1
|
Meng X, Li X, Gao Y, Zhang S. Nuclear receptors as novel regulators that modulate cancer radiosensitivity and normal tissue radiotoxicity. Mol Cancer 2025; 24:155. [PMID: 40442680 PMCID: PMC12124050 DOI: 10.1186/s12943-025-02362-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2025] [Accepted: 05/20/2025] [Indexed: 06/02/2025] Open
Abstract
Nuclear receptors (NRs) are a superfamily of transcription factors that are involved in various pathophysiological processes. The human genome contains 48 types of nuclear receptors, including steroid hormone receptors (e.g., estrogen receptor [ER] and vitamin D receptor [VDR]), nonsteroid hormone receptors (e.g. peroxisome proliferator-activated receptor [PPAR] and retinoic acid receptor [RAR]), and orphan nuclear receptors (e.g. neuron-derived clone 77 [Nur77] and testicular nuclear receptor 4 [TR4]) and certain nuclear receptors are specifically overexpressed in tumor cells or surrounding normal tissues. Radiotherapy is one of the main methods of tumor treatment, but radioresistance in tumors and radiotoxicity to normal tissues strongly affect radiotherapy efficacy. Accumulating evidence has indicated the critical role of nuclear receptor modulators (including agonists and antagonists) as promising radiosensitizers in radiotherapy through various mechanisms. In addition, several nuclear receptors and their agonists alleviate normal tissue toxicity during radiotherapy. Thus, nuclear receptors serve as novel targets for tumor radiosensitization and for protecting of normal tissues from radiation damage. This review summarizes the research progress of nuclear receptors and highlights a promising synergistic strategy in radiotherapy.
Collapse
Affiliation(s)
- Xiaochen Meng
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xiaoqian Li
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Yi Gao
- Department of Gastroenterology, Affiliated Jiangyin Hospital of Nantong University, Jiangyin, 214400, China.
| | - Shuyu Zhang
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China.
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, China.
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital), Mianyang, 621099, China.
- Medical College of Tibet University, Lasa, 850000, China.
| |
Collapse
|
2
|
Yao Y, Zhou R, Yan C, Yan S, Han G, Liu Y, Fan D, Chen Z, Fan X, Chen Y, Li J, Yang Y, Tang Z. LncRNA RMG controls liquid-liquid phase separation of MEIS2 to regulate myogenesis. Int J Biol Macromol 2025; 310:143309. [PMID: 40252346 DOI: 10.1016/j.ijbiomac.2025.143309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
Long non-coding RNAs (lncRNAs) regulate liquid-liquid phase separation (LLPS), driving the formation of biomolecular condensates essential for cellular function. However, this regulatory mechanism is yet to be reported in skeletal muscles. In this study, we comprehensively analyzed lncRNAs in skeletal muscle across multiple pig breeds, developmental stages, and tissues. Our analysis identified over 10,000 novel lncRNAs. We found that the lnc-regulator of muscle growth (lnc-RMG) regulates myogenesis by modulating the LLPS of Meis homeobox 2 (MEIS2). Lnc-RMG was specifically expressed in the skeletal muscle, with significantly higher expression in the fetal stage than in the embryonic stage. Notably, lnc-RMG was highly conserved between pigs and humans and exhibits similar biological functions in myogenesis. Furthermore, lnc-RMG knockdown promoted skeletal muscle regeneration. Mechanistically, lnc-RMG produces mature microRNA (miR)-133a-3p, which targets and inhibits MEIS2 expression, thereby inhibiting MEIS2 LLPS. This inhibition promoted the transcription of transforming growth factor-β receptor II (TGFβR2), ultimately regulating myogenesis. Overall, our findings revealed a novel lnc-RMG/miR-133a-3p/MEIS2/TGFβR2 axis that regulated myogenesis through LLPS and provided new insights into the molecular mechanisms that drive muscle development and regeneration. These findings highlight potential therapeutic targets for muscle-related diseases and novel strategies for livestock improvement.
Collapse
Affiliation(s)
- Yilong Yao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, China; Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Rong Zhou
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chao Yan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, China; Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Shanying Yan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, China; Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Guohao Han
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, China; Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yanwen Liu
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, China; Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Danyang Fan
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, China; Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhilong Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, China; Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Xinhao Fan
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, China; Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Yun Chen
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, China
| | - Jiaying Li
- Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Yalan Yang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, China; Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China.
| | - Zhonglin Tang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, China; Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China.
| |
Collapse
|
3
|
Sun Y, Yuan X, Hu Z, Li Y. Harnessing nuclear receptors to modulate hepatic stellate cell activation for liver fibrosis resolution. Biochem Pharmacol 2025; 232:116730. [PMID: 39710274 DOI: 10.1016/j.bcp.2024.116730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 12/04/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
With the recent approval of Resmetirom as the first drug targeting nuclear receptors for metabolic dysfunction-associated steatohepatitis (MASH), there is promising way to treat MASH-associated liver fibrosis. However, liver fibrosis can arise from various pathogenic factors, and effective treatments for fibrosis due to other causes remain elusive. The activation of hepatic stellate cells (HSCs) represents a central link in the pathogenesis of hepatic fibrosis. Therefore, harnessing nuclear receptors to modulate HSC activation may be an effective approach to resolving the complex liver fibrosis caused by various factors. In this comprehensive review, we systematically explore the structure and physiological functions of nuclear receptors, shedding light on their multifaceted roles in HSC activation. Recent advancements in drug development targeting nuclear receptors are discussed, providing insights into their potential as rational and effective therapeutic targets for modulating HSC activation in the context of liver fibrosis. By elucidating the intricate interplay between nuclear receptors and HSC activation, this review contributes to the discovery of new nuclear receptor targets in HSCs for resolving hepatic fibrosis.
Collapse
Affiliation(s)
- Yaxin Sun
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyan Yuan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zhenhua Hu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China; Department of Health and Nursing, Nanfang College of Sun Yat-sen University, Guangzhou, China.
| | - Yuanyuan Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Khan MM, Sharma V, Serajuddin M, Kirabo A. Integrated grade-wise profiling analysis reveals potential plasma miR-373-3p as prognostic indicator in Prostate Cancer & its target KPNA2. Noncoding RNA Res 2024; 9:954-963. [PMID: 38699204 PMCID: PMC11063115 DOI: 10.1016/j.ncrna.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 05/05/2024] Open
Abstract
Background Plasma microRNAs (miRNAs) have recently garnered attention for their potential as stable biomarkers in the context of Prostate Cancer (PCa), demonstrating established associations with tumor grade, biochemical recurrence (BCR), and metastasis. This study seeks to assess the utility of plasma miRNAs as prognostic indicators for distinguishing between high-grade and low-grade PCa, and to explore their involvement in PCa pathogenesis. Methodology We conducted miRNA profiling in both plasma and tissue specimens from patients with varying PCa grades. Subsequently, the identified miRNAs were validated in a substantial independent PCa cohort. Furthermore, we identified and confirmed the gene targets of these selected miRNAs through Western blot analysis. Results In our plasma profiling investigation, we identified 98, 132, and 154 differentially expressed miRNAs (DEMs) in high-grade PCa vs. benign prostatic hyperplasia (BPH), low-grade PCa vs. BPH, and high-grade PCa vs. low-grade PCa, respectively. Our tissue profiling study revealed 111, 132, and 257 statistically significant DEMs for the same comparisons. Notably, miR-373-3p emerged as the sole consistently dysregulated miRNA in both plasma and tissue samples of PCa. This miRNA displayed significant overexpression in plasma and tissue samples, with fold changes of 3.584 ± 0.5638 and 8.796 ± 1.245, respectively. Furthermore, we observed a significant reduction in KPNA2 protein expression in PCa. Conclusion Our findings lend support to the potential of plasma miR-373-3p as a valuable biomarker for predicting and diagnosing PCa. Additionally, this miRNA may contribute to the progression of PCa by inhibiting KPNA2 expression, shedding light on its role in the disease.
Collapse
Affiliation(s)
- Mohd Mabood Khan
- Department of Medicine, Vanderbilt University Medical Center, Nashville, 37232, Tennessee, USA
- Department of Zoology, University of Lucknow, Lucknow, 226007, India
| | - Vineeta Sharma
- Department of Microbiology, University of Delhi, 110021, India
| | | | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, 37232, Tennessee, USA
| |
Collapse
|
5
|
Shekhar R, Kumari S, Vergish S, Tripathi P. The crosstalk between miRNAs and signaling pathways in human cancers: Potential therapeutic implications. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 386:133-165. [PMID: 38782498 DOI: 10.1016/bs.ircmb.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
MicroRNAs (miRNAs) are increasingly recognized as central players in the regulation of eukaryotic physiological processes. These small double stranded RNA molecules have emerged as pivotal regulators in the intricate network of cellular signaling pathways, playing significant roles in the development and progression of human cancers. The central theme in miRNA-mediated regulation of signaling pathways involves their ability to target and modulate the expression of pathway components. Aberrant expression of miRNAs can either promote or suppress key signaling events, influencing critical cellular processes such as proliferation, apoptosis, angiogenesis, and metastasis. For example, oncogenic miRNAs often promote cancer progression by targeting tumor suppressors or negative regulators of signaling pathways, thereby enhancing pathway activity. Conversely, tumor-suppressive miRNAs frequently inhibit oncogenic signaling by targeting key components within these pathways. This complex regulatory crosstalk underscores the significance of miRNAs as central players in shaping the signaling landscape of cancer cells. Furthermore, the therapeutic implications of targeting miRNAs in cancer are substantial. miRNAs can be manipulated to restore normal signaling pathway activity, offering a potential avenue for precision medicine. The development of miRNA-based therapeutics, including synthetic miRNA mimics and miRNA inhibitors, has shown promise in preclinical and clinical studies. These strategies aim to either enhance the activity of tumor-suppressive miRNAs or inhibit the function of oncogenic miRNAs, thereby restoring balanced signaling and impeding cancer progression. In conclusion, the crosstalk between miRNAs and signaling pathways in human cancers is a dynamic and influential aspect of cancer biology. Understanding this interplay provides valuable insights into cancer development and progression. Harnessing the therapeutic potential of miRNAs as regulators of signaling pathways opens up exciting opportunities for the development of innovative cancer treatments with the potential to improve patient outcomes. In this chapter, we provide an overview of the crosstalk between miRNAs and signaling pathways in the context of cancer and highlight the potential therapeutic implications of targeting this regulatory interplay.
Collapse
Affiliation(s)
- Ritu Shekhar
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA.
| | - Sujata Kumari
- Department of Zoology, Magadh Mahila College, Patna University, Patna, India
| | - Satyam Vergish
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| | - Prajna Tripathi
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, USA
| |
Collapse
|
6
|
Haynes AP, Desta S, Ahmad T, Neikirk K, Hinton A, Bloodworth N, Kirabo A. The Antioxidative Effects of Flavones in Hypertensive Disease. Biomedicines 2023; 11:2877. [PMID: 38001878 PMCID: PMC10669108 DOI: 10.3390/biomedicines11112877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 11/26/2023] Open
Abstract
Hypertension is the leading remediable risk factor for cardiovascular morbidity and mortality in the United States. Excess dietary salt consumption, which is a catalyst of hypertension, initiates an inflammatory cascade via activation of antigen-presenting cells (APCs). This pro-inflammatory response is driven primarily by sodium ions (Na+) transporting into APCs by the epithelial sodium channel (ENaC) and subsequent NADPH oxidase activation, leading to high levels of oxidative stress. Oxidative stress, a well-known catalyst for hypertension-related illness development, disturbs redox homeostasis, which ultimately promotes lipid peroxidation, isolevuglandin production and an inflammatory response. Natural medicinal compounds derived from organic materials that are characterized by their anti-inflammatory, anti-oxidative, and anti-mutagenic properties have recently gained traction amongst the pharmacology community due to their therapeutic effects. Flavonoids, a natural phenolic compound, have these therapeutic benefits and can potentially serve as anti-hypertensives. Flavones are a type of flavonoid that have increased anti-inflammatory effects that may allow them to act as therapeutic agents for hypertension, including diosmetin, which is able to induce significant arterial vasodilation in several different animal models. This review will focus on the activity of flavones to illuminate potential preventative and potential therapeutic mechanisms against hypertension.
Collapse
Affiliation(s)
- Alexandria Porcia Haynes
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Avenue, P415C Medical Research Building IV, Nashville, TN 37212, USA; (A.P.H.); (S.D.); (T.A.)
| | - Selam Desta
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Avenue, P415C Medical Research Building IV, Nashville, TN 37212, USA; (A.P.H.); (S.D.); (T.A.)
- Department of Biology, College of Arts and Sciences, Howard University, Washington, DC 20059, USA
| | - Taseer Ahmad
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Avenue, P415C Medical Research Building IV, Nashville, TN 37212, USA; (A.P.H.); (S.D.); (T.A.)
- Department of Pharmacology, College of Pharmacy, University of Sargodha, University Road, Sargodha 40100, Punjab, Pakistan
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 2201 West End Ave, Nashville, TN 37235, USA; (K.N.); (A.H.)
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 2201 West End Ave, Nashville, TN 37235, USA; (K.N.); (A.H.)
| | - Nathaniel Bloodworth
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Avenue, P415C Medical Research Building IV, Nashville, TN 37212, USA; (A.P.H.); (S.D.); (T.A.)
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Avenue, P415C Medical Research Building IV, Nashville, TN 37212, USA; (A.P.H.); (S.D.); (T.A.)
| |
Collapse
|
7
|
Xie S, Hu Y, Jin J, Fu L, Zhang C, Yang Q, Niu Y, Sheng Z. Regulation of the stem‑like properties of estrogen receptor‑positive breast cancer cells through NR2E3/NR2C2 signaling. Exp Ther Med 2023; 26:474. [PMID: 37664670 PMCID: PMC10469576 DOI: 10.3892/etm.2023.12173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Cancer stem cells (CSCs) are major drivers of metastasis, drug resistance and recurrence in numerous cancers. However, critical factors that can modulate CSC stemness have not been clearly identified. Nuclear receptor subfamily 2 group E member 3 (nr2e3) expression has been previously reported to be positively associated with drug sensitivity and favorable clinical outcomes in patients with estrogen receptor (ER)+ breast cancer. This suggests that nr2e3 expression may be inversely associated with CSC stemness in this type of tumor cells. The present study aimed to investigate the regulatory roles of NR2E3 in the stem-like properties of ER+ breast cancer cells and to identify the underlying mechanisms. Bioinformatics analysis was performed using the data derived from the Cancer Genome Atlas database. Nr2e3-specific shRNA and nuclear receptor subfamily 2 group C member 2 (nr2c2) overexpressed plasmids were constructed to silence and enhance the expression of nr2e3 and nr2c2, respectively. Transwell and wound healing experiments were conducted to evaluate the migration and invasion ability of MCF7 cells, while colony formation tests were used to evaluate the clonality. Flow cytometry was used to detect the percentage of CD44+CD24-/low cells. Reverse transcription-quantitative PCR and western blotting were performed to detect expression at the mRNA and protein levels. The results showed that compared with normal breast tissues and MCF10A cells, the expression of nr2e3 was increased in ER+ breast tumor tissues and cell lines. Nr2e3 silencing promoted the migration, invasion and colony-forming ability of the ER+ MCF7 cells. It also increased the expression of epithelial-mesenchymal transition markers and stem cell-related transcription factors, in addition to the percentage of CD44+CD24-/low cells. The expression of nr2e3 and nr2c2 was found to be positively correlated. Nr2e3 knockdown decreased the mRNA and protein expression levels of nr2c2, whereas nr2c2 overexpression reversed the elevated CD44+CD24-/low cell ratio and the increased migratory activity caused by nr2e3 silencing. The results of the present study suggest that NR2E3 may serve an important role in modulating the stem-like properties of ER+ breast cancer cells, where NR2E3/NR2C2 signaling may be a therapeutic target in ER+ breast cancer.
Collapse
Affiliation(s)
- Shanglun Xie
- School of Life Sciences, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Yaru Hu
- Department of Ophthalmology, Fuyang People's Hospital, Fuyang, Anhui 236000, P.R. China
| | - Jiacheng Jin
- School of Life Sciences, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Lingzhi Fu
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233099, P.R. China
| | - Cong Zhang
- School of Life Sciences, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Qing Yang
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233099, P.R. China
| | - Yaxin Niu
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233099, P.R. China
| | - Zhiyong Sheng
- School of Life Sciences, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| |
Collapse
|
8
|
Fu Y, Zhou Y, Mu Y, Lv Y, Chen G, Zhang H, Liu P, Chen J. Testicular orphan receptor 4 induced hepatic stellate cells activation via the regulation of TGF-β receptor Ⅰ/Smad2/3 signaling pathway. Ann Hepatol 2023; 28:100775. [PMID: 36280014 DOI: 10.1016/j.aohep.2022.100775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/06/2022] [Accepted: 10/14/2022] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND OBJECTIVES Liver fibrosis is a common pathological change in many chronic liver diseases. Activation of hepatic stellate cells (HSCs) is the core event in liver fibrosis. This study aimed to investigate the role of testicular orphan receptor 4 (TR4) in the activation of HSCs. MATERIALS AND METHODS In vivo, bile duct ligation (BDL)-induced rat liver fibrosis model was established, and the expressions of TR4 and α-smooth muscle actin (α-SMA) in liver tissues were detected. In vitro, TR4 knockdown and overexpression in JS-1 cells using lentiviral vectors were constructed, and the expressions of TR4, α-SMA, Col-I, and TGF-β1/smads and retinoid X receptor (RXR) pathway-related genes were detected. RESULTS TR4 was highly expressed in BDL-induced fibrotic liver, accompanied by increased expression of α-SMA. Knockdown of TR4 significantly inhibited the expressions of α-SMA, Col-I, p-TβRI, and p-Smad2/3, and up-regulated the expression of RXRα in HSCs in vitro. In contrast, TR4 overexpression significantly increased the expressions of α-SMA, Col-I, p-TβRI, and p-Smad2/3, and inhibited the expression of RXRα. CONCLUSIONS TR4 may promote the activation of HSCs by up-regulating TβR I/Smad2/3 signaling pathway and down-regulating RXRα signaling, thereby promoting the progression of liver fibrosis. Our findings may provide a new therapeutic target against hepatic fibrosis.
Collapse
Affiliation(s)
- Yadong Fu
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuping Zhou
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, China
| | - Yongping Mu
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, China
| | - Ying Lv
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, China
| | - Gaofeng Chen
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, China
| | - Hua Zhang
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, China
| | - Ping Liu
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jiamei Chen
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, China.
| |
Collapse
|
9
|
miR-373-3p Regulates the Proliferative and Migratory Properties of Human HTR8 Cells via SLC38A1 Modulation. DISEASE MARKERS 2022; 2022:6582357. [PMID: 35837487 PMCID: PMC9274228 DOI: 10.1155/2022/6582357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 11/18/2022]
Abstract
The genetic pathogenesis of selective intrauterine growth restriction (sIUGR) remains elusive, with evidence suggesting an important role of epigenetic factors such as microRNAs. In this study, we explored the relevance of miR-373-3p to the occurrence of sIUGR. Hypoxia enhanced the levels of miR-373-3p and hypoxia-inducible factor (HIF)-1α, while HIF-1α knockdown not only boosted the migration and proliferation of HTR8 cells but also suppressed the hypoxia-induced upregulation of miR-373-3p and SLC38A1. By contrast, HIF-1α overexpression induced miR-373-3p downregulation and SLC38A1 upregulation, reducing cell growth and migration, which could be reversed by a miR-373-3p inhibitor. Importantly, the miR-373-3p inhibitor and mimic reproduced phenomena similar to those induced by HIF-1α downregulation and overexpression, respectively (including altered SLC38A1 expression, mTOR activation, cell growth, and migration). Mechanistically, the miRNA regulated cell behaviors and related mTOR signaling by targeting SLC38A1 expression through an interaction with the 3′-untranslated region of SLC38A1. The placental tissues of smaller sIUGR fetuses exhibited miR-373-3p and HIF-1α upregulation, SLC38A1 downregulation, and activated mTOR. Overall, miR-373-3p appears to restrict the growth and migration of HTR8 trophoblast cells by targeting SLC38A1, as observed in the placental tissues associated with smaller sIUGR fetuses, and it could have utility in the diagnosis and treatment of this disorder.
Collapse
|
10
|
Slabáková E, Kahounová Z, Procházková J, Souček K. Regulation of Neuroendocrine-like Differentiation in Prostate Cancer by Non-Coding RNAs. Noncoding RNA 2021; 7:ncrna7040075. [PMID: 34940756 PMCID: PMC8704250 DOI: 10.3390/ncrna7040075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/18/2021] [Accepted: 11/29/2021] [Indexed: 12/21/2022] Open
Abstract
Neuroendocrine prostate cancer (NEPC) represents a variant of prostate cancer that occurs in response to treatment resistance or, to a much lesser extent, de novo. Unravelling the molecular mechanisms behind transdifferentiation of cancer cells to neuroendocrine-like cancer cells is essential for development of new treatment opportunities. This review focuses on summarizing the role of small molecules, predominantly microRNAs, in this phenomenon. A published literature search was performed to identify microRNAs, which are reported and experimentally validated to modulate neuroendocrine markers and/or regulators and to affect the complex neuroendocrine phenotype. Next, available patients’ expression datasets were surveyed to identify deregulated microRNAs, and their effect on NEPC and prostate cancer progression is summarized. Finally, possibilities of miRNA detection and quantification in body fluids of prostate cancer patients and their possible use as liquid biopsy in prostate cancer monitoring are discussed. All the addressed clinical and experimental contexts point to an association of NEPC with upregulation of miR-375 and downregulation of miR-34a and miR-19b-3p. Together, this review provides an overview of different roles of non-coding RNAs in the emergence of neuroendocrine prostate cancer.
Collapse
|
11
|
Weng W, Liu C, Li G, Ruan Q, Li H, Lin N, Chen G. Long non-‑coding RNA SNHG16 functions as a tumor activator by sponging miR‑373‑3p to regulate the TGF‑β‑R2/SMAD pathway in prostate cancer. Mol Med Rep 2021; 24:843. [PMID: 34643247 DOI: 10.3892/mmr.2021.12483] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/14/2021] [Indexed: 01/27/2023] Open
Abstract
Long non‑coding RNAs (lncRNAs) are involved in the pathogenesis of prostate cancer (PCa) as competitive endogenous RNA. The present study aimed to investigate the molecular mech--anisms of lncRNA small nucleolar RNA host gene 16 (SNHG16) in the proliferation and metastasis of PCa cells. Cancer tissues and adjacent normal tissues were collected from 80 patients with PCa who did not receive any treatment. Reverse transcription‑quantitative PCR analysis was performed to detect the expression levels of SNHG16, hsa‑microRNA (miRNA/miR)‑373‑3p and transforming growth factor‑β receptor type 2 (TGF‑β‑R2), and Spearman's correlation coefficient analysis was performed to assess the correlations between these molecules. Furthermore, the effects of SNHG16 knockdown and overexpression on the biological functions of DU‑145 PCa cells and TGF‑β‑R2/SMAD signaling were analyzed. The dual‑luciferase reporter assay was performed to assess the associations between SNHG16 and miR‑373‑3p, and TGF‑β‑R2 and miR‑373‑3p, the effects of which were verified via rescue experiments. The results demonstrated that the expression levels of SNHG16 and TGF‑β‑R2 were significantly upregulated in PCa tissues, whereas miR‑373‑3p expression was significantly downregulated (P<0.001). In addition, negative correlations were observed between SNHG16 and miR‑373‑3p (rho, ‑0.631) and miR‑373‑3p and TGF‑β‑R2 (rho, ‑0.516). Overexpression of SNHG16 significantly promoted the proliferation, migration and invasion of PCa cells (P<0.05), and significantly increased the protein expression levels of TGF‑β‑R2, phosphorylated (p)‑SMAD2, p‑SMAD3, c‑Myc and E2F4 (P<0.001). Notably, the results revealed that miR‑373‑3p is a target of SNHG16, and miR‑373‑3p knockdown rescued short hairpin (sh)‑SNHG16‑suppressed cellular functions by promoting TGF‑β‑R2/SMAD signaling. The results also revealed that miR‑373‑3p targets TGF‑β‑R2. Notably, transfection with miR‑373‑3p inhibitor rescued sh‑TGF‑β‑R2‑suppressed cell proliferation and migration. Taken together, the results of the present study suggest that SNHG16 promotes the proliferation and migration of PCa cells by targeting the miR‑373‑3p/TGF‑β‑R2/SMAD axis.
Collapse
Affiliation(s)
- Wubin Weng
- Department of Urology, Mindong Hospital Affiliated to Fujian Medical University, Fuan, Fujian 355000, P.R. China
| | - Changming Liu
- Department of Urology, Mindong Hospital Affiliated to Fujian Medical University, Fuan, Fujian 355000, P.R. China
| | - Guomin Li
- Department of Urology, Mindong Hospital Affiliated to Fujian Medical University, Fuan, Fujian 355000, P.R. China
| | - Qiongfang Ruan
- Department of Respiratory Medicine, Mindong Hospital Affiliated to Fujian Medical University, Fuan, Fujian 355000, P.R. China
| | - Huizhang Li
- Department of Urology, Mindong Hospital Affiliated to Fujian Medical University, Fuan, Fujian 355000, P.R. China
| | - Ningfeng Lin
- Department of Urology, Mindong Hospital Affiliated to Fujian Medical University, Fuan, Fujian 355000, P.R. China
| | - Guangbing Chen
- Department of Urology, Mindong Hospital Affiliated to Fujian Medical University, Fuan, Fujian 355000, P.R. China
| |
Collapse
|
12
|
Pang J, Dai L, Zhang C, Zhang Q. MiR-373 Inhibits the Epithelial-Mesenchymal Transition of Prostatic Cancer via Targeting Runt-Related Transcription Factor 2. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:6974225. [PMID: 34257854 PMCID: PMC8260310 DOI: 10.1155/2021/6974225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/20/2021] [Accepted: 06/20/2021] [Indexed: 12/23/2022]
Abstract
Prostatic cancer (PCa) is a prevalent form of malignancy based on its high associated levels of mortality and morbidity across the world. MicroRNAs (miRNAs) are significant in the advancement of prostatic cancer. The current study is aimed at exploring the potential roles of miR-373 in PCa. In turn, the study conducted a qRT-PCR test to determine the levels of mRNA. A western blot test was also executed in determining the protein level. The processes of transwell assay and wound healing were integrated in the detection of the potential for PCa cells to invade and migrate. The integration of dual luciferase reporter assay is critical in determining the levels of luciferase activity among prostatic cancer cells. Then, the results showed a net decrease of miR-373 within prostatic cancer cells and tissues. Upregulated miR-373 reduced the invasion and migration potential of PCa cells. Moreover, overexpressed miR-373 increased the levels of E-cadherin and FSP1 as epithelial cell markers. Similarly, the overregulation of miR-373 brought about the upregulation of mesenchymal markers (N-cadherin, Snail, and vimentin). The study predicted runt-related transcription factor 2 (RUNX2) to be a target of miR-373. The luciferase activity of PCa cells was decreased after the cotransfection with miR-373 mimics and RUNX2 3' untranslated region (3'UTR) wild type (WT). Moreover, RUNX2 became upregulated in PCa cells and tissues. The upregulation of miR-373 decreased the mRNA and protein level of RUNX2. However, overexpressed RUNX2 abated the roles of miR-373 in the intrusion and migration of PCa cells and in regulating the expression of epithelial cell markers and mesenchymal markers. In short, miR-373 may regulate the EMT of PCa cells via targeting RUNX2. The miR-373/RUNX2 axis provides a therapeutic target for PCa.
Collapse
Affiliation(s)
- Jianyi Pang
- Department of Urology Surgery, The Affiliated Weihai Second Municipal Hospital of Qingdao University, Weihai, Shandong 264200, China
| | - Limei Dai
- Department of Dermatology and STD, The Affiliated Weihai Second Municipal Hospital of Qingdao University, Weihai, Shandong 264200, China
| | - Chen Zhang
- Department of Urology Surgery, The Affiliated Tengzhou Central People's Hospital of Jining Medical University, Tengzhou, Shandong 277500, China
| | - Qinglei Zhang
- Department of Urology Surgery, The Affiliated Tengzhou Central People's Hospital of Jining Medical University, Tengzhou, Shandong 277500, China
| |
Collapse
|
13
|
miR-373-3p Regulates Invasion and Migration Abilities of Trophoblast Cells via Targeted CD44 and Radixin. Int J Mol Sci 2021; 22:ijms22126260. [PMID: 34200891 PMCID: PMC8230484 DOI: 10.3390/ijms22126260] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 12/26/2022] Open
Abstract
Preterm labor (PTL) is one of the obstetric complications, and is known to be associated with abnormal maternal inflammatory response and intrauterine inflammation and/or infection. However, the expression of specific miRNAs associated with PTL is not clear. In this study, we performed combination analysis of miRNA array and gene array, and then selected one miRNA (miR-373-3p) and its putative target genes (CD44 and RDX) that exhibited large expression differences in term and PTL placentas with or without inflammation. Using qRT-PCR and luciferase assays, we confirmed that miR-373-3p directly targeted CD44 and RDX. Overexpression of miR-373-3p reduced the migration and invasion of trophoblast cells, while inhibition of miR-373-3p restored the migration and invasion abilities of trophoblast cells. Finally, we validated the expression of miR-373-3p and its target genes in clinical patients’ blood. miR-373-3p was increased in PTL patients’ blood, and was the most expressed in PTL patients’ blood with inflammation. In addition, by targeting the miR-373-3p, CD44 and RDX was decreased in PTL patients’ blood, and their expression were the lowest in PTL patients’ blood with inflammation. Taken together, these findings suggest that miR-373-3p and its target genes can be potential biomarkers for diagnosis of PTL.
Collapse
|
14
|
Lu Y, Li X, Zuo Y, Xu Q, Liu L, Wu H, Chen L, Zhang Y, Liu Y, Li Y. miR-373-3p inhibits epithelial-mesenchymal transition via regulation of TGFβR2 in choriocarcinoma. J Obstet Gynaecol Res 2021; 47:2417-2432. [PMID: 33955122 DOI: 10.1111/jog.14809] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/24/2021] [Accepted: 04/18/2021] [Indexed: 12/19/2022]
Abstract
AIM Previous studies have indicated that early metastasis is a major cause of mortality in patients with choriocarcinoma. However, what determines whether early metastasis of choriocarcinoma has occurred is unknown. The emerging role of miRNA in regulating cancer development and progression has been recognized. miR-373 has been shown to play pivotal roles in tumorigenesis and metastasis. However, whether miR-373 functions to promote choriocarcinoma metastasis is not clear. The purpose of this study is to determine the function of miR-373-3p in the progression of this cancer. METHODS In this study, we first compared epithelial-mesenchymal transition (EMT)-related markers, which were inversely correlated with miR-373-3p expression in trophoblast and choriocarcinoma cell lines. Using PCR and Western blot, upregulation of miR-373-3p was observed to inhibit EMT progression. Similarly, gain- and loss-of-function studies revealed that ectopic miR-373-3p overexpression inhibited the migration by transwell methods of choriocarcinoma cells. RESULTS Our results revealed that miR-373-3p acted as an EMT inhibitor in JEG-3 and JAR cells; this was due to its mediation of the transforming growth factor-β (TGFβ) signaling pathway, which was responsible for EMT. miRNA microarray analysis demonstrated that miR-373-3p interacted with the 3' untranslated region of TGFβR2 mRNA, and then Western blot and dual-luciferase reporter gene assays verified this interaction. CONCLUSION Our findings suggest that miR-373-3p upregulation partly accounts for TGFβR2 downregulation and leads to a restraint of EMT and migration. miR-373-3p may therefore serve as a valuable potential target in the treatment of choriocarcinoma.
Collapse
Affiliation(s)
- Yanjie Lu
- Department of Pathology, Chengde Medical University, Chengde, Hebei, China.,Cancer Research Laboratory, Chengde Medical University, Chengde, Hebei, China
| | - Xiaoru Li
- Cancer Research Laboratory, Chengde Medical University, Chengde, Hebei, China.,Department of Gynaecology and Obstetrics, Chengde Central Hospital, Chengde, Hebei, China
| | - Yanzhen Zuo
- Cancer Research Laboratory, Chengde Medical University, Chengde, Hebei, China
| | - Qian Xu
- Cancer Research Laboratory, Chengde Medical University, Chengde, Hebei, China
| | - Lei Liu
- Cancer Research Laboratory, Chengde Medical University, Chengde, Hebei, China
| | - Haiying Wu
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Long Chen
- Department of Pathology, Chengde Medical University, Chengde, Hebei, China
| | - Ying Zhang
- Department of Pathology, Chengde Medical University, Chengde, Hebei, China
| | - Ying Liu
- Department of Pathology, Chengde Medical University, Chengde, Hebei, China
| | - Yuhong Li
- Department of Pathology, Chengde Medical University, Chengde, Hebei, China.,Cancer Research Laboratory, Chengde Medical University, Chengde, Hebei, China
| |
Collapse
|
15
|
Javed Z, Khan K, Rasheed A, Sadia H, Raza S, Salehi B, Cho WC, Sharifi-Rad J, Koch W, Kukula-Koch W, Głowniak-Lipa A, Helon P. MicroRNAs and Natural Compounds Mediated Regulation of TGF Signaling in Prostate Cancer. Front Pharmacol 2021; 11:613464. [PMID: 33584291 PMCID: PMC7873640 DOI: 10.3389/fphar.2020.613464] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/24/2020] [Indexed: 12/25/2022] Open
Abstract
Prostate cancer (PCa) is with rising incidence in male population globally. It is a complex anomaly orchestrated by a plethora of cellular processes. Transforming growth factor-beta (TGF-β) signaling is one of the key signaling pathways involved in the tumorigenesis of PCa. TGF-β signaling has a dual role in the PCa, making it difficult to find a suitable therapeutic option. MicroRNAs (miRNAs) mediated regulation of TGF-β signaling is responsible for the TGF-ß paradox. These are small molecules that modulate the expression of target genes and regulate cancer progression. Thus, miRNAs interaction with different signaling cascades is of great attention for devising new diagnostic and therapeutic options for PCa. Natural compounds have been extensively studied due to their high efficacy and low cytotoxicity. Here, we discuss the involvement of TGF-ß signaling in PCa with the interplay between miRNAs and TGF-β signaling and also review the role of natural compounds for the development of new therapeutics for PCa.
Collapse
Affiliation(s)
- Zeeshan Javed
- Office for Research Innovation and Commercialization, Lahore Garrison University, Lahore, Pakistan
| | - Khushbukhat Khan
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Amna Rasheed
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Haleema Sadia
- Department of Biotechnology, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | - Shahid Raza
- Office for Research Innovation and Commercialization, Lahore Garrison University, Lahore, Pakistan
| | - Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| | - Wojciech Koch
- Chair and Department of Food and Nutrition, Medical University of Lublin, Lublin, Poland
| | | | - Anna Głowniak-Lipa
- Department of Cosmetology, University of Information Technology and Management in Rzeszów, Rzeszów, Poland
| | - Paweł Helon
- Branch in Sandomierz, Jan Kochanowski University in Kielce, Sandomierz, Poland
| |
Collapse
|
16
|
Zhu J, Qin P, Cao C, Dai G, Xu L, Yang D. Use of miR‑145 and testicular nuclear receptor 4 inhibition to reduce chemoresistance to docetaxel in prostate cancer. Oncol Rep 2021; 45:963-974. [PMID: 33650661 PMCID: PMC7859919 DOI: 10.3892/or.2021.7925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/30/2020] [Indexed: 11/15/2022] Open
Abstract
The human testicular nuclear receptor 4 (TR4) is a critical regulatory gene for the progression of prostate cancer (PCa). Although it has been revealed that TR4 causes chemoresistance in PCa via the activation of octamer-binding transcription factor 4 (OCT4), the detailed mechanism remains unexplored. In the present study, it was revealed that inhibition of TR4 by shRNA in PCa enhanced the sensitivity to docetaxel in vitro and in vivo. TR4 induced the downregulation of miR-145 by directly binding it to the promoter of miR-145, which was confirmed by chromatin immunoprecipitation analysis and luciferase assay. The overexpression of miR-145 suppressed both the chemoresistance and the expression of OCT4 mRNA and protein. Additionally, the TR4 shRNA mediated re-sensitization to docetaxel, along with the downregulated expression of OCT4, were reversed by the concurrent inhibition of miR-145. The luciferase assay revealed that the activity of the wild-type OCT4 3′ untranslated region reporter was suppressed. This suppression diminished when the miR-145 response element mutated. These findings suggest an undescribed regulatory pathway in PCa, by which TR4 directly suppressed the expression of miR-145, thereby inhibiting its direct target OCT4, leading to the promotion of chemoresistance in PCa.
Collapse
Affiliation(s)
- Jin Zhu
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Peibo Qin
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu 215008, P.R. China
| | - Cheng Cao
- Department of Urology, The First People's Hospital of Changshu, Suzhou, Jiangsu 215500, P.R. China
| | - Guangcheng Dai
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Lijun Xu
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Dongrong Yang
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| |
Collapse
|
17
|
Xia L, Shen D, Wang H, Ren L, Chen Y, Li G. Identification of Small-Molecule Regulators of Testicular Receptor 4 via a Drug Repurposing Screening. ACS OMEGA 2020; 5:30625-30632. [PMID: 33283111 PMCID: PMC7711931 DOI: 10.1021/acsomega.0c04623] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023]
Abstract
The testicular receptor 4 (TR4) is a nuclear receptor implicated in multiple pathological processes, including cancer development, chemotherapy, and radiotherapy resistance. However, no effective TR4 small-molecule regulator is available to date. Here, we assessed a physical-interaction-based surface plasmon resonance imaging assay for discovery of TR4 regulators. We screened 1018 FDA-approved drugs and obtained 126 drugs with K D values below 10-6 M. The dual-luciferase-based biological assay verified four activatory compounds and two inhibitory compounds against TR4. Among them, nilotinib exhibited the most potent inhibitor, with an EC50 of 1.05 μM, while genistein represented the most potent activator, with an EC50 of 2.42 μM. Both drugs were predicted to bind in the ligand binding pocket of TR4. The circular dichroism spectroscopic assay revealed differed conformation changes upon nilotinib or genistein binding. These results established our combined physical and biological approaches as a highly effective way to identify and develop new TR4 regulators.
Collapse
|
18
|
Ha NT, Lee CH. Roles of Farnesyl-Diphosphate Farnesyltransferase 1 in Tumour and Tumour Microenvironments. Cells 2020; 9:cells9112352. [PMID: 33113804 PMCID: PMC7693003 DOI: 10.3390/cells9112352] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 12/14/2022] Open
Abstract
Farnesyl-diphosphate farnesyltransferase 1 (FDFT1, squalene synthase), a membrane-associated enzyme, synthesizes squalene via condensation of two molecules of farnesyl pyrophosphate. Accumulating evidence has noted that FDFT1 plays a critical role in cancer, particularly in metabolic reprogramming, cell proliferation, and invasion. Based on these advances in our knowledge, FDFT1 could be a potential target for cancer treatment. This review focuses on the contribution of FDFT1 to the hallmarks of cancer, and further, we discuss the applicability of FDFT1 as a cancer prognostic marker and target for anticancer therapy.
Collapse
|
19
|
Chen D, Chou FJ, Chen Y, Tian H, Wang Y, You B, Niu Y, Huang CP, Yeh S, Xing N, Chang C. Targeting the radiation-induced TR4 nuclear receptor-mediated QKI/circZEB1/miR-141-3p/ZEB1 signaling increases prostate cancer radiosensitivity. Cancer Lett 2020; 495:100-111. [PMID: 32768524 DOI: 10.1016/j.canlet.2020.07.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/25/2020] [Accepted: 07/30/2020] [Indexed: 12/24/2022]
Abstract
Early studies indicated that the testicular nuclear receptor 4 (TR4) might play key roles in altering prostate cancer (PCa) progression; however, its ability to alter PCa radiosensitivity remains unclear. Here, we found that suppressing TR4 expression promoted radiosensitivity and better suppressed PCa by modulating the protein quaking (QKI)/circZEB1/miR-141-3p/ZEB1 signaling pathway. Mechanism dissection studies revealed that TR4 could transcriptionally increase the RNA-binding protein QKI to increase circZEB1 levels, which then sponges the miR-141-3p to increase the expression of its host gene ZEB1. Preclinical studies with an in vivo mouse model further proved that combining radiation therapy (RT) with metformin promoted radiosensitivity to suppress PCa progression. Together, these results suggest that TR4 may play key roles in altering PCa radiosensitivity and show that targeting this newly identified TR4-mediated QKI/circZEB1/miR-141-3p/ZEB1 signaling pathway may help in the development of a novel RT to better suppress the progression of PCa.
Collapse
Affiliation(s)
- Dong Chen
- Department of Urology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China; George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester, Rochester, 14642, NY, USA
| | - Fu-Ju Chou
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester, Rochester, 14642, NY, USA
| | - Yuhchyau Chen
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester, Rochester, 14642, NY, USA
| | - Hao Tian
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester, Rochester, 14642, NY, USA; Sex Hormone Research Center, Tianjin Institute of Urology, Tianjin Medical University, 300211, Tianjin, China
| | - Yaqin Wang
- Key Laboratory of Cardiovascular Epidemiology and Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037, Beijing, China
| | - Bosen You
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester, Rochester, 14642, NY, USA
| | - Yuanjie Niu
- Sex Hormone Research Center, Tianjin Institute of Urology, Tianjin Medical University, 300211, Tianjin, China
| | - Chi-Ping Huang
- Sex Hormone Research Center, China Medical University, 404, Taichung, Taiwan
| | - Shuyuan Yeh
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester, Rochester, 14642, NY, USA
| | - Nianzeng Xing
- Department of Urology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
| | - Chawnshang Chang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester, Rochester, 14642, NY, USA; Key Laboratory of Cardiovascular Epidemiology and Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037, Beijing, China.
| |
Collapse
|
20
|
Boguslawska J, Kryst P, Poletajew S, Piekielko-Witkowska A. TGF-β and microRNA Interplay in Genitourinary Cancers. Cells 2019; 8:E1619. [PMID: 31842336 PMCID: PMC6952810 DOI: 10.3390/cells8121619] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022] Open
Abstract
Genitourinary cancers (GCs) include a large group of different types of tumors localizing to the kidney, bladder, prostate, testis, and penis. Despite highly divergent molecular patterns, most GCs share commonly disturbed signaling pathways that involve the activity of TGF-β (transforming growth factor beta). TGF-β is a pleiotropic cytokine that regulates key cancer-related molecular and cellular processes, including proliferation, migration, invasion, apoptosis, and chemoresistance. The understanding of the mechanisms of TGF-β actions in cancer is hindered by the "TGF-β paradox" in which early stages of cancerogenic process are suppressed by TGF-β while advanced stages are stimulated by its activity. A growing body of evidence suggests that these paradoxical TGF-β actions could result from the interplay with microRNAs: Short, non-coding RNAs that regulate gene expression by binding to target transcripts and inducing mRNA degradation or inhibition of translation. Here, we discuss the current knowledge of TGF-β signaling in GCs. Importantly, TGF-β signaling and microRNA-mediated regulation of gene expression often act in complicated feedback circuits that involve other crucial regulators of cancer progression (e.g., androgen receptor). Furthermore, recently published in vitro and in vivo studies clearly indicate that the interplay between microRNAs and the TGF-β signaling pathway offers new potential treatment options for GC patients.
Collapse
Affiliation(s)
- Joanna Boguslawska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education; 01-813 Warsaw, Poland;
| | - Piotr Kryst
- II Department of Urology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland; (P.K.); (S.P.)
| | - Slawomir Poletajew
- II Department of Urology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland; (P.K.); (S.P.)
| | | |
Collapse
|
21
|
Targeting TR4 nuclear receptor with antagonist bexarotene increases docetaxel sensitivity to better suppress the metastatic castration-resistant prostate cancer progression. Oncogene 2019; 39:1891-1903. [PMID: 31748715 PMCID: PMC7044111 DOI: 10.1038/s41388-019-1070-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 04/04/2019] [Accepted: 07/22/2019] [Indexed: 12/27/2022]
Abstract
Prostate cancer (PCa) is the second leading cause of cancer death in men in America, and there are no curative options for metastatic castration-resistant prostate cancer (mCRPC). Docetaxel (DTX) has been used as a standard chemotherapy for the mCRPC. However, resistance to DTX is a significant clinical problem as half of patients fail to respond to therapy. The TR4 nuclear receptor has been reported to play an important role in PCa progression, however, its linkage to the DTX resistance remains unclear. Here we found that TR4 was upregulated after DTX chemotherapy in the mCRPC cells and patients, and TR4 expression is correlated with DTX sensitivity with a higher level conferring chemo-resistance. Targeting TR4 with an antagonist bexarotene (Bex, a derivative of retinoid) suppressed the TR4 transactivation with increased DTX chemo-sensitivity. Mechanism dissection studies revealed that TR4 might alter the DTX chemo-sensitivity via modulating the TR4/lincRNA-p21/HIF-1α/VEGF-A signaling. Together, these results suggest that targeting this newly identified TR4/lincRNA-p21/HIF-1α/VEGF-A signaling with Bex, an FDA-approved drug, may increase the DTX chemo-sensitivity to better suppress the mCRPC progression.
Collapse
|
22
|
microRNA-17 functions as an oncogene by downregulating Smad3 expression in hepatocellular carcinoma. Cell Death Dis 2019; 10:723. [PMID: 31558704 PMCID: PMC6763424 DOI: 10.1038/s41419-019-1960-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 08/06/2019] [Accepted: 09/04/2019] [Indexed: 02/06/2023]
Abstract
The sekelsky mothers against dpp3 (Smad3) functions as a transcriptional modulator activated by transforming growth factor-β (TGF-β). Accumulated evidences indicated that Smad3 played the important roles in carcinogenesis and progression of hepatocellular carcinoma (HCC). Up to now, the regulatory mechanism of Smad3 in HCC still remains unclear. It has been known that some particular microRNAs (miRNAs) involve in carcinogenesis through the regulation of gene expressions with targeting mRNAs. In our study, the unknown candidates of miRNAs that target Smad3 mRNA were searched by using a newly established in vivo approach, the miRNA in vivo precipitation (miRIP). Using a loss-of-function assay, we demonstrated that miR-17 directly targeted Smad3 in HCC cells and inhibition on miR-17 increased Smad3 expression. Furthermore, we found that downregulation on Smad3 expression was consistent with high level of miR-17 in HCC tissues of patients when compared with around normal liver tissues. The manipulated miR-17 silence in HCC cells suppressed their growth of both in vitro and in vivo. Such suppression on cell growth could be recovered through downregulating Smad3. In addition, miR-17 affected cell proliferation through arresting cell cycle in G1 phase. The negative correlation between levels of miR-17 and protein levels of Smad3 was supported by the results of analysis with HCC tissue chip. In summary, for the first time, we confirmed that miR-17 directly targeted Smad3 mRNA and downregulated Smad3 protein expression in HCC. Our results indicated that the increased expression of miR-17 promoted carcinogenesis of HCC through down-regulations of Smad3, suggesting miR-17 might serve as the potential diagnostic and therapeutic targets for clinical HCC.
Collapse
|
23
|
Gerhard GS, Hanson A, Wilhelmsen D, Piras IS, Still CD, Chu X, Petrick AT, DiStefano JK. AEBP1 expression increases with severity of fibrosis in NASH and is regulated by glucose, palmitate, and miR-372-3p. PLoS One 2019; 14:e0219764. [PMID: 31299062 PMCID: PMC6625715 DOI: 10.1371/journal.pone.0219764] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/02/2019] [Indexed: 02/06/2023] Open
Abstract
Factors governing the development of liver fibrosis in nonalcoholic steatohepatitis (NASH) are only partially understood. We recently identified adipocyte enhancer binding protein 1 (AEBP1) as a member of a core set of dysregulated fibrosis-specific genes in human NASH. Here we sought to investigate the relationship between AEBP1 and hepatic fibrosis. We confirmed that hepatic AEBP1 expression is elevated in fibrosis compared to lobular inflammation, steatosis, and normal liver, and increases with worsening fibrosis in NASH patients. AEBP1 expression was upregulated 5.8-fold in activated hepatic stellate cells and downregulated during chemical and contact induction of biological quiescence. In LX-2 and HepG2 cells treated with high glucose (25 mM), AEBP1 expression increased over 7-fold compared to normal glucose conditions. In response to treatment with either fructose or palmitate, AEBP1 expression in primary human hepatocytes increased 2.4-fold or 9.6-fold, but was upregulated 55.8-fold in the presence of fructose and palmitate together. AEBP1 knockdown resulted in decreased expression of nine genes previously identified to be part of a predicted AEBP1-associated NASH co-regulatory network and confirmed to be upregulated in fibrotic tissue. We identified binding sites for two miRNAs known to be downregulated in NASH fibrosis, miR-372-3p and miR-373-3p in the AEBP1 3' untranslated region. Both miRNAs functionally interacted with AEBP1 to regulate its expression. These findings indicate a novel AEBP1-mediated pathway in the pathogenesis of hepatic fibrosis in NASH.
Collapse
Affiliation(s)
- Glenn S. Gerhard
- Lewis Katz School of Medicine, Temple University School of Medicine, Philadelphia, PA, United States of America
| | - Amanda Hanson
- Diabetes and Fibrotic Disease Unit, Translational Genomics Research Institute, Phoenix, AZ, United States of America
| | - Danielle Wilhelmsen
- Diabetes and Fibrotic Disease Unit, Translational Genomics Research Institute, Phoenix, AZ, United States of America
| | - Ignazio S. Piras
- Diabetes and Fibrotic Disease Unit, Translational Genomics Research Institute, Phoenix, AZ, United States of America
| | | | - Xin Chu
- Geisinger Obesity Institute, Danville, PA, United States of America
| | | | - Johanna K. DiStefano
- Diabetes and Fibrotic Disease Unit, Translational Genomics Research Institute, Phoenix, AZ, United States of America
| |
Collapse
|
24
|
Yuan XL, Wen FQ, Chen XW, Jiang XP, Liu SX. miR-373 promotes neuroblastoma cell proliferation, migration, and invasion by targeting SRCIN1. Onco Targets Ther 2019; 12:4927-4936. [PMID: 31417287 PMCID: PMC6593744 DOI: 10.2147/ott.s205582] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 05/17/2019] [Indexed: 12/17/2022] Open
Abstract
Introduction Previous studies have shown that miR-373 functions as either a tumor suppressor or an oncogene depending on which type of cancer it’s operating in. However, the functional role of miR-373 in neuroblastoma (NB) remains largely unclear. Methods Expression of miR-373 and SRC kinase signaling inhibitor 1 (SRCIN1) in 20 metastatic and 20 primary NB tissues was detected by quantitative real-time PCR (qRT-PCR) and Western blotting. MTT assay, flow cytometry analysis and transwell migration and invasion assays were performed to evaluate the influence of miR-373 inhibition on the growth, migration and invasion of NB cells, respectively. In vivo experiment was applied to determine the effect of miR-373 inhibition on tumor growth. Dual-luciferase reporter assay was used to confirm the interaction between miR-373 and SRCIN1. Results We observed a significant increase in the expression of miR-373 in metastatic NB samples compared with primary NB samples, and this was inversely correlated with SRCIN1 expression. Functional studies revealed that depletion of miR-373 inhibited in vitro NB cell growth, migration and invasion, and also suppressed tumor growth in an in vivo mouse model. Moreover, we identified that SRCIN1 was a direct and functional target gene of miR-373. Silencing of SRCIN1 partially rescued the antimiR-373-mediated inhibition of cell growth, migration and invasion. Conclusion The data from our study verified a potential oncogenic role of miR-373 in NB cells that occurs through direct targeting SRCIN1. The newly identified miR-373/SRCIN1 axis represents a new potential candidate for therapeutic intervention of malignant NB.
Collapse
Affiliation(s)
- Xiu-Li Yuan
- Department of Hematology/Oncology, Shenzhen Children's Hospital, Shenzhen 518036, People's Republic of China
| | - Fei-Qiu Wen
- Department of Hematology/Oncology, Shenzhen Children's Hospital, Shenzhen 518036, People's Republic of China
| | - Xiao-Wen Chen
- Department of Hematology/Oncology, Shenzhen Children's Hospital, Shenzhen 518036, People's Republic of China
| | - Xian-Ping Jiang
- Department of Hematology/Oncology, Shenzhen Children's Hospital, Shenzhen 518036, People's Republic of China
| | - Si-Xi Liu
- Department of Hematology/Oncology, Shenzhen Children's Hospital, Shenzhen 518036, People's Republic of China
| |
Collapse
|
25
|
Shiota M, Fujimoto N, Kashiwagi E, Eto M. The Role of Nuclear Receptors in Prostate Cancer. Cells 2019; 8:cells8060602. [PMID: 31212954 PMCID: PMC6627805 DOI: 10.3390/cells8060602] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 12/12/2022] Open
Abstract
The nuclear receptor (NR) superfamily consists of 48 members that are divided into seven subfamilies. NRs are transcription factors that play an important role in a number of biological processes. The NR superfamily includes androgen receptor, which is a key player in prostate cancer pathogenesis, suggesting the functional roles of other NRs in prostate cancer. The findings on the roles of NRs in prostate cancer thus far have shown that several NRs such as vitamin D receptor, estrogen receptor β, and mineralocorticoid receptor play antioncogenic roles, while other NRs such as peroxisome proliferator-activated receptor γ and estrogen receptor α as well as androgen receptor play oncogenic roles. However, the roles of other NRs in prostate cancer remain controversial or uninvestigated. Further research on the role of NRs in prostate cancer is required and may lead to the development of novel preventions and therapeutics for prostate cancer.
Collapse
Affiliation(s)
- Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Naohiro Fujimoto
- Department of Urology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan.
| | - Eiji Kashiwagi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| |
Collapse
|
26
|
Co-activation of macrophages and T cells contribute to chronic GVHD in human IL-6 transgenic humanised mouse model. EBioMedicine 2019; 41:584-596. [PMID: 30772305 PMCID: PMC6441951 DOI: 10.1016/j.ebiom.2019.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/25/2019] [Accepted: 02/01/2019] [Indexed: 01/08/2023] Open
Abstract
Background Graft-versus host disease (GVHD) is a complication of stem cell transplantation associated with significant morbidity and mortality. Non-specific immune-suppression, the mainstay of treatment, may result in immune-surveillance dysfunction and disease recurrence. Methods We created humanised mice model for chronic GVHD (cGVHD) by injecting cord blood (CB)-derived human CD34+CD38−CD45RA− haematopoietic stem/progenitor cells (HSPCs) into hIL-6 transgenic NOD/SCID/Il2rgKO (NSG) newborns, and compared GVHD progression with NSG newborns receiving CB CD34− cells mimicking acute GVHD. We characterised human immune cell subsets, target organ infiltration, T-cell repertoire (TCR) and transcriptome in the humanised mice. Findings In cGVHD humanised mice, we found activation of T cells in the spleen, lung, liver, and skin, activation of macrophages in lung and liver, and loss of appendages in skin, obstruction of bronchioles in lung and portal fibrosis in liver recapitulating cGVHD. Acute GVHD humanised mice showed activation of T cells with skewed TCR repertoire without significant macrophage activation. Interpretation Using humanised mouse models, we demonstrated distinct immune mechanisms contributing acute and chronic GVHD. In cGVHD model, co-activation of human HSPC-derived macrophages and T cells educated in the recipient thymus contributed to delayed onset, multi-organ disease. In acute GVHD model, mature human T cells contained in the graft resulted in rapid disease progression. These humanised mouse models may facilitate future development of new molecular medicine targeting GVHD.
Collapse
|
27
|
Fan Z, Zheng J, Xue Y, Liu X, Wang D, Yang C, Ma J, Liu L, Ruan X, Wang Z, Liu Y. NR2C2-uORF targeting UCA1-miR-627-5p-NR2C2 feedback loop to regulate the malignant behaviors of glioma cells. Cell Death Dis 2018; 9:1165. [PMID: 30518750 PMCID: PMC6281640 DOI: 10.1038/s41419-018-1149-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 09/25/2018] [Accepted: 10/01/2018] [Indexed: 12/15/2022]
Abstract
Accumulating evidence has highlighted the potential role of non-coding RNAs (ncRNAs) and upstream open-reading frames (uORFs) in the biological behaviors of glioblastoma. Here, we elucidated the function and possible molecular mechanisms of the effect of some ncRNAs and NR2C2-uORF on the biological behaviors of gliomas. Quantitative real-time PCR was conducted to profile the cell expression of lnc-UCA1 and microRNA-627-5p (miR-627-5p) in glioma tissues and cells. Western blot assay was used to determine the expression levels of NR2C2, SPOCK1, and NR2C2-uORF in glioma tissues and cells. Stable knockdown of lnc-UCA1 or overexpression of miR-627-5p in glioma cell lines (U87 and U251) were established to explore the function of lnc-UCA1 and miR-627-5p in glioma cells. Further, Dual luciferase report assay was used to investigate the correlation between lnc-UCA1 and miR-627-5p. Cell Counting Kit-8, transwell assays, and flow cytometry were used to investigate lnc-UCA1 and miR-627-5p function including cell proliferation, migration and invasion, and apoptosis, respectively. ChIP assays were used to ascertain the correlations between NR2C2 and SPOCK1 as well as NR2C2 between lnc-UCA1. This study confirmed that lnc-UCA1 was up-regulated in glioma tissues and cells. UCA1 knockdown inhibited the malignancies of glioma cells by reducing proliferation, migration, and invasion, but inducing apoptosis. We found that lnc-UCA1 acted as miR-627-5p sponge in a sequence-specific manner. Meanwhile, upregulated lnc-UCA1 inhibited miR-627-5p expression. In addition, miR-627-5p targeted 3'UTR of NR2C2 and down-regulated its expression. Moreover, UCA1 knockdown impaired NR2C2 expression by upregulating miR-627-5p. An uORF was identified in mRNA 5'UTR of NR2C2 and overexpression of whom negatively regulated NR2C2 expression. Remarkably, lnc-UCA1 knockdown combined with uORF overepression and NR2C2 knockdown led to severe tumor suppression in vivo. This study demonstrated that the NR2C2-uORF impaired the pivotal roles that UCA1-miR-627-5p-NR2C2 feedback loop had in regulating the malignancies of glioma cells by targeting NR2C2 directly. And this may provide a potential therapeutic strategy for treating glioma.
Collapse
MESH Headings
- Animals
- Apoptosis/genetics
- Brain Neoplasms/genetics
- Brain Neoplasms/metabolism
- Brain Neoplasms/mortality
- Brain Neoplasms/pathology
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- Feedback, Physiological
- Gene Expression Regulation, Neoplastic
- Glioblastoma/genetics
- Glioblastoma/metabolism
- Glioblastoma/mortality
- Glioblastoma/pathology
- Humans
- Mice
- Mice, Nude
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Open Reading Frames
- Promoter Regions, Genetic
- Proteoglycans/genetics
- Proteoglycans/metabolism
- RNA, Long Noncoding/antagonists & inhibitors
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Receptors, Steroid/genetics
- Receptors, Steroid/metabolism
- Receptors, Thyroid Hormone/genetics
- Receptors, Thyroid Hormone/metabolism
- Signal Transduction
- Survival Analysis
- Tumor Burden
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Zirong Fan
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 110004, Shenyang, China
- Liaoning Clinical Medical Research Center in Nervous System Disease, 110004, Shenyang, China
- Key Laboratory of Neuro-oncology in Liaoning Province, 110004, Shenyang, China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 110004, Shenyang, China
- Liaoning Clinical Medical Research Center in Nervous System Disease, 110004, Shenyang, China
- Key Laboratory of Neuro-oncology in Liaoning Province, 110004, Shenyang, China
| | - Yixue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical University, 110122, Shenyang, China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, 110122, Shenyang, China
- Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, 110122, Shenyang, China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 110004, Shenyang, China
- Liaoning Clinical Medical Research Center in Nervous System Disease, 110004, Shenyang, China
- Key Laboratory of Neuro-oncology in Liaoning Province, 110004, Shenyang, China
| | - Di Wang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 110004, Shenyang, China
- Liaoning Clinical Medical Research Center in Nervous System Disease, 110004, Shenyang, China
- Key Laboratory of Neuro-oncology in Liaoning Province, 110004, Shenyang, China
| | - Chunqing Yang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 110004, Shenyang, China
- Liaoning Clinical Medical Research Center in Nervous System Disease, 110004, Shenyang, China
- Key Laboratory of Neuro-oncology in Liaoning Province, 110004, Shenyang, China
| | - Jun Ma
- Department of Neurobiology, College of Basic Medicine, China Medical University, 110122, Shenyang, China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, 110122, Shenyang, China
- Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, 110122, Shenyang, China
| | - Libo Liu
- Department of Neurobiology, College of Basic Medicine, China Medical University, 110122, Shenyang, China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, 110122, Shenyang, China
- Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, 110122, Shenyang, China
| | - Xuelei Ruan
- Department of Neurobiology, College of Basic Medicine, China Medical University, 110122, Shenyang, China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, 110122, Shenyang, China
- Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, 110122, Shenyang, China
| | - Zhenhua Wang
- Department of Physiology, College of Basic Medicine, China Medical University, 110122, Shenyang, Liaoning, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 110004, Shenyang, China.
- Liaoning Clinical Medical Research Center in Nervous System Disease, 110004, Shenyang, China.
- Key Laboratory of Neuro-oncology in Liaoning Province, 110004, Shenyang, China.
| |
Collapse
|
28
|
The role of NR2C2 in the prolactinomas. OPEN CHEM 2018. [DOI: 10.1515/chem-2018-0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Prolactinomas are the most frequently observed pituitary adenomas. Prolactinomas invasion is a key risk factor associated with operation results, and it is highly correlated with clinical prognosis. Nuclear receptor subfamily 2 group C member 2 (NR2C2) first cloned from testis is involved in the invasion and metastasis of several human tumors. In 46 patients with prolactinamas, the expression levels of CCNB1, Notch2, and NR2C2 was determined with tissue micro-array (TMA). The association between NR2C2 levels and clinical parameters was established with univariate analysis. The levels of Notch2 and CCNB1 were analyzed by RT-PCR and western blot techniques.The average methylation levels of the NR2C2 promoter were 0.505 and 0.825 in invasive prolactinomas (IPA) and non-IPA groups, respectively (p = 0.013). Univariate analysis also showed that there is a significant relationship between high NR2C2 expression and invasion (x2 = 7.043, p = 0.008), prolactin granules (x2 = 8.712, p = 0.003), and tumor size (x2 = 4.261, p = 0.039.) With the knockdown of NR2C2, cell proliferation was inhibited. Genes related to epithelial-mesenchymal transition (EMT) induced the apoptosis in MMQ cells. In addition, the level of Notch2 and CCNB1 were down-regulated with the knockdown of NR2C2. Moreover, miR-129-5p reduced mRNA levels of NR2C2, and they inhibited cell proliferation by inducing apoptosis levels of MMQ cells. Our findings proved NR2C2 played the important role in tumorigenesis tumor invasion of prolactinomas; moreover, NR2C2 is identified as a potential target.
Collapse
|
29
|
TR4 nuclear receptor promotes clear cell renal cell carcinoma (ccRCC) vasculogenic mimicry (VM) formation and metastasis via altering the miR490-3p/vimentin signals. Oncogene 2018; 37:5901-5912. [DOI: 10.1038/s41388-018-0269-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 06/29/2017] [Accepted: 09/25/2017] [Indexed: 12/19/2022]
|
30
|
Wang M, Sun Y, Xu J, Lu J, Wang K, Yang DR, Yang G, Li G, Chang C. Preclinical studies using miR-32-5p to suppress clear cell renal cell carcinoma metastasis via altering the miR-32-5p/TR4/HGF/Met signaling. Int J Cancer 2018; 143:100-112. [PMID: 29396852 DOI: 10.1002/ijc.31289] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 12/13/2017] [Accepted: 01/05/2018] [Indexed: 12/22/2022]
Abstract
While testicular nuclear receptor 4 (TR4) may promote prostate cancer (PCa) metastasis, its role in the clear cell renal cell carcinoma (ccRCC) remains unclear. Here we found a higher expression of TR4 in ccRCC tumors from patients with distant metastases than those from metastasis-free patients, suggesting TR4 may play positive roles in the ccRCC metastasis. Results from multiple in vitro ccRCC cell lines also confirmed TR4's positive roles in promoting ccRCC cell invasion/migration via altering the microRNA (miR-32-5p)/TR4/HGF/Met/MMP2-MMP9 signaling. Mechanism dissection revealed that miR-32-5p could suppress TR4 protein expression levels via direct binding to the 3'UTR of TR4 mRNA, and TR4 might then alter the HGF/Met signaling at the transcriptional level via direct binding to the TR4-response-elements (TR4RE) on the HGF promoter. Then the in vitro data also demonstrated the efficacy of Sunitinib, a currently used drug to treat ccRCC, could be increased after targeting this newly identified miR-32-5p/TR4/HGF/Met signaling. The preclinical study using the in vivo mouse model with xenografted ccRCC cells confirmed the in vitro cell lines data. Together, these findings suggest that TR4 is a key player to promote ccRCC metastasis and targeting this miR-32-5p/TR4/HGF/Met signaling with small molecules including TR4-shRNA or miR-32-5p may help to develop a new therapy to better suppress the ccRCC metastasis.
Collapse
Affiliation(s)
- Mingchao Wang
- Department of Urology and Chawnshang Chang Liver Cancer Center, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China.,George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York, 14642
| | - Yin Sun
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York, 14642
| | - Junjie Xu
- Department of Urology and Chawnshang Chang Liver Cancer Center, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China.,George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York, 14642
| | - Jieyang Lu
- Department of Urology and Chawnshang Chang Liver Cancer Center, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China.,George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York, 14642
| | - Kefeng Wang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York, 14642
| | - Dong-Rong Yang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York, 14642
| | - Guosheng Yang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York, 14642
| | - Gonghui Li
- Department of Urology and Chawnshang Chang Liver Cancer Center, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Chawnshang Chang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York, 14642.,Sex Hormone Research Center, China Medical University/Hospital, Taichung, 404, Taiwan
| |
Collapse
|
31
|
miR-373-3p Targets DKK1 to Promote EMT-Induced Metastasis via the Wnt/ β-Catenin Pathway in Tongue Squamous Cell Carcinoma. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6010926. [PMID: 28337453 PMCID: PMC5350393 DOI: 10.1155/2017/6010926] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 02/01/2017] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) regulate gene expression and at the same time mediate tumorigenesis. miR-373-3p has diverse effects in tumors, but its role in tongue squamous cell carcinoma (TSCC) remains unknown. The purpose of this study is to determine the function of miR-373-3p in the progression of TSCC. Our results brought to light that miR-373-3p is markedly upregulated in clinical TSCC tissues compared with paired adjacent normal tissues and has significant correlation with a more aggressive TSCC phenotype in patients. Gain-of-function and loss-of-function studies revealed that ectopic miR-373-3p overexpression promoted the metastasis of TSCC cells. Notably, Wnt/β-catenin signaling was hyperactivated in TSCC cells overexpressing miR-373-3p, and this pathway was responsible for the epithelial-mesenchymal transition (EMT) induced by miR-373-3p. Furthermore, miR-373-3p directly targeted and suppressed Dickkopf-1 (DKK1), a negative regulator of the Wnt/β-catenin signaling cascade. These results demonstrate that, by directly targeting DKK1, miR-373-3p constitutively activated Wnt/β-catenin signaling, thus promoting the EMT-induced metastasis of TSCC. Taken together, our findings reveal a new regulatory mechanism for miR-373-3p and suggest that miR-373-3p might be a potential target in TSCC therapy.
Collapse
|
32
|
Festuccia C. Investigational serine/threonine kinase inhibitors against prostate cancer metastases. Expert Opin Investig Drugs 2016; 26:25-34. [PMID: 27892725 DOI: 10.1080/13543784.2016.1266337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Androgen deprivation therapy (ADT) is used as first therapeutic approach in prostate cancer (PCa) although castration resistant disease (CRPC) develops with high frequency. CRPC is the consequence of lack of apoptotic responses to ADT. Alternative targeting of the androgen axis with abiraterone and enzalutamide, as well as taxane-based chemotherapy were used in CRPC. Serine/threonine protein kinases (STKs) regulate different molecular pathways of normal and neoplastic cells and participate to development of CRPC as well as to the progression towards a bone metastatic disease (mCRPC). Areas covered: The present review provide data on STK expression and activity in the development of CRPC as well as summarize recent reports of different strategies to block STK activity for the control of PCa progression. Expert Opinion: Inhibitors for different STKs have been developed but clinical trials in PCa are comparatively rare and few exhibit satisfactory 'drug-like' properties. It is, however, necessary to intensify, when possible, the number of clinical trials with these drugs in order to insert new therapies or combinations with standard hormone- and chemo-therapies in the treatment guidelines of the mPCA.
Collapse
Affiliation(s)
- Claudio Festuccia
- a Department of Biotechnological and Applied Clinical Sciences , University of L'Aquila , L'Aquila , Italy
| |
Collapse
|
33
|
Lin SJ, Yang DR, Li G, Chang C. TR4 Nuclear Receptor Different Roles in Prostate Cancer Progression. Front Endocrinol (Lausanne) 2015; 6:78. [PMID: 26074876 PMCID: PMC4445305 DOI: 10.3389/fendo.2015.00078] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/30/2015] [Indexed: 01/03/2023] Open
Abstract
Nuclear receptors are important to maintain the tissue homeostasis. Each receptor is tightly controlled and under a very complicated balance. In this review, we summarize the current findings regarding the nuclear receptor TR4 and its role in prostate cancer (PCa) progression. In general, TR4 can inhibit the PCa carcinogenesis. However, when PPARγ is knocked out, activation of TR4 can have an opposite effect to promote the PCa carcinogenesis. Clinical data also indicates that higher TR4 expression is found in PCa tissues with high Gleason scores compared to those tissues with low Gleason scores. In vitro and in vivo studies show that TR4 can promote PCa progression. Mechanism dissection indicates that TR4 inhibits PCa carcinogenesis through regulating the tumor suppressor ATM to reduce DNA damages. On the other hand, in the absence of PPARγ, TR4 tends to increase the stem cell population and epithelial-mesenchymal transition (EMT) via regulating CCL2, Oct4, EZH2, and miRNA-373-3p expression that results in increased PCa carcinogenesis. In opposition to PCa initiation, TR4 can increase PCa metastasis via modulating the CCL2 signals. Finally, targeting TR4 enhances the chemotherapy and radiation therapy sensitivity in PCa. Together, these data suggest TR4 is a key player to control PCa progression, and targeting TR4 with small molecules may provide us a new and better therapy to suppress PCa progression.
Collapse
Affiliation(s)
- Shin-Jen Lin
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and the Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Dong-Rong Yang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and the Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
- Department of Urology, The Second Affiliated Hospital of Soochow University, Soochow, China
| | - Gonghui Li
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and the Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
- Department of Urology, Sir-Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Chawnshang Chang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and the Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
- Sex Hormone Research Center, China Medical University Hospital, Taichung, Taiwan
- *Correspondence: Chawnshang Chang, George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center. University of Rochester Medical Center, Rochester, NY 14642, USA,
| |
Collapse
|