK is a pivotal prognostic factor for HCC. Our data strongly support the roles of MerTK N-glycosylation in HCC tumorigenesis and suggesting N-glycosylation inhibition as a potential HCC therapeutic strategy. MerTK promotes the switching from oxidative phosphorylation to glycolytic metabolism in HCC cells. MerTK is N-glycosylated in HCC cells at asparagine 294 and 454 that stabilizes MerTK to promote HCC tumor growth. The nuclear located non-glycosylated MerTK is indispensable for survival of HCC cells under stress. MerTK is a pivotal prognostic factor for HCC and its N-glycosylation inhibition is a potential HCC therapeutic strategy.
Collapse
Affiliation(s)
- Yongzhang Liu
- Protein Quality Control and Diseases Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Linhua Lan
- Protein Quality Control and Diseases Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yujie Li
- Protein Quality Control and Diseases Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jing Lu
- Department of Laboratory Medicine, The First People's Hospital of Jingzhou, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, 434000, China
| | - Lipeng He
- Protein Quality Control and Diseases Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yao Deng
- Protein Quality Control and Diseases Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Mingming Fei
- Protein Quality Control and Diseases Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jun-Wan Lu
- Protein Quality Control and Diseases Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Fugen Shangguan
- Protein Quality Control and Diseases Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Ju-Ping Lu
- Protein Quality Control and Diseases Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jiaxin Wang
- Protein Quality Control and Diseases Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Liang Wu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Kate Huang
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Bin Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
5
|
Najar MA, Arefian M, Sidransky D, Gowda H, Prasad TSK, Modi PK, Chatterjee A. Tyrosine Phosphorylation Profiling Revealed the Signaling Network Characteristics of CAMKK2 in Gastric Adenocarcinoma. Front Genet 2022; 13:854764. [PMID: 35646067 PMCID: PMC9136244 DOI: 10.3389/fgene.2022.854764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/28/2022] [Indexed: 12/24/2022] Open
Abstract
Calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) is a serine/threonine protein kinase which functions via the calcium-triggered signaling cascade with CAMK1, CAMK4, and AMPKα as the immediate downstream substrates. CAMKK2 is reported to be overexpressed in gastric cancer; however, its signaling mechanism is poorly understood. We carried out label-free quantitative tyrosine phosphoproteomics to investigate tyrosine-mediated molecular signaling associated with CAMKK2 in gastric cancer cells. Using a high-resolution Orbitrap Fusion Tribrid Fourier-transform mass spectrometer, we identified 350 phosphotyrosine sites mapping to 157 proteins. We observed significant alterations in 81 phosphopeptides corresponding to 63 proteins upon inhibition of CAMKK2, among which 16 peptides were hyperphosphorylated corresponding to 13 proteins and 65 peptides were hypophosphorylated corresponding to 51 proteins. We report here that the inhibition of CAMKK2 leads to changes in the phosphorylation of several tyrosine kinases such as PKP2, PTK2, EPHA1, EPHA2, PRKCD, MAPK12, among others. Pathway analyses revealed that proteins are differentially phosphorylated in response to CAMKK2 inhibition involved in focal adhesions, actin cytoskeleton, axon guidance, and signaling by VEGF. The western blot analysis upon inhibition and/or silencing of CAMKK2 revealed a decrease in phosphorylation of PTK2 at Y925, c-JUN at S73, and STAT3 at Y705, which was in concordance with the mass spectrometry data. The study indicates that inhibition of CAMKK2 has an anti-oncogenic effect in gastric cells regulating phosphorylation of STAT3 through PTK2/c-JUN in gastric cancer.
Collapse
Affiliation(s)
- Mohd. Altaf Najar
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, India
| | - Mohammad Arefian
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, India
| | - David Sidransky
- Department of Oncology and Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Harsha Gowda
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, India
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal Academy of Higher Education (MAHE), Manipal, India
| | - T. S. Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, India
| | - Prashant Kumar Modi
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, India
- *Correspondence: Prashant Kumar Modi, ; Aditi Chatterjee,
| | - Aditi Chatterjee
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, India
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- *Correspondence: Prashant Kumar Modi, ; Aditi Chatterjee,
| |
Collapse
|
6
|
Lahey KC, Gadiyar V, Hill A, Desind S, Wang Z, Davra V, Patel R, Zaman A, Calianese D, Birge RB. Mertk: An emerging target in cancer biology and immuno-oncology. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 368:35-59. [PMID: 35636929 PMCID: PMC9994207 DOI: 10.1016/bs.ircmb.2022.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mertk, a type I Receptor Tyrosine Kinase (RTK) and member of the TAM (Tyro3, Axl, and Mertk) family of homologous tyrosine kinases, has important roles in signal transduction both homeostatically on normal cells as well as patho-physiologically on both tumor-associated macrophages and malignant cells by its overexpression in a wide array of cancers. The main ligands of Mertk are Vitamin K-modified endogenous proteins Gas6 and Protein S (ProS1), heterobifunctional modular proteins that bind Mertk via two carboxyl-terminal laminin-like globular (LG) domains, and an N-terminal Gla domain that binds anionic phospholipids, whereby externalized phosphatidylserine (PS) on stressed viable and caspase-activated apoptotic cells is most emblematic. Recent studies indicate that Vitamin K-dependent γ-carboxylation on the N-terminal Gla domain of Gas6 and Protein S is necessary for PS binding and Mertk activation, implying that Mertk is preferentially active in tissues where there is high externalized PS, such as the tumor microenvironment (TME) and acute virally infected tissues. Once stimulated, activated Mertk can provide a survival advantage for cancer cells as well as drive compensatory proliferation. On monocytes and tumor-associated macrophages, Mertk promotes efferocytosis and acts as an inhibitory receptor that impairs host anti-tumor immunity, functioning akin to a myeloid checkpoint inhibitor. In recent years, inhibition of Mertk has been implicated in a dual role to enhance the sensitivity of cancer cells to cytotoxic agents along with improving host anti-tumor immunity with anti-PD-1/PD-L1 immunotherapy. Here, we examine the rationale of Mertk-targeted immunotherapies, the current and potential therapeutic strategies, the clinical status of Mertk-specific therapies, and potential challenges and obstacles for Mertk-focused therapies.
Collapse
Affiliation(s)
- Kevin C Lahey
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School Cancer Center, Newark, NJ, United States.
| | - Varsha Gadiyar
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School Cancer Center, Newark, NJ, United States
| | - Amanda Hill
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School Cancer Center, Newark, NJ, United States
| | - Samuel Desind
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School Cancer Center, Newark, NJ, United States
| | - Ziren Wang
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School Cancer Center, Newark, NJ, United States
| | - Viralkumar Davra
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School Cancer Center, Newark, NJ, United States
| | - Radhey Patel
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School Cancer Center, Newark, NJ, United States
| | - Ahnaf Zaman
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School Cancer Center, Newark, NJ, United States
| | - David Calianese
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School Cancer Center, Newark, NJ, United States
| | - Raymond B Birge
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School Cancer Center, Newark, NJ, United States.
| |
Collapse
|
7
|
Jian W, Huanqiu C, Chao Y. Utilizing circulating free DNA in diagnosing early gastric cancer in a patient with situs inversus totalis: A case report and literature review. PRECISION MEDICAL SCIENCES 2021. [DOI: 10.1002/prm2.12037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Wang Jian
- Department of General Surgery Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University Nanjing China
| | - Chen Huanqiu
- Department of General Surgery Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University Nanjing China
| | - Yue Chao
- Department of General Surgery Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University Nanjing China
| |
Collapse
|
8
|
Msaouel P, Genovese G, Gao J, Sen S, Tannir NM. TAM kinase inhibition and immune checkpoint blockade- a winning combination in cancer treatment? Expert Opin Ther Targets 2021; 25:141-151. [PMID: 33356674 DOI: 10.1080/14728222.2021.1869212] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: Immune checkpoint inhibitors (ICI) have shown great promise in a wide spectrum of malignancies. However, responses are not always durable, and this mode of treatment is only effective in a subset of patients. As such, there exists an unmet need for novel approaches to bolster ICI efficacy.Areas covered: We review the role of the Tyro3, Axl, and Mer (TAM) receptor tyrosine kinases in promoting tumor-induced immune suppression and discuss the benefits that may be derived from combining ICI with TAM kinase-targeted tyrosine kinase inhibitors. We searched the MEDLINE Public Library of Medicine (PubMed) and EMBASE databases and referred to ClinicalTrials.gov for relevant ongoing studies.Expert opinion: Targeting of TAM kinases may improve the efficacy of immune checkpoint blockade. However, it remains to be determined whether this effect will be better achieved by the selective targeting of each TAM receptor, depending on the context, or by multi-receptor TAM inhibitors. Triple inhibition of all TAM receptors is more likely to be associated with an increased risk for adverse events. Clinical trial designs should use high-resolution clinical endpoints and proper control arms to determine the synergistic effects of combining TAM inhibition with immune checkpoint blockade.
Collapse
Affiliation(s)
- Pavlos Msaouel
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Giannicola Genovese
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianjun Gao
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Nizar M Tannir
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
9
|
Gadiyar V, Patel G, Davra V. Immunological role of TAM receptors in the cancer microenvironment. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 357:57-79. [PMID: 33234245 DOI: 10.1016/bs.ircmb.2020.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
TAM receptors belong to the family of receptor tyrosine kinases, comprising of Tyro3, Axl and Mertk receptors (TAMs) and are important homeostatic regulators of inflammation in higher eukaryotes. Along with their ligands, Gas6 and ProteinS, TAMs acts as receptors to phosphatidylserine (PtdSer), an anionic phospholipid that becomes externalized on the surface of apoptotic and stressed cells. TAM receptors, specially Mertk, have been well established to play a role in the process of efferocytosis, the engulfment of dying cells. Besides being efferocytic receptors, TAMs are pleiotropic immune modulators as the lack of TAM receptors in various mouse models lead to chronic inflammation and autoimmunity. Owing to their immune modulatory role, the PtdSer-TAM receptor signaling axis has been well characterized as a global immune-suppressive signal, and in cancers, and emerging literature implicates TAM receptors in cancer immunology and anti-tumor therapeutics. In the tumor microenvironment, immune-suppressive signals, such as ones that originate from TAM receptor signaling can be detrimental to anti-tumor therapy. In this chapter, we discuss immune modulatory functions of TAM receptors in the tumor microenvironment as well role of differentially expressed TAM receptors and their interactions with immune and tumor cells. Finally, we describe current strategies being utilized for targeting TAMs in several cancers and their implications in immunotherapy.
Collapse
Affiliation(s)
- Varsha Gadiyar
- Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Gopi Patel
- Rutgers New Jersey Medical School, Newark, NJ, United States
| | | |
Collapse
|
10
|
Wang KH, Ding DC. Dual targeting of TAM receptors Tyro3, Axl, and MerTK: Role in tumors and the tumor immune microenvironment. Tzu Chi Med J 2020; 33:250-256. [PMID: 34386362 PMCID: PMC8323642 DOI: 10.4103/tcmj.tcmj_129_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/12/2020] [Accepted: 07/02/2020] [Indexed: 11/06/2022] Open
Abstract
In both normal and tumor tissues, receptor tyrosine kinases (RTKs) may be pleiotropically expressed. The RTKs not only regulate ordinary cellular processes, including proliferation, survival, adhesion, and migration, but also have a critical role in the development of many types of cancer. The Tyro3, Axl, and MerTK (TAM) family of RTKs (Tyro3, Axl, and MerTK) plays a pleiotropic role in phagocytosis, inflammation, and normal cellular processes. In this article, we highlight the cellular activities of TAM receptors and discuss their roles in cancer and immune cells. We also discuss cancer therapies that target TAM receptors. Further research is needed to elucidate the function of TAM receptors in immune cells toward the development of new targeted immunotherapies for cancer.
Collapse
Affiliation(s)
- Kai-Hung Wang
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Dah-Ching Ding
- Department of Obstetrics and Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
11
|
Huelse J, Fridlyand D, Earp S, DeRyckere D, Graham DK. MERTK in cancer therapy: Targeting the receptor tyrosine kinase in tumor cells and the immune system. Pharmacol Ther 2020; 213:107577. [PMID: 32417270 PMCID: PMC9847360 DOI: 10.1016/j.pharmthera.2020.107577] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The receptor tyrosine kinase MERTK is aberrantly expressed in numerous human malignancies, and is a novel target in cancer therapeutics. Physiologic roles of MERTK include regulation of tissue homeostasis and repair, innate immune control, and platelet aggregation. However, aberrant expression in a wide range of liquid and solid malignancies promotes neoplasia via growth factor independence, cell cycle progression, proliferation and tumor growth, resistance to apoptosis, and promotion of tumor metastases. Additionally, MERTK signaling contributes to an immunosuppressive tumor microenvironment via induction of an anti-inflammatory cytokine profile and regulation of the PD-1 axis, as well as regulation of macrophage, myeloid-derived suppressor cell, natural killer cell and T cell functions. Various MERTK-directed therapies are in preclinical development, and clinical trials are underway. In this review we discuss MERTK inhibition as an emerging strategy for cancer therapy, focusing on MERTK expression and function in neoplasia and its role in mediating resistance to cytotoxic and targeted therapies as well as in suppressing anti-tumor immunity. Additionally, we review preclinical and clinical pharmacological strategies to target MERTK.
Collapse
Affiliation(s)
- Justus Huelse
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Diana Fridlyand
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Shelton Earp
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
| | - Deborah DeRyckere
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Douglas K. Graham
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, Georgia
| |
Collapse
|
12
|
Huelse JM, Fridlyand DM, Earp S, DeRyckere D, Graham DK. MERTK in cancer therapy: Targeting the receptor tyrosine kinase in tumor cells and the immune system. Pharmacol Ther 2020. [PMID: 32417270 DOI: 10.1016/j.pharmthera.2020.107577107577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
The receptor tyrosine kinase MERTK is aberrantly expressed in numerous human malignancies, and is a novel target in cancer therapeutics. Physiologic roles of MERTK include regulation of tissue homeostasis and repair, innate immune control, and platelet aggregation. However, aberrant expression in a wide range of liquid and solid malignancies promotes neoplasia via growth factor independence, cell cycle progression, proliferation and tumor growth, resistance to apoptosis, and promotion of tumor metastases. Additionally, MERTK signaling contributes to an immunosuppressive tumor microenvironment via induction of an anti-inflammatory cytokine profile and regulation of the PD-1 axis, as well as regulation of macrophage, myeloid-derived suppressor cell, natural killer cell and T cell functions. Various MERTK-directed therapies are in preclinical development, and clinical trials are underway. In this review we discuss MERTK inhibition as an emerging strategy for cancer therapy, focusing on MERTK expression and function in neoplasia and its role in mediating resistance to cytotoxic and targeted therapies as well as in suppressing anti-tumor immunity. Additionally, we review preclinical and clinical pharmacological strategies to target MERTK.
Collapse
Affiliation(s)
- Justus M Huelse
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Diana M Fridlyand
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Shelton Earp
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Deborah DeRyckere
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Douglas K Graham
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA, USA.
| |
Collapse
|
13
|
Lin S, Wang H, Yang W, Wang A, Geng C. Silencing of Long Non-Coding RNA Colon Cancer-Associated Transcript 2 Inhibits the Growth and Metastasis of Gastric Cancer Through Blocking mTOR Signaling. Onco Targets Ther 2020; 13:337-349. [PMID: 32021279 PMCID: PMC6968811 DOI: 10.2147/ott.s220302] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 12/24/2019] [Indexed: 12/23/2022] Open
Abstract
Purpose This study aimed to evaluate the specific role of colon cancer-associated transcript 2 (CCAT2) on gastric cancer (GC), and reveal the potential regulatory mechanism relating to mammalian target of rapamycin (mTOR) signaling. Methods The expression of CCAT2 was detected in GC tissues and cells by quantitative real-time PCR (qRT-PCR), and its relation with the pathologic characteristics of GC patients was analyzed. HGC-27 and SGC-7901 cells were transfected with siRNA-CCAT2 to silence CCAT2, and HGC-27 cells were then treated with an mTOR agonist Leucine (Leu) to activate mTOR signaling. The cell proliferation was evaluated by cell viability and colony formation. The cell cycle and apoptosis, and the migration and invasion abilities were detected by Flow cytometry, and Transwell assay, respectively. The expression of PCNA (proliferation marker), Snail, N-cadherin, E-cadherin (invasion markers), P53, Caspase-8, Bcl-2 (apoptosis markers), LC3-II/LC3-I, ATG3, p62 (autophagy makers), phosphorylated mTOR (p-mTOR), p-AKT, and p-p70S6K (mTOR signaling markers) were detected by Western blot. Results CCAT2 was upregulated in GC tissues and cells, and positively associated with the maximum tumor diameter, lymphatic metastasis, TNM staging, and low overall survival rate (P < 0.05). siRNA-CCAT2 transfection significantly inhibited the viability, colony formation, and migration and invasion abilities, blocked the cell cycle in G0/G1 phase, and promoted the apoptosis and autophagy of SGC-7901 and HGC-27 cells (P < 0.05). In addition, siRNA-CCAT2 transfection significantly upregulated P53, Caspase-8, LC3-II/LC3-I and ATG3, and downregulated PCNA, Bcl-2, p62, p-mTOR, p-AKT and p-p70S6K in SGC-7901 and HGC-27 cells (P < 0.05). siRNA-CCAT2 reversed the tumor-promoting effect of mTOR signaling activation on HGC-27 cells (P < 0.05). Conclusion Silencing of CCAT2 inhibited the proliferation, migration and invasion, and promoted the apoptosis and autophagy of GC cells through blocking mTOR signaling.
Collapse
Affiliation(s)
- Sen Lin
- Department of Gastroenterology, The Second Hospital of Shandong University, Jinan City, Shangdong 250033, People's Republic of China
| | - Hongbo Wang
- Department of Gastroenterology, The Second Hospital of Shandong University, Jinan City, Shangdong 250033, People's Republic of China
| | - Wenjuan Yang
- Department of Nursing, Jinan Central Hospital, Jinan City, Shangdong 250013, People's Republic of China
| | - Aiguang Wang
- Department of Oncology, Qianfoshan Hospital of Shandong Province, Jinan City, Shangdong 250014, People's Republic of China
| | - Chao Geng
- Department of Gastroenterology, Shouguang People's Hospital, Shouguang City, Shangdong 262799, People's Republic of China
| |
Collapse
|
14
|
Ghosh Roy S. TAM receptors: A phosphatidylserine receptor family and its implications in viral infections. TAM RECEPTORS IN HEALTH AND DISEASE 2020; 357:81-122. [DOI: 10.1016/bs.ircmb.2020.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Morse C, Tabib T, Sembrat J, Buschur KL, Bittar HT, Valenzi E, Jiang Y, Kass DJ, Gibson K, Chen W, Mora A, Benos PV, Rojas M, Lafyatis R. Proliferating SPP1/MERTK-expressing macrophages in idiopathic pulmonary fibrosis. Eur Respir J 2019; 54:1802441. [PMID: 31221805 PMCID: PMC8025672 DOI: 10.1183/13993003.02441-2018] [Citation(s) in RCA: 455] [Impact Index Per Article: 75.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/18/2019] [Indexed: 12/11/2022]
Abstract
A comprehensive understanding of the changes in gene expression in cell types involved in idiopathic pulmonary fibrosis (IPF) will shed light on the mechanisms underlying the loss of alveolar epithelial cells and development of honeycomb cysts and fibroblastic foci. We sought to understand changes in IPF lung cell transcriptomes and gain insight into innate immune aspects of pathogenesis.We investigated IPF pathogenesis using single-cell RNA-sequencing of fresh lung explants, comparing human IPF fibrotic lower lobes reflecting late disease, upper lobes reflecting early disease and normal lungs.IPF lower lobes showed increased fibroblasts, and basal, ciliated, goblet and club cells, but decreased alveolar epithelial cells, and marked alterations in inflammatory cells. We found three discrete macrophage subpopulations in normal and fibrotic lungs, one expressing monocyte markers, one highly expressing FABP4 and INHBA (FABP4hi), and one highly expressing SPP1 and MERTK (SPP1hi). SPP1hi macrophages in fibrotic lower lobes showed highly upregulated SPP1 and MERTK expression. Low-level local proliferation of SPP1hi macrophages in normal lungs was strikingly increased in IPF lungs.Co-localisation and causal modelling supported the role for these highly proliferative SPP1hi macrophages in activation of IPF myofibroblasts in lung fibrosis. These data suggest that SPP1hi macrophages contribute importantly to lung fibrosis in IPF, and that therapeutic strategies targeting MERTK and macrophage proliferation may show promise for treatment of this disease.
Collapse
Affiliation(s)
- Christina Morse
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Authors contributed equally to this work
| | - Tracy Tabib
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Authors contributed equally to this work
| | - John Sembrat
- Division of Pulmonary, Allergy and Critical Care, Dept of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kristina L Buschur
- Dept of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Eleanor Valenzi
- Division of Pulmonary, Allergy and Critical Care, Dept of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yale Jiang
- Division of Pulmonary Medicine, Allergy and Immunology, Dept of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- School of Medicine, Tsinghua University, Beijing, China
| | - Daniel J Kass
- Division of Pulmonary, Allergy and Critical Care, Dept of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kevin Gibson
- Division of Pulmonary, Allergy and Critical Care, Dept of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Wei Chen
- Division of Pulmonary Medicine, Allergy and Immunology, Dept of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ana Mora
- Division of Pulmonary, Allergy and Critical Care, Dept of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Panayiotis V Benos
- Dept of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mauricio Rojas
- Division of Pulmonary, Allergy and Critical Care, Dept of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Authors contributed equally to this work
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Authors contributed equally to this work
| |
Collapse
|
16
|
Cho JH, Kim JS, Kim ST, Hong JY, Park JO, Park YS, Nam DH, Lee DW, Lee J. Selective colony area method for heterogeneous patient-derived tumor cell lines in anti-cancer drug screening system. PLoS One 2019; 14:e0215080. [PMID: 30995234 PMCID: PMC6469764 DOI: 10.1371/journal.pone.0215080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 03/26/2019] [Indexed: 12/20/2022] Open
Abstract
We aimed to establish a fluorescence intensity-based colony area sweeping method by selecting the area of highest viability among patient-derived cancer cells (PDC) which has high tumor heterogeneity. Five gastric cancer cell lines and PDCs were screened with 24 small molecule compounds using a 3D micropillar/microwell chip. 100 tumor cells per well were immobilized in alginate, treated with the compounds, and then stained and scanned for viable cells. Dose response curves and IC50 values were obtained based on total or selected area intensity based on fluorescence. Unlike homogeneous cell lines, PDC comprised of debris and low-viability cells, which resulted in an inaccurate estimation of cell viability using total fluorescence intensity as determined by high IC50 values. However, the IC50 of these cells was lower and accurate when calculated based on the selected-colony-area method that eliminated the intensity offset associated with the heterogeneous nature of PDC. The selected-colony-area method was optimized to accurately predict drug response in micropillar environment using heterogeneous nature of PDCs.
Collapse
Affiliation(s)
- Jang Ho Cho
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ju-Sun Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seung Tae Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jung Yong Hong
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Joon Oh Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young Suk Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Do-Hyun Nam
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Dong Woo Lee
- Department of Biomedical Engineering, Konyang University, Daejeon, Korea
- * E-mail: (DWL); (JL)
| | - Jeeyun Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- * E-mail: (DWL); (JL)
| |
Collapse
|
17
|
Shi C, Li X, Wang X, Ding N, Ping L, Shi Y, Mi L, Lai Y, Song Y, Zhu J. The proto-oncogene Mer tyrosine kinase is a novel therapeutic target in mantle cell lymphoma. J Hematol Oncol 2018; 11:43. [PMID: 29554921 PMCID: PMC5859520 DOI: 10.1186/s13045-018-0584-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/01/2018] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Mantle cell lymphoma (MCL) is an incurable B cell-derived malignant tumor with a median overall survival of 4-5 years. Mer tyrosine kinase (MerTK) has been reported to be aberrantly expressed in leukemia, melanoma, and gastric cancer, and plays a pivotal role in the process of oncogenesis. This study assessed the role of MerTK in MCL for the first time. METHODS Immunohistochemistry and western blot were performed to figure out expression of MerTK in MCL. MerTK inhibition by either shRNA or treatment with UNC2250 (a MerTK-selective small molecular inhibitor) was conducted in MCL cell lines. MCL-cell-derived xenograft models were established to evaluate the anti-tumor effects of UNC2250 in vivo. RESULTS MerTK was ectopically expressed in four of six MCL cell lines. Sixty-five of 132 (48.9%) MCL patients showed positive expression of MerTK. MerTK inhibition by either shRNA or treatment with UNC2250 decreased activation of downstream AKT and p38, inhibited proliferation and invasion in MCL cells, and sensitized MCL cells to treatment with vincristine in vitro and doxorubicin in vitro and in vivo. UNC2250 induced G2/M phase arrest and prompted apoptosis in MCL cells, accompanied by increased expression of Bax, cleaved caspase 3 and poly (ADP-ribose) polymerase, and decreased expression of Bcl-2, Mcl-1 and Bcl-xL. Moreover, UNC2250 delayed disease progression in MCL-cell-derived xenograft models. CONCLUSIONS Our data prove that ectopic MerTK may be a novel therapeutic target in MCL, and further pre-clinical or even clinical studies of UNC2250 or new MerTK inhibitors are essential and of great significance.
Collapse
Affiliation(s)
- Cunzhen Shi
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142 China
| | - Xiangqun Li
- Beijing Doing Biomedical Technology Co., Ltd, Songyubei Road, Chaoyang District, Beijing, 100101 China
| | - Xiaogan Wang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142 China
| | - Ning Ding
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142 China
| | - Lingyan Ping
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142 China
| | - Yunfei Shi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142 China
| | - Lan Mi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142 China
| | - Yumei Lai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142 China
| | - Yuqin Song
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142 China
| | - Jun Zhu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142 China
| |
Collapse
|
18
|
TAM receptors Tyro3 and Mer as novel targets in colorectal cancer. Oncotarget 2018; 7:56355-56370. [PMID: 27486820 PMCID: PMC5302919 DOI: 10.18632/oncotarget.10889] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/26/2016] [Indexed: 02/05/2023] Open
Abstract
Purpose CRC remains the third most common cancer worldwide with a high 5-year mortality rate in advanced cases. Combined with chemotherapy, targeted therapy is an additional treatment option. However as CRC still escapes targeted therapy the vigorous search for new targets is warranted to increase patients' overall survival. Results In this study we describe a new role for Gas6/protein S-TAM receptor interaction in CRC. Gas6, expressed by tumor-infiltrating M2-like macrophages, enhances malignant properties of tumor cells including proliferation, invasion and colony formation. Upon chemotherapy macrophages increase Gas6 synthesis, which significantly attenuates the cytotoxic effect of 5-FU chemotherapy on tumor cells. The anti-coagulant protein S has similar effects as Gas6. In CRC patient samples Tyro3 was overexpressed within the tumor. In-vitro inhibition of Tyro3 and Mer reduces tumor cell proliferation and sensitizes tumor cells to chemotherapy. Moreover high expression of Tyro3 and Mer in tumor tissue significantly shortens CRC patients' survival. Experimental design Various in vitro models were used to investigate the role of Gas6 and its TAM receptors in human CRC cells, by stimulation (rhGas6) and knockdown (siRNA) of Axl, Tyro3 and Mer. In terms of a translational research, we additionally performed an expression analysis in human CRC tissue and analyzed the medical record of these patients. Conclusions Tyro3 and Mer represent novel therapeutic targets in CRC and warrant further preclinical and clinical investigation in the future.
Collapse
|
19
|
von Mässenhausen A, Sanders C, Thewes B, Deng M, Queisser A, Vogel W, Kristiansen G, Duensing S, Schröck A, Bootz F, Brossart P, Kirfel J, Heasley L, Brägelmann J, Perner S. MERTK as a novel therapeutic target in head and neck cancer. Oncotarget 2017; 7:32678-94. [PMID: 27081701 PMCID: PMC5078043 DOI: 10.18632/oncotarget.8724] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/28/2016] [Indexed: 02/06/2023] Open
Abstract
Although head and neck cancer (HNSCC) is the sixth most common tumor entity worldwide therapy options remain limited leading to 5-year survival rates of only 50 %. MERTK is a promising therapeutic target in several tumor entities, however, its role in HNSCC has not been described yet. The aim of our study was to investigate the biological significance of MERTK and to evaluate its potential as a novel therapeutic target in this dismal tumor entity. In two large HNSCC cohorts (n=537 and n=520) we found that MERTK is overexpressed in one third of patients. In-vitro, MERTK overexpression led to increased proliferation, migration and invasion whereas MERTK inhibition with the small molecule inhibitor UNC1062 or MERTK knockdown reduced cell motility via the small GTPase RhoA. Taken together, we are the first to show that MERTK is frequently overexpressed in HNSCC and plays an important role in tumor cell motility. It might therefore be a potential target for selected patients suffering from this dismal tumor entity.
Collapse
Affiliation(s)
- Anne von Mässenhausen
- Section of Prostate Cancer Research, University Hospital of Bonn, Bonn, Germany.,Institute of Pathology, University Hospital of Bonn, Bonn, Germany.,Center for Integrated Oncology Cologne/Bonn, University Hospital of Bonn, Bonn, Germany
| | - Christine Sanders
- Section of Prostate Cancer Research, University Hospital of Bonn, Bonn, Germany.,Institute of Pathology, University Hospital of Bonn, Bonn, Germany.,Center for Integrated Oncology Cologne/Bonn, University Hospital of Bonn, Bonn, Germany
| | - Britta Thewes
- Section of Prostate Cancer Research, University Hospital of Bonn, Bonn, Germany.,Institute of Pathology, University Hospital of Bonn, Bonn, Germany.,Center for Integrated Oncology Cologne/Bonn, University Hospital of Bonn, Bonn, Germany
| | - Mario Deng
- Pathology of The University Hospital of Luebeck, Luebeck, Germany.,Leibniz Research Center Borstel, Borstel, Germany
| | - Angela Queisser
- Section of Prostate Cancer Research, University Hospital of Bonn, Bonn, Germany.,Institute of Pathology, University Hospital of Bonn, Bonn, Germany.,Center for Integrated Oncology Cologne/Bonn, University Hospital of Bonn, Bonn, Germany
| | - Wenzel Vogel
- Pathology of The University Hospital of Luebeck, Luebeck, Germany.,Leibniz Research Center Borstel, Borstel, Germany
| | - Glen Kristiansen
- Institute of Pathology, University Hospital of Bonn, Bonn, Germany.,Center for Integrated Oncology Cologne/Bonn, University Hospital of Bonn, Bonn, Germany
| | - Stefan Duensing
- Department of Urology, University of Heidelberg, Heidelberg, Germany
| | - Andreas Schröck
- Center for Integrated Oncology Cologne/Bonn, University Hospital of Bonn, Bonn, Germany.,Department of Otorhinolaryngology/Head and Neck Surgery, University Hospital of Bonn, Bonn, Germany
| | - Friedrich Bootz
- Center for Integrated Oncology Cologne/Bonn, University Hospital of Bonn, Bonn, Germany.,Department of Otorhinolaryngology/Head and Neck Surgery, University Hospital of Bonn, Bonn, Germany
| | - Peter Brossart
- Center for Integrated Oncology Cologne/Bonn, University Hospital of Bonn, Bonn, Germany.,Department of Hematology/Oncology, University Hospital of Bonn, Bonn, Germany
| | - Jutta Kirfel
- Institute of Pathology, University Hospital of Bonn, Bonn, Germany.,Center for Integrated Oncology Cologne/Bonn, University Hospital of Bonn, Bonn, Germany
| | - Lynn Heasley
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Johannes Brägelmann
- Section of Prostate Cancer Research, University Hospital of Bonn, Bonn, Germany.,Center for Integrated Oncology Cologne/Bonn, University Hospital of Bonn, Bonn, Germany.,Department of Hematology/Oncology, University Hospital of Bonn, Bonn, Germany
| | - Sven Perner
- Pathology of The University Hospital of Luebeck, Luebeck, Germany.,Leibniz Research Center Borstel, Borstel, Germany
| |
Collapse
|
20
|
Abstract
Radiation therapy is primarily a modality to kill cancer cells in the treatment field. It is becoming increasingly clear that radiation therapy can also be used to direct immune responses that have the potential to clear residual local or distant disease outside the treatment field. We believe that cancer cell death is the critical link between these processes. Understanding the handling of dying cancer cells by immune cells in the tumor environment is crucial to facilitate immune responses following radiation therapy. We review the role of the TAM (Tyro3 Axl Mertk) group of receptor tyrosine kinases and their role following radiation-induced cancer cell death in the tumor environment.
Collapse
|
21
|
Song HN, Lee C, Kim ST, Kim SY, Kim NKD, Jang J, Kang M, Jang H, Ahn S, Kim SH, Park Y, Cho YB, Heo JW, Lee WY, Park JO, Lim HY, Kang WK, Park YS, Park WY, Lee J, Kim HC. Molecular characterization of colorectal cancer patients and concomitant patient-derived tumor cell establishment. Oncotarget 2017; 7:19610-9. [PMID: 26909603 PMCID: PMC4991405 DOI: 10.18632/oncotarget.7526] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/18/2016] [Indexed: 12/31/2022] Open
Abstract
Background We aimed to establish a prospectively enrolled colorectal cancer (CRC) cohort for targeted sequencing of primary tumors from CRC patients. In parallel, we established collateral PDC models from the matched primary tumor tissues, which may be later used as preclinical models for genome-directed targeted therapy experiments. Results In all, we identified 27 SNVs in the 6 genes such as PIK3CA (N = 16), BRAF (N = 6), NRAS (N = 2), and CTNNB1 (N = 1), PTEN (N = 1), and ERBB2 (N = 1). RET-NCOA4 translocation was observed in one out of 105 patients (0.9%). PDC models were successfully established from 62 (55.4%) of the 112 samples. To confirm the genomic features of various tumor cells, we compared variant allele frequency results of the primary tumor and progeny PDCs. The Pearson correlation coefficient between the variants from primary tumor cells and PDCs was 0.881. Methods Between April 2014 and June 2015, 112 patients with CRC who underwent resection of the primary tumor were enrolled in the SMC Oncology Biomarker study. The PDC culture protocol was performed for all eligible patients. All of the primary tumors from the 112 patients who provided written informed consent were genomically sequenced with targeted sequencing. In parallel, PDC establishment was attempted for all sequenced tumors. Conclusions We have prospectively sequenced a CRC cohort of 105 patients and successfully established 62 PDC in parallel. Each genomically characterized PDCs can be used as a preclinical model especially in rare genomic alteration event.
Collapse
Affiliation(s)
- Haa-Na Song
- Department of Medicine, Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Internal Medicine, Gyeongsang National University School of Medicine, Jinju, Korea
| | - Chung Lee
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Seung Tae Kim
- Department of Medicine, Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sun Young Kim
- Department of Medicine, Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Nayoung K D Kim
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
| | - Jiryeon Jang
- Department of Medicine, Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Mihyun Kang
- Department of Medicine, Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyojin Jang
- Department of Medicine, Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Soomin Ahn
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seok Hyeong Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yoona Park
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yong Beom Cho
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeong Wook Heo
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Woo Yong Lee
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Joon Oh Park
- Department of Medicine, Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ho Yeong Lim
- Department of Medicine, Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won Ki Kang
- Department of Medicine, Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young Suk Park
- Department of Medicine, Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea.,Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Jeeyun Lee
- Department of Medicine, Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hee Cheol Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
22
|
Kim JE, Kim Y, Li G, Kim ST, Kim K, Park SH, Park JO, Park YS, Lim HY, Lee H, Sohn TS, Kim KM, Kang WK, Lee J. MerTK inhibition by RXDX-106 in MerTK activated gastric cancer cell lines. Oncotarget 2017; 8:105727-105734. [PMID: 29285287 PMCID: PMC5739674 DOI: 10.18632/oncotarget.22394] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/05/2017] [Indexed: 01/10/2023] Open
Abstract
RXDX-106 is a potent and selective type II pseudo-irreversible (slow off-rate) inhibitor of TYRO3, AXL, MER and c-MET. MER tyrosine kinase (MerTK) is expressed in a variety of malignancies, including gastric cancer (GC). The oncogenic potential of MerTK is supported by various lines of evidence. First, we surveyed 10 GC cell lines for MerTK protein overexpression and MerTk phosphorylation. We next evaluated the change of downstream signaling molecules including (p)-ERK and (p)-AKT, following RXDX-106 treatment. We also investigated the effect of RXDX-106 in patient-derived cell lines to mimic the in vivo condition. The prevalence of MerTK protein overexpression was evaluated in 229 cancer tissue specimens. We have found that MerTK inhibitor treatment resulted in considerable inhibition of cell growth and downstream signaling. In addition, MerTK phosphorylation, not total MerTK expression, is likely more predictive of therapeutic success. p-MerTK protein overexpression by IHC was found in 18% (17/87) of GC patients. Lastly, RXDX-106 inhibited cell proliferation in MerTK activated gastric cancer cell line. These findings provide further evidence of oncogenic roles for MerTK in GC, and demonstrate the importance of kinase activity for MerTK tumorigeneicity and validate RXDX-106, a novel MerTK inhibitor, as a potential therapeutic agent for treatment of GC.
Collapse
Affiliation(s)
- Jung Eun Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Youjin Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Gary Li
- Ignyta, Inc., San Diego, CA, USA
| | - Seung Tae Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyung Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Se Hoon Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Joon Oh Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young Suk Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ho Yeong Lim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyuk Lee
- Ignyta, Inc., San Diego, CA, USA
| | | | - Kyoung-Mee Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won Ki Kang
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeeyun Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
23
|
Kim SY, Ahn T, Bang H, Ham JS, Kim J, Kim ST, Jang J, Shim M, Kang SY, Park SH, Min BH, Lee H, Kang WK, Kim KM, Park W, Lee J. Acquired resistance to LY2874455 in FGFR2-amplified gastric cancer through an emergence of novel FGFR2-ACSL5 fusion. Oncotarget 2017; 8:15014-15022. [PMID: 28122360 PMCID: PMC5362463 DOI: 10.18632/oncotarget.14788] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/11/2017] [Indexed: 01/15/2023] Open
Abstract
Background Fibroblast growth factor 2 (FGFR2) amplification, occurring in ~2–9% of gastric cancers (GC), is associated with poor overall survival. Results RNA sequencing identified a novel FGFR2-ACSL5 fusion in the resistant tumor that was absent from the matched pre-treatment tumor. The FGFR2-amplified PDC line was sensitive to FGFR inhibitors whereas the PDC line with concomitant FGFR2 amplification and FGFR2-ACSL5 fusion exhibited resistance. Additionally, the FGFR2-amplified GC PDC line, which was initially sensitive to FGFR2 inhibitors, subsequently also developed resistance. Materials and Methods We identified an FGFR2-amplified patient with GC, who demonstrated a dramatic and long-term response to LY2874455, a pan-FGFR inhibitor, but eventually developed an acquired LY2874455 resistance. Following resistance development, an endoscopic biopsy was performed for transcriptome sequencing and patient-derived tumor cell line (PDC) establishment to elucidate the underlying molecular alterations. Conclusions FGFR inhibitors may function against FGFR2-amplified GC, and a novel FGFR2-ACSL5 fusion identified by transcriptomic characterization may underlie clinically acquired resistance. Implications for Practice Poor treatment response represents a substantial concern in patients with gastric cancer carrying multiple FGFR2 gene copies. Here, we show the utility of a general FGFR inhibitor for initial response prior to treatment resistance and report the first characterization of a potential resistance mechanism involving an FGFR2-ACSL5 fusion protein.
Collapse
Affiliation(s)
- Sun Young Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | - Heejin Bang
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jun Soo Ham
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jusun Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seung Tae Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jiryeon Jang
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Moonhee Shim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - So Young Kang
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Se Hoon Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Byung Hoon Min
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyuk Lee
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won Ki Kang
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyoung-Mee Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Woongyang Park
- Samsung Genome Institute, Seoul, Korea.,Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeeyun Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
24
|
Lee JY, Kim SY, Park C, Kim NKD, Jang J, Park K, Yi JH, Hong M, Ahn T, Rath O, Schueler J, Kim ST, Do IG, Lee S, Park SH, Ji YI, Kim D, Park JO, Park YS, Kang WK, Kim KM, Park WY, Lim HY, Lee J. Patient-derived cell models as preclinical tools for genome-directed targeted therapy. Oncotarget 2016; 6:25619-30. [PMID: 26296973 PMCID: PMC4694854 DOI: 10.18632/oncotarget.4627] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 07/03/2015] [Indexed: 12/26/2022] Open
Abstract
Background In this study, we established patient-derived tumor cell (PDC) models using tissues collected from patients with metastatic cancer and assessed whether these models could be used as a tool for genome-based cancer treatment. Methods PDCs were isolated and cultured from malignant effusions including ascites and pleural fluid. Pathological examination, immunohistochemical analysis, and genomic profiling were performed to compare the histological and genomic features of primary tumors, PDCs. An exploratory gene expression profiling assay was performed to further characterize PDCs. Results From January 2012 to May 2013, 176 samples from patients with metastatic cancer were collected. PDC models were successfully established in 130 (73.6%) samples. The median time from specimen collection to passage 1 (P1) was 3 weeks (range, 0.5–4 weeks), while that from P1 to P2 was 2.5 weeks (range, 0.5–5 weeks). Sixteen paired samples of genomic alterations were highly concordant between each primary tumor and progeny PDCs, with an average variant allele frequency (VAF) correlation of 0.878. We compared genomic profiles of the primary tumor (P0), P1 cells, P2 cells, and patient-derived xenografts (PDXs) derived from P2 cells and found that three samples (P0, P1, and P2 cells) were highly correlated (0.99–1.00). Moreover, PDXs showed more than 100 variants, with correlations of only 0.6–0.8 for the other samples. Drug responses of PDCs were reflective of the clinical response to targeted agents in selected patient PDC lines. Conclusion(s) Our results provided evidence that our PDC model was a promising model for preclinical experiments and closely resembled the patient tumor genome and clinical response.
Collapse
Affiliation(s)
- Ji Yun Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sun Young Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Charny Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Nayoung K D Kim
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
| | - Jiryeon Jang
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyunghee Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
| | - Jun Ho Yi
- Division of Hematology-Oncology, Department of Medicine, Hanyang University Hospital, Seoul, Korea
| | - Mineui Hong
- Innovative Cancer Medicine Institute, Samsung Cancer Center, Samsung Medical Center, Seoul, Korea.,Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Taejin Ahn
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
| | | | | | - Seung Tae Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - In-Gu Do
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sujin Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Se Hoon Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yong Ick Ji
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Dukwhan Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Joon Oh Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Innovative Cancer Medicine Institute, Samsung Cancer Center, Samsung Medical Center, Seoul, Korea
| | - Young Suk Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won Ki Kang
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyoung-Mee Kim
- Innovative Cancer Medicine Institute, Samsung Cancer Center, Samsung Medical Center, Seoul, Korea.,Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea.,Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ho Yeong Lim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeeyun Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Innovative Cancer Medicine Institute, Samsung Cancer Center, Samsung Medical Center, Seoul, Korea
| |
Collapse
|